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Abstract 17 

Animals need to navigate between resources such as water, food and shelter and how they achieve this 18 
is likely to vary with species.  Here, using high accuracy GPS data, we study repeated journeys made 19 
by wild zebra (Equus quagga) through a naturally vegetated environment to explore whether they 20 
consistently follow the same route through the area or whether they use a range of routes to reach their 21 
goal.  We use a model to distinguish and quantify these two possibilities and show that our 22 
observations are consistent with the use of multiple routes. Our model performs better than assuming 23 
uniform angular distribution of trajectories. The typical separation of the routes was found to be small 24 
(1.96 m), while the scale at which neighboring trajectories are informative to direction of travel was 25 
found to be large (with a confidence interval of (1.19, 26.4) m). Our observations are consistent with 26 
the hypothesis that zebra are able to navigate without having to return to previously used routes, instead 27 
using numerous different routes of similar trajectories.   28 
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 38 

Introduction 39 

In natural ecosystems, resources are typically widely distributed, meaning that animals must move 40 

through the landscape to access them (Wiens, 1976). To do this while minimising use of time and 41 

energy, animals need to be able to navigate between key locations. 42 

 43 

They could achieve this using a number of strategies. The first is through innate navigational abilities, 44 

for instance through knowledge of their location, destination and the use of magnetic or sun compasses. 45 

This is reported for a variety of birds and aquatic species but has not been reported in most terrestrial 46 

mammals (Lohmann et al., 2007, Geva-Sagiv et al., 2015).   47 

 48 

A second approach (beaconing) relies on moving in towards a directly perceptible cue.  It ranges from 49 

using a single cue situated close to the ultimate goal, to the use of a series of perceptual cues to allow 50 

them to locate the ultimate goal relative to their current position. Beaconing has been demonstrated in 51 

many species (Zollner and Lima, 1999) and can use a range of senses (Croney et al., 2003) however, it 52 

iV limiWed Wo goalV ZiWhin an animal¶V immediaWe SeUceSWXal Uange and can WheUefoUe onl\ be XVed foU 53 

long-distance navigation in species with large perceptual ranges such as birds and bats (Williams et al., 54 

1966).   55 

 56 

It is hypothesised that a third approach, mental maps, allow animals to navigate to destinations outside 57 

of their immediate perceptual range by memorising the relative location of a series of landscape 58 

features and then using this neural representation to navigate through a large-scale environment. The 59 

most complex form of a mental map is a cognitive map (O'Keefe and Nadel, 1978) where it is theorised 60 

that an animal mentally stores information about all important features in its landscape, as well as the 61 

relative angle and distance between those features, similar to an actual physical map. Although a 62 

popular concept, the cognitive cost and mental capacity necessary for such a map may be prohibitive 63 

(Bennett, 1996) and at present there is no evidence of its use in any animal taxon (Bennett, 1996, 64 

Janson, 2000, Byrne, 2000).  65 

 66 

A suggested alternative that is supported by a number of biologists is the memorisation of a limited 67 

number of specific routes or navigational cues between differenW ViWeV ZiWhin an animal¶V Uange (Byrne, 68 

1979, Milton, 1981, Poucet, 1993). Such a map could be formed of routes, multiple successive beacons, 69 
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or a combination of routes and beacons (Dumont and Petit, 1998).  The use of routes, the repeated use 70 

of the same course or way between a starting point and a destination, has been recorded in numerous 71 

species, including ungulates living in savannah, forest and mountain environments (Agnew, 1966; 72 

Kays, 2011, Newmark and Rickart, 2012).  Route use has also been widely recorded in arboreal 73 

primates, for instance wild ranging howler monkeys repeatedly used the same routes that were either 74 

close to areas of high resource density or were elevated (de Guinea et al., 2019) whilst spider and 75 

woolly monkeys repeatedly used the same routes, many of which were associate with distinct 76 

topographical features, whilst travelling through their home range (Di Fiore and Suarez, 2007). 77 

Repeated use of the same route can lead to the creation of physical tracks; the track network in African 78 

landscapes is extensive with the same tracks often being used for many decades (Haynes, 2006), 79 

including by savannah dwelling ungulates such as zebra (Smuts, 1976). It has been hypothesised that 80 

route use facilitates navigation by reducing the complexity of a landscape through limiting movement 81 

decisions at each step and therefore reducing the amount of information an animal needs to retain to 82 

successfully navigate between two points (Newmark and Rickart, 2012).  It also reduces movement 83 

costs by compacting substrate and reducing superstrate barriers (Shepard et al., 2013).   84 

 85 

Day to day navigational strategies utilised by terrestrial animals have been studied in laboratory 86 

(Morris et al., 1982) and engineered settings (Beecham, 2001, Mueller and Fagan, 2008, Ulanovsky 87 

and Moss, 2008) but rarely in natural landscapes and then mostly at much finer scales, for instance in 88 

ants, where heading sensing and awareness of distance covered are key (Collett et al., 2013).  Other 89 

work has focussed on flying, rather than terrestrial, species such as birds and bats (Tsoar et al., 2011). 90 

