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Abstract 18 

Mature connective tissues demonstrate highly specialised properties, remarkably adapted to 19 

meet their functional requirements. Tissue adaptation to environmental cues can occur 20 

throughout life and poor adaptation commonly results in injury. However, the temporal 21 

nature and drivers of functional adaptation remain undefined. Here, we explore functional 22 

adaptation and specialisation of mechanically loaded tissues using tendon; a simple aligned 23 

biological composite, in which the collagen (fascicle) and surrounding predominantly non-24 

collagenous matrix (interfascicular matrix) can be interrogated independently. Using an 25 
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equine model of late development, we report the first phase-specific analysis of 26 

biomechanical, structural and compositional changes seen in functional adaptation, 27 

demonstrating adaptation occurs postnatally, following mechanical loading, and is almost 28 

exclusively localised to the non-collagenous interfascicular matrix. These novel data redefine 29 

adaptation in connective tissue, highlighting the fundamental importance of non-collagenous 30 

matrix and suggesting that regenerative medicine strategies should change focus from the 31 

fibrous to the non-collagenous matrix of tissue. 32 

 33 

Introduction 34 

Functional adaptation of load-bearing tissues such as tendon is crucial to ensure the tissue is 35 

specialised appropriately to meet functional needs. Adaptation to mechanical requirements is 36 

key in healthy development and homeostatic tissue maintenance, with poor tissue 37 

optimisation during maturation likely a key contributor to increased injury risk later in life. 38 

Dysregulated homeostasis and long-term under- or over-stimulation leads to maladaptation, 39 

changes in tissue integrity, and reduced mechanical competence and is implicated in the 40 

disease aetiology of load-bearing tissues (Freedman et al., 2015; Gardner et al., 2008). 41 

Understanding the developmental drivers of structural specialisation and their association 42 

with mechanobiology is thus of fundamental importance for healthy ageing and disease 43 

prevention in musculoskeletal tissues (Choi et al., 2018; Thorpe et al., 2013). Such 44 

knowledge will help identify future targets for therapeutic interventions, and thus address the 45 

current lack of effective musculoskeletal disease treatments with new, evidence-based 46 

approaches to disease management. However, there is currently little knowledge of the key 47 

extracellular matrix (ECM) components associated with structural specialisation, the 48 

temporal nature of their adaptation, or the stimuli that drive adaptation. 49 

As the principal structural component of connective tissues, collagen expression at the gene 50 
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and protein level has been the focus of the majority of studies in relation to loading, with 51 

some studies reporting increases in collagen synthesis and others noting collagen degradation 52 

in response to loading, depending on the tissue function or tissue structure in different species 53 

(Choi et al., 2018; Magnusson & Kjaer, 2019). In tendons, this collagen structural framework 54 

is the fascicles and it is surrounded by the primarily non-collagenous and glycoprotein-rich 55 

components of the ECM, termed the interfascicular matrix (IFM) (Figure 1 – Figure 56 

supplement 1b) (Armiento et al., 2018; Thorpe & Screen, 2016). This distinction is important, 57 

as it describes a fibre composite material, in which “fascicle” and “IFM” phases have 58 

different mechanical properties, and overall tissue mechanical properties and function are 59 

governed by the interplay of these two phases. When looking to understand functional 60 

adaption of a tissue, it is necessary to look at adaption of all ECM components.  61 

Whilst fascicle and collagen adaptation has received some attention, adaptation of the IFM 62 

phase to mechanical stimuli remains poorly defined. Indeed, it is notable that the numerous 63 

studies investigating the mechanoresponsive nature of load-bearing tissues tend to restrict 64 

their focus to specific fibre or matrix components with no spatial distinction, and also focus 65 

on a single element of either structural or mechanical adaptation, such that limited 66 

information is gained (Cherdchutham, Becker, et al., 2001; Choi et al., 2019; Mendias et al., 67 

2012). In order to provide the necessary complete profile of adaptive behaviour, it is crucial 68 

that phase-specific, temporospatial adaptation in the context of both structure and function is 69 

defined. 70 

Identifying the drivers of adaptation requires use of a model system in which the 71 

temporospatial nature of adaptation can be fully profiled. Tendon provides the ideal model 72 

for such a study. It is well-established that mature tendons can present structural and 73 

mechanical specialisms (Thorpe, Godinho, et al., 2015; Thorpe, Karunaseelan, et al., 2016; 74 

Thorpe, Riley, et al., 2016) and be grouped into two clear functional groups; stiff positional 75 
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tendons, such as the anterior tibialis tendon and the equine common digital extensor tendon 76 

(CDET), that simply connect muscle to bone to effectively position limbs, whilst elastic 77 

energy-storing tendons, such as the Achilles tendon and the equine superficial digital flexor 78 

tendon (SDFT), are further specialised to provide an energy storing function, increasing 79 

locomotor efficiency by stretching and storing energy which they return to the system on 80 

recoil (Alexander, 2002; Batson et al., 2003; Thorpe et al., 2012; Thorpe & Screen, 2016). 81 

Further, the simple aligned organisation of tendon means that fascicle and IFM phases are 82 

spatially distinct, enabling structural and mechanical characterisation of each phase 83 

independently (Thorpe et al., 2012; Thorpe & Screen, 2016). Finally, use of equine tendon 84 

provides access to an exceptional model of adaptation. The SDFT has been shown to be 85 

highly analogous to the human Achilles tendon in its capacity for energy storage, injury 86 

profile and extent of specialization and the anatomically opposing CDET is an example of a 87 

positional tendon, functionally comparable to the human anterior tibialis tendon (Figure 1 – 88 

Figure supplement 1a) (Biewener, 1998; Patterson-Kane & Rich, 2014). Availability of 89 

samples enabled us to explore the extensive adaptation processes associated with late stage 90 

development, contrasting paired positional and energy-storing equine tendons through pre- 91 

and post-natal development.  92 

Using this model, we investigate the process and drivers of functional adaptation, when 93 

tendons transition from an absence of loading (foetal: mid to end (6 to 9 months) gestation, 94 

and 0 days: full-term foetuses, and foals that did not weight-bear); through to weight-bearing 95 

(0-1 month) and then to an increase in body weight and physical activity (3-6 months; and 1-96 

2 years). We hypothesise that early in development during gestation, the fascicle and IFM of 97 

functionally distinct tendons have identical compositional profiles and mechanical properties, 98 

with tissue specialisation occurring as an adaptive response to the mechanical stimulus of 99 

load-bearing, predominantly in the IFM of the elastic energy-storing tendon.  100 
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 101 

Results 102 

Mechanical adaptation is localised to the IFM  103 

First, we determined how the mechanical properties of the fascicle and IFM develop in 104 

tendon, with a particular focus on the temporospatial nature of mechanical adaptation and 105 

functional specialisation. Individual fascicles were dissected while an isolated region of IFM 106 

was tested by shearing fascicles apart (Figure 1 – Figure supplement 1c). Samples were 107 

subjected to preconditioning followed by a pull to failure (Figure 1 – Figure supplement 1c). 108 

The yield point of samples was identified, denoting the point at which the sample became 109 

irreversibly damaged and was unable to recover from the applied load, and the sample failure 110 

properties also recorded, highlighting the maximum stress and strain the sample could 111 

withstand. 112 

A significant increase in fascicle yield and failure properties was evident when comparing 113 

embryonic fascicles to those acquired immediately at birth (Figure 1h-i and 1e-g, 114 

respectively). However, data indicate minimal distinction in fascicle mechanics between 115 

functionally distinct tendons (Figure 1e-i) and, significantly, no specialisation for energy 116 

storage in response to loading during postnatal development.  117 

Contrasting with fascicle mechanics, the failure properties of the IFM continued to alter 118 

throughout development with failure properties increasing markedly from 6 months onwards 119 

(Figure 2e-g). We also identify the emergence of an extended region of low stiffness at the 120 

start of the loading curve (ie an extended toe region) specific to the SDFT IFM pull to failure 121 

curve (Figure 2b). This indicates less resistance to extension, and together with the 122 

concomitant increase in IFM yield force and extension at yield (Figure 2h-i), demonstrates 123 

development of an overall greater capacity for extension in the SDFT IFM behaviour. A 124 
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summary of these findings is achieved by plotting the amount of IFM extension at different 125 

percentages of failure force (Figure 2j-k), highlighting how the IFM of the energy-storing 126 

SDFT became significantly less stiff than that of the positional CDET during the initial toe 127 

region of the loading curve as the tendon adapts. 128 

The viscoelastic properties of the developing IFM also showed significant interactions 129 

between tendon type and development, with IFM viscoelasticity significantly decreasing with 130 

development specifically in the energy-storing SDFT (Figure 2a, c-d), resulting in 131 

specialisation towards a more energy efficient structure.  132 
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 133 

 134 
Figure 1. Fascicle response to mechanical testing shows increase in strength with 135 
development but few significant differences between tendon types, indicating that the 136 
fascicles show minimal structural specialisation in response to loading. (a) 137 
Representative curves for 10 preconditioning cycles for the SDFT and CDET fascicles in the 138 
foetus and 1-2 years age group. (b) Representative force-extension curves to failure for the 139 
SDFT and CDET fascicles in the same age groups. (c-i) Mean SDFT and CDET fascicle 140 
biomechanical properties are presented across development, with data grouped into age 141 
groups: foetus, 0 days (did not weight-bear), 0-1 month, 3-6 months, 1-2 years. ‡ significant 142 
interaction between tendon type and development, * significant difference between tendons, 143 
a-b significant difference between age groups. Error bars depict standard deviation. Figure 1 144 
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± Figure supplement 1. SDFT and CDET in the equine forelimb, tendon structure, and 145 
schematic showing procedure for biomechanical testing. 146 

 147 
Figure 2. Mechanical testing of the IFM shows an equivalent increase in failure 148 
properties between the SDFT and CDET with development, but development of an 149 
extended low stiffness toe region and more elastic behaviour in the SDFT. (a) 150 
Representative curves for 10 preconditioning cycles for the SDFT and CDET IFM in the 151 
foetus and 1-2 years age group. (b) Representative force-extension curves to failure for the 152 
SDFT and CDET IFM in the same age groups. (c-i) Mean SDFT and CDET IFM 153 
biomechanical properties are presented across development, with data grouped into age 154 
groups: foetus, 0 days (did not weight-bear), 0-1 month, 3-6 months, 1-2 years. (j-k) To 155 
visualise the extended low stiffness toe region in the SDFT IFM, the amount of IFM 156 
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extension at increasing percentages of failure force is presented, comparing the SDFT and 157 
CDET in the foetus and 1-2 years age group. ‡ significant interaction between tendon type 158 
and development, * significant difference between tendons, a-g significant difference 159 
between age groups. Error bars depict standard deviation. 160 
 161 

Structural adaptation is localised to the IFM 162 

Having described the mechanical adaptation of the IFM to meet functional demand, we next 163 

performed a histological and immunohistochemical comparison of developing energy-storing 164 

and positional tendons to determine how temporospatial structural adaptation may dictate this 165 

evolving mechanical behaviour.  166 

The energy-storing SDFT and positional CDET appeared histologically similar in the foetus, 167 

in both instances showing surprisingly poor demarcation of the IFM, which only became 168 

structurally distinct after birth and the initiation of loading (Figure 3a). Fascicle development 169 

was generally consistent in both tendon types with cellularity and crimp showing a reduction 170 

with development, cells displaying more elongated nuclei, and collagen showing a more 171 

linear organisation (Figure 3b, Figure 3 – Figure supplement 1, scoring criteria 172 

Supplementary File 1). In contrast, the IFM demonstrated divergence between tendon types 173 

with only the SDFT IFM showing an increase in cellularity following tendon loading and a 174 

retention of IFM width throughout development (Figure 3b, Figure 3 – Figure supplement 1).  175 

The abundance of major ECM proteins was also generally consistent across fascicle and IFM 176 

in the foetus, with divergence of protein composition between phases only evident with 177 

further development (Figure 4). Notably adaptation was driven by changes in non-178 

collagenous ECM components specifically, levels of which reduced in the fascicles and 179 

increased dramatically in the IFM through postnatal development (Figure 4, Figure 4 – Figure 180 

supplement 1). Of particular note, we demonstrate PRG4 (commonly known as lubricin) and 181 

TNC were predominantly found in the IFM of tendons and showed sparse staining or were 182 

absent, respectively, from the fascicles. We also demonstrate that elastin is preferentially 183 
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localised to the IFM with its abundance decreasing only in the CDET with development. 184 