Many theoretical studies have considered the importance of perceptual cues and cognitive ability on 91 

animal movement patterns (Beecham, 2001, Mueller and Fagan, 2008, Hirvonen et al., 1999), however, 92 

these capabilities have not been fully evaluated and are challenging to quantify in field settings. 93 

 94 

In this paper, we use a combination of high-rate and high-accuracy GPS movement data and 95 

mathematical modelling to analyse the movement of zebra navigating over long distances between 96 

resources to differentiate between potential navigation strategies. Zebra exist is stable family groups, 97 

harems, consisting of a stallion, two to five adult females and their offspring (Skinner and Smithers, 98 

1990).  Whilst harems occasionally join to form larger groups (herds), movement decisions are made at 99 

a harem level (Smuts, 1976) so tracking one individual is equivalent to tracking the whole harem. 100 

Zebra, like many herd dwelling herbivores, travel one behind another in a linear fashion when moving 101 

longer distances (Smuts, 1976), it can therefore be expected that all zebra of the same harem follow the 102 
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same linear route.  The zebra studied here spend the dry season in the Moremi Game Reserve in the 103 

Okavango Delta, Botswana. When in their dry season range the zebra drink at a single water source but 104 

use disparate grazing areas. They move between these distinct grazing and drinking areas (around 105 

10km apart, see Figure 1 and Supplementary Figure 4) every 2-3 days. The regularity and frequency of 106 

these journeys provide a high numbers of repeated movements making this an excellent system to 107 

investigate the navigational strategies utilised by wild ranging herbivores moving distances greater than 108 

their immediate perceptual range. 109 

We use a variant of the technique of function approximation by radial basis function networks 110 

(Broomhead and Lowe, 1988), to investigate how routes (for this paper, defined as a sequence of 111 

occupied spatial positions, ie GPS fixes) recently used by a zebra influence its future movements and 112 

whether individual zebra harems when returning to a known location.  113 

We characterise how the zebra move in terms of two possible navigation strategies, one where zebra 114 

consistently follow the same route through an area and an alternative strategy where there is minimal 115 

preference for particular routes and multiple routes are utilised. The first scenario would indicate 116 

reliance on, and moving between, a limited number of learnt landscape features, the second an ability 117 

to navigate to the distant destination through knowledge of location and orientation or through the 118 

learning of numerous different routes. Our model also allows us to determine how predictive other 119 

routes are: is the heading used by a zebra predicted by a contemporaneous route when such a route is 120 

nearby? 121 

 122 

We hypothesize that zebra utilise multiple routes to reach their destination, but that routes are highly 123 

predicted by other nearby routes, due to zebra using knowledge gained from previous journeys to the 124 

destination to aid the efficiencies of subsequent journeys.   125 

Materials and Methods 126 

Subjects 127 

Nine female zebra, each from a different harem, were fitted with GPS collars of our own design 128 

(Wilson et al., 2013, Wilson et al., 2018). The zebra selected were members of a migratory sub-129 

population who move between the Moremi Game Reserve, part of the Okavango Delta, and the 130 

Makgadikagdi National Park, a large salt pan and grassland system, in northern Botswana (Bartlam-131 

Brooks et al., 2010).  These two protected area fall within one of the largest continuous tracts of land 132 
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available to wildlife in southern Africa.  Numerous species, both herbivores and carnivores utilise 133 

movement corridors within this greater system either as part of seasonal migratory or dispersal 134 

movements.   135 

 136 

Zebra live in stable harems, comprised of an adult male, up to five adult females and their juveniles.  137 

Unfortunately due to harems temporarily mixing during darting the precise harem structure for collared 138 

individuals could not be recorded but due to most foals being born in the wet season in this zebra 139 

population (Bartlam-Brooks et al., 2010) the age-structure of harems was broadly similar with no 140 

young foals. Adult females were selected to reduce the risk of collar damage from intra-sexual fighting; 141 

because zebra live in harems that include different age and sex cohorts, collaring only adult females 142 

does not introduce biases due to sex- and age-specific movement patterns. 143 

 144 

Animal handling 145 

Zebra were darted from a stationary vehicle by an experienced wildlife veterinarian.  Zebra were 146 

sedated with 7 mg Etorphine, 1667 i.u. Hyalase and 80 mg Azaperone.  During sedation collars were 147 

fiWWed VnXgl\ aW Whe WoS of Whe ]ebUa¶V neck and baVic Vi]e meaVXUemenWV ZeUe made (neck ZidWh, hind 148 

and foreleg length). Dart sites were infused with intra mammary antibiotics to guard against infection. 149 

Immobilisation was then reversed with 80 mg Naltrexone.  All zebra recovered rapidly, were observed 150 

rejoining their harems and none showed any lasting effects. All collars were fitted with mechanical 151 

drop-offs (Sirtrack, Hawkes Bay, New Zealand) to ensure collars fell off after 18months.   152 

 153 

All animal handling procedures were carried out under ethical approval from the Ethics and Welfare 154 

Committee of the Royal Veterinary College, London (URN 2013 1233).  Darting permits were 155 

provided by the Department of Wildlife and National Parks (DWNP) based on research permit EWT 156 

8/36/4 XXIV (193) prior to all darting.  157 

Study Area 158 

The Moremi Game reserve is located in the Okavango Delta in northern Botswana, between 22.0° - 159 

23.5° E and 18.5° - 20.0° S. A satellite image of the study region can be found in Figure 1a.  The 160 

Okavango Delta is a large landlocked alluvial fan, covering 22,000km2 (McCarthy and Ellery, 1998).  161 

It is fed by the Okavango River System, which originates in the Angolan highlands.  Rainwater falling 162 

in the catchment basin creates a flood surge that peaks in the Delta in June, the middle of the dry 163 
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season. The Delta therefore experiences two moisture regimes, the annual rains and the annual flood 164 

(McCarthy and Ellery, 1998).  The system supports a large variety of wildlife species, 32 species of 165 

large mammal and 72 species of small mammals have been recorded (Ramberg et al., 2006).  High 166 

habitat heterogeneity, a shortened limiting season due to the dual moisture regime and the dynamic 167 

YegeWaWion VXcceVVion UeVXlWing fUom Whe YaUiable flooding SaWWeUn ma\ all conWUibXWe Wo Whe DelWa¶V 168 

ability to support higher biodiversity than the Uegion¶V SooU TXaliW\ Voil and loZ annXal Uainfall ZoXld 169 

predict (Bonyongo and Harris, 2007, Ramberg et al., 2006). 170 

 171 

Data Collection 172 

Data were collected between September and November 2015, a period of the dry season when all the 173 

zebra were exclusively drinking in one location.   174 

Collar Design 175 

RVC collars used solar cells and a rechargeable battery in order to maintain a sufficient collar life span 176 

at a 5 minute sample rate. All collars were constructed in-house. The collar mass was 930g plus a 50g 177 

dUoS off, WhiV eTXaWeV Wo onl\ 0.3% of an adXlW female ]ebUa¶V bod\ ZeighW (320 kg) (Skinner and 178 

Smithers, 1990). The collar circuit was based around a low power MSP430 16-bit micro-controller 179 

(Te[aV InVWUXmenWV Inc., DallaV, USA), UXnning cXVWom VofWZaUe ZUiWWen in Whe µC¶ SUogUamming 180 

language developed using an integrated development system from IAR Systems. 181 

The microcontroller contains several internal peripheral blocks, including an 8-channel 12-bit 182 

analogue-to-digital converter (ADC), four serial communications modules, plus various timers, 183 

general- purpose digital input and output lines, and other support modules. A connected 2-GB micro-184 

SD flash memory card (Sandisk Corp., Milpitas, USA) provided data storage. GPS position was 185 

obtained from an NEO-6T or NEO-M8N GPS module (u-Blox AG), other satellite constellations were 186 

not used. In addition to internally computed position and velocity, the module is able to generate raw 187 

pseudo-range, phase and Doppler data for the signal from each satellite enabling detailed GPS 188 

performance evaluation, and use of customized differential techniques for increased accuracy. 189 

The resulting GPS tracks as displayed in Figure 1a. A 2.4 GHz chirp-spread-spectrum communication 190 

module (Nanotron Technologies Gmbh, Berlin Germany) communicating at 1 Mbit per second was 191 

used to download data and upload software configurations and firmware updates. A conventional 192 

wildlife tracking transmitter in the 149 MHz band (Sirtrack) was used for long-range animal tracking 193 

using conventional direction-finding techniques from the ground or the air. Power for the collars was 194 
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provided by two 13 Ah lithium thionyl chloride primary battery (Saft Groupe SA, Bagnolet, France) 195 

and a 900 mAh lithium-polymer rechargeable battery (Active Robots, Radstock, UK), charged by a 196 

solar cell array consisting of 10 monocrystalline silicon solar cells (Ixys, Milpitas, USA). The switch of 197 

the collars electrical load from one battery to the other occurred depending on battery state (voltage 198 

over time) monitored by the microcontroller.  199 

The collar provides GPS position using a NEO-6T or NEO-M8N GPS module (u-Blox AG). The 200 

NAV-POSLLH message data message includes hAcc, a module derived 2D (ie horizontal) accuracy 201 

estimate. This corresponds to a 1-sigma value when six or more satellites are tracked and is calculated 202 

from number of satellites tracked, satellite signal to noise data (effectively signal strength), geometric 203 

distribution of tracked satellites (DOP value) and the residuals on the pseudorange values. Over the 204 

whole data set his had a median value of 3.93m with quartiles of 2.48m and 6.77m so slightly above the 205 

data sheet CEP of 2.5m (NEO-6T) and 2.0m (Neo-M8N) respectively. As typical for GPS the position 206 

error was highly non-gaussian with a heavy tail. The most extreme observations were removed along 207 

with those outside of the study area (see below). 208 

 209 

Model Approach 210 

The model attempts to predict the heading, estimated from successive GPS fixes, of a zebra as a 211 

function of location by assuming that movement in a particular direction in the vicinity of a prior 212 

observation increases the probability of later observing a similar heading. The input to the model is 213 

each GPS fix along with the heading vector to the subsequent GPS fix. The model initially assumes that 214 

the heading vector has a uniform distribution. Then, at every pair of successive GPS observations a 215 

radial basis function is added which increases the likelihood of movement in this direction. As such the 216 

model requires that the observed tracks must be reasonably approximated by linear segments, and the 217 

spatial and temporal sample frequency must be reasonably high. The model can be adjusted to change 218 

the scale of the radial basis term, which determines over what distance a successive pair of GPS 219 

observations are informative, and two parameters which allow for different navigation strategies. 220 