Furthermore, we show histological and compositional changes manifest after birth and with 185 

the initiation of loading, but that histological and compositional adaptation to loading then 186 

occurs over a period of months, involving both upregulation and downregulation of different 187 

histologic variables and ECM constituents. 188 

 189 

 190 

Figure 3. The SDFT and CDET are histologically similar at birth and differentiate with 191 
development especially in the IFM.  (a) Representative images of H&E sections of the 192 
SDFT and CDET demonstrate structural development: foetus, 0 days (did not weight-bear), 193 
0-1 year, and 1-2 years whilst (b) Radar plots enable the mean histology scores of the fascicle 194 
and IFM for the SDFT and CDET to be compared between the foetus and 1-2 years age 195 
group (all data shown in Figure 3 – Figure supplement 1 and scoring criteria in 196 
Supplementary File 1). A decrease in cell numbers, crimp, and IFM width is visible with 197 
progression of age, and the aspect ratio of cells in the fascicle increases. Scale bar 100 µm.  198 
Figure 3 ± Figure supplement 1. Scoring of histologic variables for the IFM and fascicle in 199 
the SDFT and CDET through postnatal development. 200 
 201 
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 202 

Figure 4. Immunohistochemical assays show divergence of PGR4 (lubricin) and elastin 203 
with maturation between functionally distinct tendons. IFM and fascicle staining scores 204 
are shown for decorin (DCN), fibromodulin (FMOD), lubricin (PRG4), and tenascin-C 205 
(TNC) in the SDFT and CDET, alongside representative images of immunohistochemical 206 
staining in the postnatal SDFT. DCN and FMOD staining is found in both IFM (black 207 
triangle) and fascicle (white triangle). PRG4 staining in mainly located in the IFM (black 208 
triangle) and less staining can be found in the fascicle (white triangle). TNC staining is 209 
restricted to the IFM (black triangle) and absent from the fascicle (white triangle). A 210 
quantitative measure of elastin (ELN) is provided as percentage of wet weight, alongside a 211 
representative image of immunohistochemical staining in the postnatal SDFT. ELN staining 212 
is mainly located in the IFM (black triangle) and faint staining can be found in the fascicle 213 
(white triangle). Staining scores for elastin are provided in Figure 4 – Figure supplement 1.  ‡ 214 
significant change in tendon phase with development, ‡‡ significant interaction between 215 
tendon phase and development, * significant difference between tendons, a-d significant 216 
difference between age groups. Scale bar 100 µm. Error bars depict standard deviation. 217 
Figure 4 ± Figure supplement 1. Scoring of ELN staining for the IFM and fascicle in the 218 
SDFT and CDET through postnatal development. 219 
 220 
 221 

 222 

 223 
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Adaptation relies on evolution of IFM composition only 224 

To explore these concepts in further detail and to scrutinise the capacity for ECM adaptation, 225 

proteomic methodologies were adopted. With the mechanical and histological data 226 

identifying that functional adaptation is particular to the energy-storing SDFT, mass 227 

spectrometry analysis focused on a more detailed comparison of the IFM and fascicle 228 

development and adaptation in this tendon specifically.  229 

Our results demonstrated that the proteomic profile of the IFM was more complex (more 230 

identified proteins) and a higher percentage of IFM proteins were cellular (Figure 5 – Figure 231 

supplement 1), supporting the histological findings of a more cellular IFM. Notably, despite 232 

the two phases being structurally distinct, they had 14 collagens and 11 proteoglycans in 233 

common (Supplementary File 4). Overall, proteomic heatmap analysis correlated very 234 

strongly with immunohistochemical findings, showing that alterations in the fascicle 235 

proteome reduced through development, with minimal changes following the initiation of 236 

loading (Table 1 and 2, Figure 5a), whilst numerous matrisome and matrisome-related 237 

proteins progressively increase in abundance through development in the IFM (Table 1 and 2, 238 

Figure 5a). Detailed consideration of protein changes also highlights that post loading 239 

changes in the IFM appear more specific to proteoglycans and glycoproteins. Correlation 240 

analysis of IFM matrisome protein abundance and mechanical properties of the IFM across 241 

development revealed correlations for matrisome proteins abundance with the mechanical 242 

properties correlating IFM ECM composition and functional adaptation. Significant 243 

correlations included a negative correlation between proteoglycans DCN, LUM, OGN, 244 

PRELP and COL3A1 and the IFM hysteresis, a positive correlation between FBLN5 and 245 

stress relaxation, a positive correlation between COL6A1, COL6A2, and OGN and maximum 246 

stiffness, and for the yield properties a positive correlation of proteoglycans DCN, LUM, 247 

OGN, PRELP and COL3A1 and force at yield point (Supplementary File 5). In addition, 248 
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protein abundance for BGN, DCN, COMP, COL1A2, COL3A1 in the IFM and COMP and 249 

COL3A1 in the fascicles across development is mirrored by whole tendon mRNA expression 250 

(Figure 5 – Figure supplement 2). 251 

Proteomic data also enabled insight into the turnover of proteins in the different tendon 252 

phases, through a comparison of the neopeptides produced by protein breakdown (Thorpe, 253 

Peffers, et al., 2016). In the current study, we were able to profile the temporal nature of 254 

fascicle and IFM turnover, demonstrating that both phases display turnover during 255 

development but that fascicle turnover slows down towards the end of maturation, whilst IFM 256 

turnover rates are maintained, suggesting structural and/or compositional plasticity (Figure 257 

5b). 258 

Having identified the IFM as the location of functional adaptation, we next investigated the 259 

regulation of this process, to detect targets for modulation for regeneration strategies 260 

addressing functional impairment. For this purpose, pathway analysis was carried out for the 261 

differentially abundant proteins identified with mass spectrometry across age groups using 262 

the Ingenuity Pathway Analysis software (IPA). Pathway analysis revealed the canonical 263 

pathways “integrin signaling” and “actin cytoskeleton signaling” were predicted to be 264 

activated with development in the IFM supporting an ECM-integrin-cytoskeleton to nucleus 265 

signalling pathway for the mediation of the observed mitogenesis and matrigenesis in 266 

response to tendon loading. In addition, pathway analysis identified TGFB1 as an upstream 267 

regulator for the IFM dataset and based on the IFM protein abundance across age groups 268 

predicted TGFB1 to be inhibited in the foetus age group and to become activated in the 3-6 269 

months age group. TGF-ȕ1 was therefore highlighted as a potential regulator of ECM 270 

organisation and functional adaptation, predicted to be upregulated in the energy-storing 271 

tendon following loading (Figure 6a). This was supported by TGB1 mRNA expression in 272 

whole tendon increasing in the 3-6 months SDFT only, with the positional CDET TGFB1 273 
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expression showing no change with development (Figure 6b). In addition, knockdown of 274 