 221 

Two model parameters were used to characterise movement, the first, V, is a measure of how the 222 

distance from a previous route predicts future animal movement. Consider a scenario where we record 223 

a ]ebUa¶V UoXWe, and When, a feZ monWhV laWeU Whe ]ebUa is very close to the same location. It is 224 

reasonable to expect that accurate predictions about the new route can be derived from the previous 225 
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route. If on another day the animal is kilometers away from any previous route it is reasonable to 226 

expect that feZ, if an\, of Whe SUeYioXV UoXWeV Zill Well XV mXch aboXW Whe animal¶V heading. V is the 227 

distance (m) where the model transitions from one regime (previous tracks are very useful for 228 

predicting new tracks) to the other (previous tracks are less useful for predicting tracks). Observations 229 

which are separated by distances much greater than V yield little information about each others 230 

orientation, while observations which are separated by only a fraction of V are informative of one 231 

anoWheU¶V oUienWaWion.  232 

 233 

The second model parameter, O, tells us how the animals move relative to previous routes. For small 234 

values of O� animals are predicted to move strongly towards (converge towards) previous routes. For 235 

larger values of O� the animals are predicted to move parallel to existing routes. Thus, O controls which 236 

strategy zebra use in our model: small values of O corresponding to behavior consistent with usage of a 237 

small number of routes, larger values are consistent with moving to the final goal but ignoring nearby 238 

routes that were used previously, ie using a more complex mental map of the environment. This model 239 

parameter is the length scale (m) where we transition between these two extremes. Observations which 240 

are separated by distances much greater than O will, if they are informative of one another, tend to be 241 

perpendicular, while observations which are separated by only a fraction of O, if informative of one 242 

anoWheU¶V oUienWaWion, Zill Wend Wo be SaUallel. 243 

 244 

If animals have preferred routes that they gravitate towards, then we expect O to be small, in this case 245 

compared to V. Values of O much larger than V predict the use of new routes that will be parallel but 246 

not co-incident with existing routes, and values between these two extremes predict angles between 247 

these two extremes (somewhat attracted towards a previous route, but not directly at it).  248 

 249 

Data Analysis 250 

We collected GPS data with samples every five minutes from nine zebra over a period of 499 days 251 

(1106 zebra days total, minimum 39 days per harem, median 60 days per harem).   We filtered those 252 

data by removing erroneous positions, those with a horizontal position accuracy value greater than 253 

15m, and then extracted GPS position (Wilson et al., 2013), subsequent positions were differentiated to 254 

obtain trajectory segments, the heading used was the orientation of this vector. Due to this filtering and 255 

occasional missed satellite fixes some small gaps in the data were therefore present. A total of 29 GPS 256 
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fixes, around 0.37%), were separated by more than two sample intervals. These samples were 257 

differentiated as above, no interpolation was performed as only the direction contributed to the fit, this 258 

could be obtained even from these more widely separated samples (all be it with less local reliability), 259 

and interpolation would have given these outliers undue weight due to duplication. 260 

The spatial trajectories were manually sifted through looking for regions where the zebra were 261 

traveling between known grazelands and water sources. The start of zebra movements were identified 262 

by a speed of greater than 1m/s combined with a sustained directional movement in at least three 263 

successive GPS points.  The end of movements were identified as either arrival at a water source, or 264 

when sustained movements slowed to a speed of less than 1m/s combined with high tortuosity, 265 

indicating zebras had arrived at a grazing or resting patch. This process delivered 217 journeys, 15 to 266 

34 per zebra, to and from the grazing areas to the water source across a 15 x 15 km area of interest.  267 

 268 

We use a set of basis terms (we use the term ``basis'' informally here as in ``radial basis functions'', 269 

technically the terms used do not constitute a basis, but rather are a collection of functions whose finite 270 

linear spans are dense in the function space of interest), centered on the observations of the training 271 

data, to construct a likelihood model for the observed trajectories in the testing data. This can be 272 

viewed as an application of the technique of function approximation by radial basis function networks 273 

(Broomhead and Lowe, 1988). For every two subsequent observations in the training data set (where 274 

the zebra is observed to move between to locations x0 and x1, see Figure 2) we have a basis function 275 

which calculate the weight, W, associated with moving in a direction T� at location x, given that we 276 

have two successive GPS observations at x0 and x1, with O and V parameters as previously discussed: 277 

𝑊ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆, 𝜎ሻ = 1 +𝑊𝜃ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ𝑊𝑥ሺ𝑥0, 𝑥1, 𝑥, 𝜎ሻ 278 
 279 
The spatial weight of basis, Wx is given by 280 

𝑊𝑥ሺ𝑥0, 𝑥1, 𝑥, 𝜎ሻ = 𝑒𝑥𝑝 281 
 282 
with d given by 283 

𝑑ሺ𝑥0, 𝑥1, 𝑥ሻ = ቐ
|𝑥 − 𝑥0| 𝜇 < 0

ඥ|𝑥 − 𝑥0|2 − 𝜇𝑢 𝜇 ≥ 0, 𝜇 ≤ 1
|𝑥 − 𝑥1| 𝜇 > 1

 284 

with 285 

𝜇 =
ሺ𝑥1 − 𝑥0ሻ ⋅ ሺ𝑥 − 𝑥0ሻ

𝑢2  286 
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 287 
and 288 

𝑢 = |𝑥1 − 𝑥0| 289 
 290 
One can think of d as the shortest distance between the location of our test observation and the line 291 
between the two points in our training observation. Our weight falls off as a negative squared exponent 292 
as this increases. The angular weight is given by 293 

𝑊𝜃ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ = 𝑒𝑥𝑝 ቀ𝑐𝑜𝑠(2𝜏′ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ)ቁ 294 
with 295 

𝜏′ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ = 𝛼𝜏ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ 296 

if 𝜏ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ ≤ 𝑏 and  297 

𝜏′ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ = 𝛼𝜏ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ + 𝑐 298 

if 𝜏ሺ𝑥0, 𝑥1, 𝑥, 𝜃, 𝜆ሻ > 𝑏, where 299 

𝜏ሺ𝑥0, 𝑥1, 𝑥, 𝜆ሻ = 𝑚𝑜𝑑 ቀ𝜃 − 𝑡𝑎𝑛−1ሺ𝑥1 − 𝑥0ሻ −
𝜋
2𝛼

ሺ𝑞𝛼 − 1ሻ, 2𝜋ቁ 300 

where tan-1 is the arc tangent of the vectors components with appropriate sign and 301 

𝑐 = 2𝜋ሺ1 − 𝛼ሻ 302 

and 303 

𝑏 =
ሺ2𝛼 + 𝑞ሻ𝜋

2𝛼  304 

and 305 

𝛼 =
1
2
(1 + 𝑒𝑥𝑝 ቆ

−𝑝ሺ𝑥0, 𝑥1, 𝑥ሻ2

2𝜆2
ቇ) 306 

and 307 

𝑞 = ൜ 1 𝑝ሺ𝑥0, 𝑥1, 𝑥ሻ > 0
−1 𝑝ሺ𝑥0, 𝑥1, 𝑥ሻ ≤ 0 308 

and 309 

𝑝ሺ𝑥0, 𝑥1, 𝑥ሻ =
ሺ𝑥1 − 𝑥0ሻ ⋅ 𝑅𝜋 2⁄ ⋅ ሺ𝑥 − 𝑥0ሻ

2  310 

with RS/2 the quarter circle rotation matrix 311 

𝑅𝜋 2⁄ = ቀ 0 1
−1 0ቁ. 312 

The infinitesimal probability, P(T_x,O,V), to observe a zebra at a point x moving at angle T is given by 313 
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𝑃ሺ𝜃 ∨ 𝑥, 𝜆, 𝜎ሻ = ෍ቆ
𝑑𝜃𝑊ሺ𝑥0𝑖, 𝑥1𝑖, 𝑥, 𝜃, 𝜆, 𝜎ሻ

∫ 𝑑 𝜃′𝑊ሺ𝑥0𝑖, 𝑥1𝑖, 𝑥, 𝜃′, 𝜆, 𝜎ሻ
ቇ 314 

where we sum over the training data. We can reinterpret this equation as a likelihood, L(O,V,T, x}, and 315 
estimate the parameters O and V by the process of maximum likelihood, since the dT will be common to 316 
all terms we can drop this factor, giving. 317 

𝐿ሺ𝜆, 𝜎 ∨ 𝜃, 𝑥ሻ =෍ቆ
𝑊ሺ𝑥0𝑖, 𝑥1𝑖, 𝑥, 𝜃, 𝜆, 𝜎ሻ

∫ 𝑑 𝜃′𝑊ሺ𝑥0𝑖, 𝑥1𝑖, 𝑥, 𝜃′, 𝜆, 𝜎ሻ
ቇ 318 

 319 

For a set of test observations enumerated by a, xa, Ta we aim to solve 320 

𝑚𝑖𝑛𝜆,𝜎෍−𝑙𝑜𝑔 (𝐿ሺ𝜆, 𝜎 ∨ 𝜃𝑎, 𝑥𝑎ሻ) 321 

and use bootstrapping to estimate errors on these parameters as reported in the Results section. 322 

This model was compared with a uniform model where the likelihood Lu is given by  323 

𝐿𝑢ሺ𝜃, 𝑥ሻ =
1
2𝜋

 324 

This likelihood Lu along with the likelihood L were used to calculate AICs for the purposes of model 325 
comparison, details on this procedure are described below. 326 