TGFB1 in equine adult tenocytes and stimulation with 10 ng recombinant TGF-ȕ1 showed 275 

downregulation and upregulation, respectively, of key ECM components, BGN, COMP, 276 

COL1A2, and COL3A1, supporting a regulatory role for TGF-ȕ1 (Figure 6c-d). Finally, 277 

correlation analysis of TGFB1 mRNA expression of whole tendon and IFM matrisome 278 

protein abundance across development revealed positive correlations with ECM proteins 279 

which were significant for COL1A2, COL2A1, COL4A1, COL4A2, COL6A3, HSPG2, and 280 

FN1 (Supplementary File 6). 281 

  282 
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 283 
Figure 5. The fascicle proteome remains the same during postnatal development and 284 
tendon loading whereas the IFM proteome starts changing following tendon loading in 285 
postnatal development. (a) Heatmap of differentially abundant proteins in foetus, 0 days 286 
(did not weight-bear), 0-1 month, 3-6 months, and 1-2 years SDFT IFM and fascicles 287 
(p<0.05, fold change ≥2). Heatmap colour scale ranges from blue to white to red with blue 288 
representing lower abundance and red higher abundance. (b) Proteins with identified 289 
neopeptides and proteins showing differential total neopeptide abundance across age groups. 290 
Graph of proteins showing differential total neopeptide abundance in the SDFT fascicles 291 
across development (p<0.05, fold change≥2, FDR 5%). No proteins showed differential total 292 
neopeptide abundance in the IFM. Figure 5 ± Figure supplement 1. Classification of SDFT 293 
IFM and fascicle identified proteins and differentially abundant proteins according to their 294 
associated location. Figure 5 ± Figure supplement 2. Relative mRNA expression of major 295 
ECM genes in whole tissue SDFT and CDET through postnatal development. 296 
 297 
 298 
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 299 
Figure 6. TGFB1 is predicted to be involved in compositional changes observed in the 300 
IFM. (a) IPA networks for TGFB1 as an upstream regulator were generated for the foetus 301 
and 3-6 months SDFT IFM proteomic datasets. TGFB1 regulation in the IFM is predicted to 302 
be inhibited in the foetus and activated at 3-6 months in the SDFT. Red nodes, upregulated 303 
proteins, green nodes, downregulated proteins, intensity of colour is related to higher fold-304 
change, orange nodes, predicted upregulated proteins in the dataset, blue nodes, predicted 305 
downregulated proteins. (b) Whole tendon relative mRNA expression for TGFB1 in the 306 
SDFT and CDET during postnatal development shows an increase in TGFB1 mRNA in the 307 
3-6 months highly-loaded SDFT only. * significant difference between tendons, a significant 308 
difference between age groups. (c-d) Relative mRNA expression of major ECM genes 309 
predicted to be regulated by TGFB1 in the IPA network following TGB1 knockdown (c) and 310 
stimulation with 10 ng recombinant TGF-ȕ1 (d) for 24 hours. BGN, DCN, COMP, COL1A2 311 
and COL3A1 show regulation following TGFB1 knockdown or addition. * significant 312 
difference between control and treatment. Error bars depict standard deviation. 313 
  314 
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Table 1. IFM differentially abundant matrisome and matrisome-associated proteins 315 
through development organised by highest mean condition (p<0.05, fROd chaQge�2). 316 
Proteins are arranged into colour coded divisions and categories. Bar graphs profile the 317 
relative abundance of each protein at each development stage, a foetus, b 0 days, c 0-1 month, 318 
d 3-6 months, e 1-2 years, with the development age reporting the highest mean protein level 319 
also specified. 320 
Protein Division Category Highest mean cond.   a b c d e 

SERPINH1 Matrisome-associated ECM Regulators Foetus  
COL14A1 Core matrisome Collagens 0-1 month  
ASPN Core matrisome Proteoglycans 0-1 month  
FMOD Core matrisome Proteoglycans 0-1 month  
KERA Core matrisome Proteoglycans 0-1 month  
FBLN5 Core matrisome ECM Glycoproteins 0-1 month  
FGB Core matrisome ECM Glycoproteins 0-1 month  
FGG Core matrisome ECM Glycoproteins 0-1 month  
COL1A2 Core matrisome Collagens 3-6 months  
COL2A1 Core matrisome Collagens 3-6 months  
COL4A1 Core matrisome Collagens 3-6 months  
COL4A2 Core matrisome Collagens 3-6 months  
COL6A3 Core matrisome Collagens 3-6 months  
BGN Core matrisome Proteoglycans 3-6 months  
HSPG2 Core matrisome Proteoglycans 3-6 months  
ADIPOQ Core matrisome ECM Glycoproteins 3-6 months  
FBN1 Core matrisome ECM Glycoproteins 3-6 months  
FN1 Core matrisome ECM Glycoproteins 3-6 months  
LAMB2 Core matrisome ECM Glycoproteins 3-6 months  
LAMC1 Core matrisome ECM Glycoproteins 3-6 months  
NID1 Core matrisome ECM Glycoproteins 3-6 months  
ANXA4 Matrisome-associated ECM-affiliated 3-6 months  
S100A4 Matrisome-associated Secreted Factors 3-6 months  
COL21A1 Core matrisome Collagens 1-2 years  
COL3A1 Core matrisome Collagens 1-2 years  
COL5A1 Core matrisome Collagens 1-2 years  
COL5A2 Core matrisome Collagens 1-2 years  
COL6A1 Core matrisome Collagens 1-2 years  
COL6A2 Core matrisome Collagens 1-2 years  
DCN Core matrisome Proteoglycans 1-2 years  
LUM Core matrisome Proteoglycans 1-2 years  
OGN Core matrisome Proteoglycans 1-2 years  
PRELP Core matrisome Proteoglycans 1-2 years  
COMP Core matrisome ECM Glycoproteins 1-2 years  
DPT Core matrisome ECM Glycoproteins 1-2 years  
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TGFBI Core matrisome ECM Glycoproteins 1-2 years  
 321 

Table 2. Fascicle differentially abundant matrisome and matrisome-associated proteins 322 
through development organised by highest mean condition (p<0.05, fROd chaQge�2). 323 
Proteins are arranged into colour coded divisions and categories. Bar graphs on the right 324 
profile the relative abundance of each protein at each development stage, a foetus, b 0 days, c 325 
0-1 month, d 3-6 months, e 1-2 years, with the development age reporting the highest mean 326 
protein level also specified. 327 