 327 

Model Fitting and performance 328 

The zebra trajectories were split into testing and training data sets. Our model is fitted to the training 329 

data to produce an angular probability field (in the geometric sense) for the motion of the zebra at any 330 

point close to an observed point in space. We bootstrapped the fitting procedure for our model by 331 

splitting our data into testing and training data sets (150 trajectories are sampled with repetition for the 332 

training data, and 67 are sampled with repetition for the testing data sets). This was done 20,000 times. 333 

 334 

The model parameters were estimated by maximising the likelihood of the test data using the training 335 

data by a simplex minimiser (Nelder and Mead, 1965). The 95% confidence intervals for the 336 

parameters O and V were estimated, along with the ratio O�V. If this ratio is much greater than 1 then the 337 

animals are rapidly returning to fixed tracks, if it is much less than 1 then they are following different 338 

but similarly orientated tracks as the move (as illustrated in Figure 1c). We note that this ratio is only 339 

capable of capturing the global strategy for isolated tracks. Where tracks intersect, there will be some 340 

interference, as we do not know from a single position estimate along which track the animal is moving 341 
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when they intersect. Crossing tracks could not have contributed significantly to our parameter estimates 342 

however, as crossing tracks correspond, as far as the model is concerned, to returning in a highly 343 

directed manner to a track that has been deviated from, and the opposite effect was observed. 344 

 345 

For O and V we require a characteristic scale to compare these parameters to. To estimate this scale we 346 

compute the minimum distance between a trajectory and its nearest neighbour and calculate the median 347 

of this distance, we find that this typical distance between our trajectories is approximately 1.96m. If O 348 

and V are comparable to this scale (a ratio of greater than one third being reasonable since these are 349 

scales for a squared exponential decay) then the majority of our trajectories will be at least partially 350 

predicted by our model. 351 

 352 

The quality of the fit was also assessed by evaluating an Akaike Information Criterion (AIC, (Akaike, 353 

1974)). This was estimated by using the mean parameter values for O and V from the bootstrapping 354 

process. To estimate our information criterion we take our 217 trajectories, remove one trajectory and 355 

estimate the likelihood of that trajectory given the other trajectories. 356 

 357 

This model, fitting procedures and statistics were implemented in the python programming language 358 

(Python Software Foundation) using the scipy (Jones et al., 2001-) extensions. The source code for 359 

these programs has been made available via Github. 360 

 361 

An example of this fit is provided in Figure 1d, where the bootstrapped mean values of the model 362 

parameters were used and basis functions placed on every example trajectory. 363 

 364 

 365 

Results 366 

217 journeys travelling from the grazing area towards the waterhole from 9 zebra were included in the 367 

analysis, totalling 931 km of routes (see Figure 1a and Figure 4). The median journey length was 3.96 368 

km and typical tortuosity was 1.14, indicating that the trajectories used were fairly straight (a combined 369 

histogram, violin plot and box-plot of the path lengths and tortuousities is included in Figure 3). The 370 

median minimal route separation across all route pairings, calculated from the distance of closest 371 

approach for each pair of routes and taking the median of these values, was 1.96 m. This median 372 
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separation remains small, 2.39 m, even if a 1km area around the point of convergence is removed from 373 

the observations. 374 

 375 

The bootstrapped 95% confidence intervals on V, O and the ratio V�O were (1.19, 26.4) m,  (68.4, 1.02 x 376 

108) m, and (1.20 x 10-7, 0.162) respectively.   These results are consistent with V (a measure of how 377 

large an area around a previous route we can use to predict future animal movement) being comparable 378 

to the characteristic scale of the distance between neighbouring trajectories (1.96 m).  Therefore a route 379 

that is separated from a second by this characteristic scale can be used to infer how the zebra will move 380 

along this second route. As the model includes a squared exponential even at a location several 381 

multiples of V from a route we can estimate how a zebra will move based on that route. The ratio 382 

implies that the zebra do not gravitate towards particular paths but rather follow a number of tracks as 383 

they travel rather than preferring any particular route.  This is visually illustrated in Figure 1c and d, 384 

where the blue line represents a zebra route under four different model scenarios. The colour intensity 385 

in each circle around the line indicates travel direction probability, red being a high probability of 386 

travelling in that direction and blue being a low probability.  The direction of movement is more likely 387 

to be towards the route when O is low, as seen in the left hand panels whilst the range at which routes 388 

can influence the direction of new routes increases with V, as seen in the bottom two panels.  Our 389 

results are most similar the bottom right panel, with a high probability of moving parallel to the 390 

existing track, as shown for true routes in Figure 1d.  391 

 392 

The AIC for our model was -26000, while the AIC of a uniform model was -32000. Our model is 393 

therefore vastly superior to a uniform model of the zebra trajectories. The same is implied by more 394 

conservative methods of model comparison such as the Schwarz Bayesian Information Criterion (also -395 

26000 and -32000 for the two models to three significant digits) (Schwarz, 1978). 396 

 397 

The most probable heading direction determined from the model matched the observed trajectories 398 

more reliably that those from the uniform model, average absolute error was 17.6 degrees while the 399 

average absolute error from the uniform model is 45 degrees, showing that majority of zebra routes 400 

went in the same direction as previously used routes. 401 

Discussion 402 

We hypothesised that zebra utilised multiple routes to reach their destination, but that routes are highly 403 
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predicted by other nearby routes, due to zebra using knowledge gained from previous journeys to the 404 

destination to aid the efficiencies of subsequent journeys.  Our findings supported this hypothesis; 405 

zebra did not repeatedly use the same routes when moving through their environment, instead they used 406 

a series of routes that shared directional properties with previous routes.  Even when routes were close 407 

together, less than 2m at their closest points, they did not converge onto each other. 408 

Many animals, including humans, prefer to repeatedly use the same routes when travelling through 409 

their environment. Route-use can reduce energetic costs as cost of transport (cost to move 1 kg 1 meter) 410 

varies substantially with substrate, in humans walking cost increased 2.5 times when walking on sand 411 

versus solid ground (Lejeune et al., 1998), and the repeated use of the same route creates physical trails 412 

with a denser substrate that is free of vegetation (Shepard et al., 2013) . Route-use that results in the 413 

creation of well defined trails can also simplify navigation, reducing landscape complexity by reducing 414 

the number of navigational decisions from a step time-scale to a junction time scale (Newmark and 415 

Rickart, 2012). The creation of physical trails through repeated use should be particularly beneficial to 416 

animals in habitats with loose or hard to travel over substrates, such as sand or snow.  However, route 417 

use could also increase journey length, especially if an animal only uses a small number of known 418 

routes to move between different locations, somewhat like a motorway network and it is not able to 419 

make novel shortcuts. So whilst potentially energetically and navigationally beneficial, the strategy that 420 

the zebra in this study utilise of not following a small number of specific routes does have potential 421 

advantages; time and energy are not wasted walking extra distances to join a known route, navigation is 422 

more resilient to environmental perturbations, for instance the loss of a landmark through 423 

environmental change, and prey species are less predictable in their movement patterns making it 424 

harder for an ambush hunting strategy to be effective.  425 

The area that the zebra in this study moved through is covered in large numbers of game trails of 426 

diverse orientations (see Figure 1 for an aerial 3D photogrammetric survey of such trails), yet all zebra 427 

routes were highly directed towards their end point.  The level of directedness suggests that zebra have 428 

a good knowledge about their spatial environment and are not misled by trails in a different orientation. 429 

The method utilised by zebra to achieve these highly directed yet variable tracks is unknown. However, 430 

the lack of local topography, with an overall height variation of less than 2 m across the 15 km square 431 

(McCarthy and Ellery, 1998), combined with distance travelled, eliminates the use of one single visual 432 

beacon close to the destination.  An olfactory or auditory beacon would be less impacted by lack of 433 

topography and as such may allow for beaconing from a greater distance.  The use of such stimuli in 434 

spatial navigation is well documented in rodents (Lavenex and Schenk, 1998) and in small-scale 435 
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experiments with domestic ungulates (Edwards et al., 1997) but has not been documented across large 436 

spatial scale in wild-ranging ungulates. 437 

We note that as V is bounded from below the confidence interval it can never include zero. As such 438 

standard hypothesis testing cannot be applied to determine if this parameters is substantially different 439 

from zero. However, we also note that O is extremely large, especially when compared with V. The 440 

proposed model is, when scored on an AIC, vastly superior to that of the uniform model with only 441 

these two parameters. Not only does this imply that the zebras are not converging on specific routes, 442 

but it also implies that the model where O approaches infinity is a reasonable proxy for our model. As 443 

such the large drop in the AIC is mostly due to the effect of the V term. The confidence interval for V is 444 

from 1.19-26.4m, which suggests that we should be able to look at the observed movements of the 445 

zebra and identify multiple, similarly orientated tracks separated by approximately this distance to a 446 

small multiple of this distance (the squared exponential still has a weight of around 2% at three times 447 

the characteristic scale), around 10-30m. We note that these movements, if they converge, do so very 448 

slowly over large distances. This is exactly what we would expect to see given the parameter values 449 

observed for the model.  It should be mentioned that the heading is derived from fixes five minutes 450 

apart, so it is the overall chosen direction not instantaneous heading at that point (which would be 451 

disrupted, eg walking round a bush). 452 

It is possible the zebra achieve this directional movement by knowing the relative location of various 453 

features or other cues within their landscape and use this knowledge to select a trail that leads to the 454 

desired destination.  It is also possible they use some form of innate navigation, such as using the 455 

position of the sun to identify a trail that is orientated in the correct direction.  Either strategy would 456 

require a zebra to make a navigational decision at each trail intersection to ensure they remain on an 457 

efficient route and have knowledge of position heading along with a spatial map. 458 