 328 

 329 

Discussion 330 

In this study, we describe the phase-specific process and drivers of functional adaptation in 331 

tendon development integrating mechanical, structural, and compositional analysis in tendons 332 

transitioning from an absence of loading through to weight-bearing and then to an increase in 333 

body weight and physical activity. To investigate functional adaptation and structure-function 334 

specialisation, we are contrasting fascicles and IFM of two tendons with distinct functions 335 

and mechanical properties; the equine SDFT and CDET. The energy-storing SDFT, which 336 

Protein Division Category Highest mean cond.    a b c d  e 

COL11A1 Core matrisome Collagens Foetus  
DCN Core matrisome Proteoglycans Foetus  
FMOD Core matrisome Proteoglycans Foetus  
KERA Core matrisome Proteoglycans Foetus  
PCOLCE Core matrisome ECM Glycoproteins Foetus  
SERPINF1 Matrisome-associated ECM Regulators Foetus  
ANXA1 Matrisome-associated ECM-affiliated Proteins Foetus  
ANXA2 Matrisome-associated ECM-affiliated Proteins Foetus  
ANXA5 Matrisome-associated ECM-affiliated Proteins Foetus  
LGALS1 Matrisome-associated ECM-affiliated Proteins Foetus  
COL12A1 Core matrisome Collagens 0 days  
COL3A1 Core matrisome Collagens 1-2 years  
PRELP Core matrisome Proteoglycans 1-2 years  
COMP Core matrisome ECM Glycoproteins 1-2 years  
FN1 Core matrisome ECM Glycoproteins 1-2 years  
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functions by stretching and recoiling with each stride to store and return energy, undergoes 337 

peaks strains recorded at 16.6 % in vivo and has been found to be significantly more 338 

extensible than the CDET. The positional CDET, which functions to extend the distal limb 339 

prior to limb placement and is relatively inextensible to allow precise placement of the limb, 340 

experiences much lower strains than the SDFT (estimated at 2.5 %) and is less extensible 341 

than the SDFT (Batson et al., 2003; Birch et al., 2008; Thorpe et al., 2012). 342 

Whilst the limited previously available data on the development of tendon gross mechanical 343 

properties show an increase in mechanical properties with development (Ansorge et al., 2011; 344 

Cherdchutham, Meershoek, et al., 2001), no such phase-specific analysis of the development 345 

of tissue mechanics has been carried out previously. Similarly, available research into tendon 346 

morphogenesis and maturation has previously focused on the development of the collagenous 347 

network that comprises the tendon fascicles and is often focussed on early foetal development 348 

(Kalson et al., 2011; Marturano et al., 2013; Pan et al., 2018). Murine and zebrafish models 349 

used to investigate tendon development and adaptation have advanced our understanding of 350 

the control of fibrillogenesis by ECM proteins (Subramanian et al., 2018; Subramanian & 351 

Schilling, 2014; Taye et al., 2020) but these models lack an IFM, thus restricting our ability 352 

to explore the functional specialism we see in humans and other larger mammals. 353 

Here, examining the fascicle and IFM mechanical properties independently, we show 354 

minimal distinction in fascicle mechanics between functionally distinct tendons and, 355 

significantly, no specialisation for energy storage in response to loading during postnatal 356 

development. In contrast, the IFM mechanical properties display continuous alterations 357 

through development with the properties of the IFM in the foetus being comparable between 358 

functionally distinct tendons, and a low stiffness region emerging in the initial non-linear 359 

region (toe region) of the pull to failure curve of the SDFT IFM only following tendon 360 

loading postnatally. This is coupled with a concomitant increase in IFM force and extension 361 
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at yield, the point at which the sample became irreversibly damaged, highlighting that the 362 

energy-storing SDFT IFM becomes significantly less stiff than that of the positional CDET 363 

during the initial toe region of the loading curve. We have previously indicated that this low 364 

stiffness behaviour allows sliding between the fascicles, enabling non-uniform loading of 365 

tissue and is fundamental for effective extension and recoil in energy-storing tendons 366 

(Thorpe, Godinho, et al., 2015). Furthermore, with ageing the low stiffness behaviour of the 367 

energy-storing IFM is lost, possibly contributing to disease development (Thorpe et al., 368 

2013). The only other studies considering the mechanical properties of developing tendons 369 

have focused simply on changes in whole tissue mechanics, and have thus not been able to 370 

identify the drivers of change within the tissue (Ansorge et al., 2011; Cherdchutham, 371 

Meershoek, et al., 2001). Here, we identify that the IFM is the key region in which 372 

mechanical adaptation to meet function occurs, and that this occurs after the initiation of 373 

loading, primarily 1-2 years postnatally.  374 

We subsequently examine how temporospatial structural adaptation may dictate this evolving 375 

mechanical behaviour and uncover a divergence in structural characteristics between tendon 376 

types in the IFM only, with a retention of IFM width throughout development and an increase 377 

in cellularity in the SDFT IFM only. It is well recognised that foetal and early postnatal 378 

tendons are highly cellular, and cellularity is generally considered to decrease postnatally 379 

(Russo et al., 2015; Stanley et al., 2008), but here we show that the described reduction in 380 

cellularity only occurs in the fascicles, and cellularity in fact increases in the IFM with 381 

development. By following the alterations in cellularity across IFM and fascicle, here we can 382 

determine that the marked difference in regional cellularity is likely driven by a maintenance 383 

of cell numbers following tendon loading in the thinning IFM, while cell numbers in the 384 

fascicle appear to reduce as a result of the fascicle ECM increase. Greater cellularity is 385 

commonly associated with a requirement for rapid adaptive organisation of ECM components 386 
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(Russo et al., 2015), suggesting the IFM, particularly in the energy-storing tendons, may 387 

adapt to be more mechanoresponsive, a necessary aspect of healthy homeostatic maintenance 388 

of a tissue. Immunohistochemical analysis reveals the distribution of major ECM proteins is 389 

consistent across tendons in the foetus and becomes distinct across compartments through 390 

development. Of note, PRG4 (lubricin), a large proteoglycan which is important in ECM 391 

lubrication, is found mainly distributed in the IFM of tendons. Using a lubricin-knockout 392 

mouse, this proteoglycan has been demonstrated to facilitate interfascicular sliding (Kohrs et 393 

al., 2011), indicating that this structural adaptation may be key in achieving the previously 394 

identified mechanical adaptation in the energy-storing tendon IFM. In addition, 395 

Kostrominova and Brooks (2013) (Kostrominova & Brooks, 2013) report PRG4 expression 396 

as wells as elastin expression decreased with ageing in rat tendon suggesting an association 397 

with an increased risk of disease with ageing. We also demonstrate that elastin is 398 

preferentially localised to the IFM, potentially having a role in the capacity for matrix recoil 399 

after loading which is necessary for the healthy function of energy-storing tendons (Godinho 400 

et al., 2017; Ritty et al., 2002). Further supporting a role for elastin in the energy-storing 401 

function, elastin appears to be redundant in positional tendons with its abundance decreasing 402 

in the CDET with development. Together, these findings show that structural adaptation of 403 

tendon post loading is primarily focused to the IFM, and observed predominantly in the 404 

energy-storing SDFT. 405 

Compositional analysis of the energy-storing SDFT compartments using mass spectrometry 406 

corroborates the immunohistochemical analysis and shows a more complex proteomic profile 407 

for the IFM. It additionally shows that abundance of the majority of proteins in the fascicles 408 

is higher in the foetus and reduces through development with minimal changes following the 409 

initiation of loading, whereas in the IFM numerous ECM and ECM-related proteins 410 

progressively increase in abundance following tendon loading and through development. 411 
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Neopeptide analysis demonstrated ECM protein turnover in the fascicles slows down towards 412 

the end of maturation, whilst ECM protein turnover rates in the IFM are maintained. Once a 413 

tendon is mature, little collagen turnover occurs (Birch, 2007; Heinemeier et al., 2013) and 414 

we have previously shown that the minimal turnover in mature tendon is focused to the IFM 415 

(Simpson et al., 2020; Thorpe et al., 2010; Thorpe, Chaudhry, et al., 2015; Thorpe, Peffers, et 416 

al., 2016). The maintenance of turnover rates observed in the IFM here suggests structural 417 

and/or compositional plasticity of the IFM. Integrated, our data convincingly show a 418 

continual temporal change in the IFM proteome specifically, which would enable adaptation 419 

and specialisation to the load environment, and highlight the compositional plasticity of the 420 

IFM in responding to dynamic altered conditions such as those occurring during development 421 

and regeneration. It is critical that the difference in capacity for functional adaptation across 422 

IFM and fascicle identified here is considered if regenerative medicine and tissue engineering 423 

approaches are to be successful. Here, we demonstrate the temporal pattern of structure-424 

function adaptation, with compositional changes occurring in the first months after loading, 425 

and leading to the mechanical specialisation we have previously observed in adult energy-426 

storing tendon (Birch, 2007; Thorpe et al., 2012; Thorpe, Godinho, et al., 2015). With the 427 

fascicles primarily responsible for the mechanical strength of a tissue, biomaterial and 428 

regenerative medicine studies have unsurprisingly placed considerable emphasis on this 429 

region to date (Sensini et al., 2019; Watts et al., 2017). Here, we not only highlight the 430 

importance of the IFM in modulating mechanical behaviour, but also demonstrate how the 431 

IFM must be targeted to support adaptation and optimum tissue quality. 432 

Finally, pathway analysis of our proteomic data highlighted TGF-ȕ1 as a regulator of ECM 433 

organisation and functional adaptation, predicted to be upregulated following loading in the 434 

energy-storing tendon. TGF-ȕ is a known regulator of proteoglycans and collagens in tendon 435 

(Potter et al., 2017; Robbins et al., 1997), a role we also demonstrated here with regulation of 436 
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major ECM proteins mRNA expression following TGFB1 knockdown and stimulation in 437 

equine tenocytes. Further, TGFB1 mRNA expression was upregulated in the highly loaded 438 

energy-storing tendon only, supporting the hypothesis that TGF-ȕ1 regulation is specific to 439 

the energy-storing tendon and subsequently indicating that it may specifically be associated 440 

with loading. Exploring the specificity of TGF-ȕ1 regulation and loading is challenging. 441 

Muscle paralysis interventions can be used to demonstrate a causal effect between 442 

mechanical force and TGF-ȕ regulation (Subramanian et al., 2018) however such 443 

experiments cannot be conducted in horses and other large mammals.  444 

Whilst we acknowledge that other extrinsic factors may drive the changes, our direct 445 

comparison of the highly loaded SDFT with the low load CDET enables us to identify that 446 

the divergence in mechanical properties, adaptation, and TGF-ȕ regulation all occurs only in 447 

the tendon experiencing significant loading. In addition, TGF-ȕ has been shown to have a 448 

role in cellular mechanobiology and connective tissue homeostasis, regulating ECM synthesis 449 

and remodelling in a force-dependent way following mechanical stimulation, to specify the 450 

quality of the ECM and help coordinate cytoskeletal tension (Maeda et al., 2011; 451 

Subramanian et al., 2018). A previous study of developing chick tendon detected TGF-ȕ1 452 

staining in the IFM only, during development, highlighting its localised distribution in 453 

development (Kuo et al., 2008). In the current study, we are able to associate TGF-E 454 

expression also with functional adaptation of the tendon IFM. In addition to tissue 455 

development and homeostasis, TGF-ȕ1 is involved in connective tissue injury and repair with 456 

abnormal expression levels reported in both processes suggesting a pleiotropic mode of 457 

action (Gao et al., 2019). The above may suggest a role for TGF-ȕ1 in tissue development 458 

and homeostasis and that its dysregulation is associated with tissue injury and repair. 459 

 460 

Outlook 461 
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We demonstrate for the first time that functional adaptation in tendon is predominantly reliant 462 

on adaptation of the metabolically active IFM, which responds to the mechanical 463 

environment through TGF-E signalling, resulting in modulations in ECM turnover and 464 

composition to fine-tune mechanical properties. Traditionally, the non-collagenous matrix 465 

phase of connective tissues has received considerably less attention than the fibre phase, with 466 

regenerative medicine, biomimetics and biomechanics studies all largely focused on 467 

investigating and recapitulating the organisation and mechanical properties of the collagenous 468 

fibrous network.  469 

Following tendon injury, normal tissue architecture is not recovered, and in particular, the 470 

cellular IFM is not regenerated. There is great potential gain from understanding the 471 

convergence of biology underpinning adaptation, function and pathology and here, we 472 

propose a paradigm shift to consider the metabolically active IFM as a key target for 473 

regenerative medicine strategies aimed at addressing functional impairment of tendons and 474 

other connective tissues following disease. Regeneration of the IFM following tendon injury 475 

could be key for tendon health and low re-injury risk. 476 

 477 

Materials and Methods 478 

Key Resources Table 

Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

biological sample 
(Equus caballus) 