Perturbation studies where zebra were intentionally driven off known tracks (emulating, for instance a 459 

predator or group of animals) might reveal how this highly directed movement was achieved. Such a 460 

study would also serve to test the predictions of this model, since it predicts how the zebra should move 461 

in response to such a perturbation when in transit. Specifically zebra should, if moved sufficiently far 462 

from their original route/trail continue along another similarly orientated route or trail, rather than 463 

return to their original track. 464 

We inferred the zebras navigation strategy by constructing a model of the direction zebra move using a 465 

method similar to radial basis function networks (Broomhead and Lowe, 1988). Such an approach has 466 
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several advantages. First, it places two navigation hypotheses in direct opposition, permitting us to 467 

determine which is a better explanation of the observed behaviour. Second, this model could easily be 468 

modified with additional parameters which would allow for wider application and permit the model to 469 

capture more variability. For example, in a multi-species study the model could include a factor for 470 

species, or if spatial inhomogeneity were suspected, perhaps due to variable terrain, then the model 471 

could include a terrain factor to account for this.  The model does, however, have several important 472 

limitations. It models the heading of the animal, but not the speed and it requires that the proposed 473 

navigation hypothesis be describable in spatially extended terms. This would make incorporating 474 

navigation strategies like beaconing more difficult (though not necessarily impossible, because beacons 475 

could be estimated and spatially located). 476 

 477 

This model could be further refined to permit other factors, beyond spatial location, that may animal 478 

movement. One obvious extension would be to include a state variable for the level of hydration of the 479 

subject or when it last drank. The model predicts with roughly equal probability a trajectory at each 480 

location with the subject moving either towards the grazing lands, or towards the water source. If the 481 

level of hydration of the zebra were known these two could be disambiguated.  482 

 483 
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 594 

595 
  596 
Figure 1 (a) Trajectories (red) superimposed on a Universal Transverse Mercator projection of north 597 
Botswana (Maps, Google Inc.), the bottom left corner of this map is at 23o29' E, 19o 00' S. (b) An aerial 598 
3D photogrammetric survey reconstruction of one such track in a typical area of the survey region 599 
imaged with 3D Photogrammetry. (c) Example depiction of the effect on a trajectory on our models 600 
predictions with different values for V and O. The blue line is a trajectory with an observation in the top 601 
left of each plot (one of the circles in from the top-left) to the bottom right. These trajectories are 602 
identical in all four sub-panels. The brightness of the circles indicates the probability of a trajectory at 603 
that angle at that location. In each panel there is a black and a red line. The angle in circle is angle of 604 
movement, red is high probability, blue is low probability, grey is a value comparable to the uniform 605 
distribution. The black line is of length O while the red is of length V. The V and O were selected by 606 
hand for illustrative purposes. V controls the scale of the basis. The top row of panel c has a short range 607 
basis and as a result the angular distribution tends towards a uniform distribution rapidly as we move 608 
away from the blue trajectory. In the bottom row V is large and the distribution is non-uniform over 609 
much larger ranges. O controls how rapidly the trajectories transition from parallel movement to 610 
perpendicular return to a track. On the left this scale is short and our model predicts rapid return to a 611 
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trajectory. In the right panels the scale is long and the model predicts movement parallel to the blue 612 
trajectory everywhere. For zebra the parameters are similar to those displayed in the bottom right panel. 613 
(d) Position traces of the zebra, and the distribution of predicted angles of movement for the zebra, key 614 
as for (c). 615 

 616 

  617 
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 618 

 619 

 620 

Figure 2. Plot of successive GPS observations showing the co-ordinates and terms used to construct the 621 
radial-basis-function-like-terms used to model the probability distribution of the directionality of the 622 
navigating harems. Black crosses are observed five minute spaced positions of a harem, joined by blue 623 
lines. The purple line indicates a contour which is equidistant from the closest point on the middle pair 624 
of observations in this sequence, x0 and x1. These locations have the same value of the distance, d, 625 
Zhich fXncWionV aV Whe 'UadiXV' in oXU WeUmV (eTXaWion on line 336). The angle of Whe moYemenW, ș, iV 626 
that made against the x-axis (horizontal black line), and the line joining the pair of observations. 627 
  628 
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a)  629 

 630 

 631 

b)  632 

 633 
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 634 

Figure 3.  a) Plot of the frequency of tortuosities (top, blue is a density normalised histogram and black 635 
Yiolin SloW ZiWh gaXVVian keUnel ZiWh bandZidWh eVWimaWed b\ Whe ScoWW¶V UXle) and bo[SloW (boWWom) of 636 
tortuosities of the zebra movements, operationalised by the arc-chord ratio, that is the ratio of the length 637 
of the curve, measured by taking sum of the distances between successive GPS observations, and the 638 
distance between the start and end of the curve, measured by taking the distance between the last and 639 
first GPS observation. This ratio cannot be less than one, and indicates how indirect the route taken 640 
was. b) Histogram and boxplot of the frequency of path length, that is the sum of the distances between 641 
successive GPS observations. Subjects generally took a reasonably direct route between water and 642 
grazelands, and vice-versa, but many highly indirect routes were taken, this is reflected in Figure 1. 643 

 644 
  645 
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 646 
Figure 4. Plot of the routes between grazing areas and the water source at different spatial scales, with 647 
each harem shown in a separate colour. The top row, (a) and (b), are journeys starting at the water 648 
source, the bottom, (c) and (d) are return trips. The red square in (a) and (c) is enlarged and shown in 649 
(b) and (d). Axes are distances in meters. 650 