Superficial 
digital flexor 
tendon and 
common digital 
extensor tendon 

Equine practices 
and commercial 
abattoir 

  Foetus-2 years 
old 
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biological sample 
(Equus caballus) 

Primary 
superficial 
digital flexor 
tendon 
tenocytes 

Commercial 
abattoir 

  P3 from adult 
specimens 

antibody anti-decorin 
(mouse IgG) 

other  (1:1500), Prof. 
Caterson, 
Cardiff 
University, UK 

antibody anti-
proteoglycan 4 
(mouse IgG) 

other  (1:200), Prof. 
Caterson, 
Cardiff 
University, UK 

antibody anti-
fibromodulin 
(rabbit IgG) 

other  (1:400), Prof. 
Roughley, 
McGill 
University, 
Canada 

antibody anti-tenascin C 
(mouse IgG) 

Santa Cruz 
Biotechnology 

RRID:AB_7859
91 

(1:250) 

antibody anti-elastin 
(mouse IgG) 

Abcam RRID:AB_2099
589 

(1:250) 

antibody Zytochem Plus 
HRP polymer 
anti-mouse 

Zytomed 
systems 

RRID:AB_2868
565 

(75 µL) 

antibody Zytochem Plus 
HRP polymer 
anti-rabbit 

Zytomed 
systems 

RRID:AB_2868
566 

(75 µL) 

sequenced-based 
reagent 

Equus caballus 
TGFB1 Accell 
SMARTpool  

Dharmacon, 
Horizon 
Discovery 

https://horizondi
scovery.com/en/
products/tools/C
ustom-
SMARTpool 

(1 µM) 

sequenced-based 
reagent 

Equus caballus 
Accell Non-
targeting 
siRNA 

Dharmacon, 
Horizon 
Discovery 

https://horizondi
scovery.com/en/
products/tools/C
ustom-
SMARTpool 

(1 µM) 
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peptide, 
recombinant protein 

Recombinant 
Human TGF-ȕ1 

Peprotech 100-21  (10 ng/mL) 

commercial assay or 
kit 

FASTINTM 
Elastin Assay 

Biocolor https://www.bio
color.co.uk/prod
uct/fastin-
elastin-assay/ 

 

chemical 
compound, drug 

RapiGest SF Waters https://www.wat
ers.com/waters/e
n_GB/RapiGest-
SF-Surfactant/ 

 (0.1% w/v) 

software, algorithm HistoQuest 
Analysis 
Software 

Tissuegnostics RRID:SCR_014
823 

 

software, algorithm Adobe 
Photoshop CS3 

Adobe RRID:SCR_0141
99 

  

software, algorithm Peaks Studio 
v8.5 

Bioinformatics 
Solutions 

www.bioinfor.co
m/peaks-studio 

  

software, algorithm Ingenuity 
Pathway 
Analysis 

Qiagen RRID:SCR_00865
3 

 

software, algorithm Matrisome PMID: 2197732 http://matrisomepr
oject.mit.edu 

 

software, algorithm Mascot Matrix Science RRID:SCR_0143
22 

 

software, algorithm Neopeptide 
Analyser 

PMID: 28503667 https://github.com/
PGB-LIV/neo-
pep-tool/releases/ 

  

software, algorithm SigmaPlot Systat Software Inc RRID:SCR_00321
0 

 

software, algorithm GProX PMID: 21602510 RRID:SCR_00027
3 

 

other Chondroitinase 
ABC from 
Proteus 
vulgaris 

Merck C2509 (0.2 U/mL) 
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other Hyaluronidase 
from bovine 
testes 

Merck H3506 (4800 U/mL) 

 479 

Experimental design 480 

Using an equine tendon model, we investigate the process and drivers of functional 481 

adaptation in the SDFT and CDET, two functionally distinct tendons, when tendons transition 482 

from an absence of loading (foetal: mid to end (6 to 9 months) gestation, and 0 days: full-483 

term foetuses, and foals that did not weight-bear); through to weight-bearing (0-1 month) and 484 

then to an increase in body weight and physical activity (3-6 months; and 1-2 years). We use 485 

a phase-specific approach to characterise each tendon phase independently, by comparing 486 

fascicles (fibre phase) and interfascicular matrix (IFM; matrix phase) mechanical properties, 487 

structure and composition. 488 

For this purpose, we used mechanical testing, histological and immunohistochemical analysis 489 

and mass spectrometry analysis following laser capture microdissection. Sample size was 490 

selected based on previous experiments and restricted by sample availability and the cost of 491 

mass spectrometry analysis. 492 

Sample collection 493 

Both forelimbs were collected from foetuses and foals aged 0-2 years (n=19) euthanised for 494 

reasons unrelated to this project at a commercial abattoir or equine practices following owner 495 

consent under ethical approval for use of the cadaveric material granted by the Veterinary 496 

Research Ethics Committee, School of Veterinary Science, University of Liverpool 497 

(VREC352). Collected tendons were split in the following age groups: Foetus (between 6 and 498 

9 months of gestation; n=4); 0 days (full-term foetuses (average gestation 11-12 months) and 499 

foals that did not weight-bear; n=4): 0-1 month (n=3); 3-6 months (n=4); 1-2 years (n=4). 500 
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The SDFT and CDET from one forelimb were dissected and wrapped in phosphate-buffered 501 

saline dampened tissue paper and foil and stored at -80 oC for biomechanical testing. Two 1-2 502 

cm segments from the mid-metacarpal area of the SDFT and CDET of the other forelimb 503 

were dissected, and one fixed in 4% paraformaldehyde for histology and 504 

immunohistochemistry, and the other snap frozen in isopentane and stored at -80 oC for laser 505 

capture microdissection. 506 

Biomechanical testing of the fascicles 507 

On the day of testing, samples were defrosted within their tissue paper wrap, then 508 

immediately prepared for testing. Fascicles were dissected from the mid-metacarpal region of 509 

the SDFT and CDET and subjected to a quasi-static test to failure according to Thorpe et al. 510 

(2015) (Thorpe, Godinho, et al., 2015). Briefly, prior to testing, the diameter of each fascicle 511 

was measured along a 1 cm length in the middle of the fascicle with a non-contact laser 512 

micrometre (LSM-501, Mitotuyo, Japan, resolution = 0.5 µm) and the smallest diameter 513 

recorded and used to calculate cross-sectional area (CSA), assuming a circular shape. 514 

Fascicles were loaded in an electrodynamic testing machine (Instron ElectroPuls 1000) 515 

equipped with a 250 N load cell and pneumatic grips (4 bar) coated with rubber and 516 

sandpaper to prevent sample slippage (Thorpe et al., 2012). The distance between the grips 517 

was set to 20 mm and fascicles preloaded to 0.1 N (approx. 2% fascicle failure load) to 518 

remove any slack in the sample. Following preload, the distance between the grips was 519 

recorded as the gauge length, then fascicles preconditioned with 10 loading cycles between 0 520 

and 3% strain (approximately 25% failure strain) using a sine wave at 1 Hz frequency. 521 

Immediately after preconditioning, fascicles were pulled to failure at a strain rate of 5%/s. 522 

Force and extension data were continuously recorded at 100 Hz during both preconditioning 523 

and the quasi-static test to failure. Acquired data were smoothed to reduce noise before 524 
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calculations with a 3rd order Savitzky-Golay low pass filter, with a frame of 15 for the 525 

preconditioning data and 51 for the pull to failure data. 526 

Using the preconditioning data, the total percentage hysteresis and stress relaxation were 527 

calculated, between the first and last preconditioning cycle. Failure force, extension, stress, 528 

and strain were calculated from the test to failure, and a continuous modulus calculated 529 

across every 10 data points of each stress strain curve, from which the maximum modulus 530 

value was determined. The point of maximum modulus was defined as the yield point from 531 

which yield stress and yield strain were determined. 532 

Biomechanical testing of the IFM 533 

On the day of testing, tendons were defrosted within their tissue paper wrap, and IFM 534 

samples immediately dissected and prepared for biomechanical testing as described 535 

previously by Thorpe et al. (2012) (Thorpe et al., 2012). Briefly, a group of two adjacent 536 

intact fascicles (bound by the IFM) were dissected, after which the opposing end of each 537 

fascicle was cut transversely 10 mm apart, to leave a consistent 10 mm length of intact IFM 538 

that could be tested in shear (Figure 1 – Figure supplement 1c). 539 

Utilising the same electrodynamic testing machine and pneumatic grips as described for the 540 

fascicles, the intact end of each fascicle was gripped with a grip to grip distance of 20 mm, 541 

and a pre-load of 0.02 N (approx. 1% IFM failure load) applied. IFM samples were 542 

preconditioned with 10 cycles between 0 and 0.5 mm extension (approx. 25% failure 543 

extension) using a sine wave at 1 Hz frequency, then pulled to failure at a speed of 1 mm/s. 544 

Force and extension data were continuously recorded at 100 Hz during both preconditioning 545 

and the quasi-static test to failure. Acquired data was smoothed to reduce noise before 546 

calculations with a 3rd order Savitzky-Golay low pass filter, with a frame of 15 for the 547 

preconditioning data and 51 for the pull to failure data. 548 
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Total percentage hysteresis and stress relaxation were again calculated between the first and 549 

last preconditioning cycle. Failure force and extension were determined from the quasi-static 550 

pull to failure curve, and a continual stiffness curve was calculated across every 10 data 551 

points of the curve, from which maximum stiffness was determined, and yield force and yield 552 

extension at maximum stiffness reported. Based on previous data demonstrating notable 553 

differences in the toe region of the IFM curve of functionally distinct tendons, the shape of 554 

failure curves was also compared between samples by calculating the amount of IFM 555 

extension at different percentages of IFM failure load (Thorpe, Godinho, et al., 2015).  556 

Histology scoring 557 

Paraformaldehyde-fixed paraffin-embedded longitudinal SDFT and CDET segments were 558 

sectioned at 6 µm thickness and stained with H&E for histologic examination and scoring 559 

(n=13; 3 from each age group, 4 from 1-2 years age group). The examined histologic 560 

variables are reported in Supplementary File 1 and adapted from Nixon et al. 2008 (Nixon et 561 

al., 2008). 562 

For parameters scored by investigators, the sections were blinded and histologic variables 563 

assigned a grade from 0 to 3 by two independent investigators. Weighted Kappa showed 564 

moderate to good agreement in all instances, hence the average of the two scores was used. 565 

Other histologic variables were measured using image analysis (HistoQuest Analysis 566 

software, RRID:SCR_014823, Tissuegnostics and Adobe Photoshop CS3, 567 

RRID:SCR_014199) and then assigned a grade from 0 to 3. Cumulative scores for the 568 

fascicle and IFM for each horse were obtained by summing the scores of the fascicle and IFM 569 

variables, respectively, excluding IFM percentage to ensure IFM dimensions were not over-570 

weighted in final reporting. 571 

Immunohistochemistry 572 
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Immunohistochemical analysis for DCN, FMOD, PRG4, TNC and ELN was carried out on 573 

paraformaldehyde-fixed paraffin-embedded longitudinal SDFT and CDET sections (6 µm 574 

thickness) (n=12; 3 from each age group) as previously described by Zamboulis et al. (2013) 575 

(Zamboulis et al., 2013). Antigen retrieval was carried out with 0.2 U/mL Chondroitinase 576 

ABC (C2905, Sigma, Merck, Darmstadt, Germany) at 37 oC for two hours for DCN, FMOD, 577 

PRG4, and TNC or with 4800 U/mL hyaluronidase (H3506, Sigma, Merck, Darmstadt, 578 

Germany) at 37 oC for two hours for ELN. Primary antibodies were used at a concentration of 579 

1:1500 for DCN (mouse IgG), 1:400 for FMOD (rabbit IgG), 1:200 for PRG4 (mouse IgG), 580 

1:250 for TNC (mouse IgG, RRID:AB_785991, Santa Cruz Biotechnology, Dallas, Texas), 581 

and 1:100 for ELN (mouse IgG, RRID:AB_2099589, Abcam, Cambridge, UK). Antibodies 582 

for DCN and PRG4 were a kind gift from Prof. Caterson, Cardiff University, UK, and the 583 

FMOD antibody was kindly provided by Prof. Roughley, McGill University, Canada. The 584 

secondary antibody incubation was performed with the Zytochem Plus HRP Polymer anti-585 

rabbit for FMOD and anti-mouse for DCN, PRG4, TNC, and ELN (RRID:AB_2868566 and 586 

RRID:AB_2868565, Zytomed Systems, Berlin, Germany). Immunohistochemical staining 587 

was graded from 0 to 3 (low to high) on blinded sections, assessing stained area and staining 588 

intensity for DCN, FMOD, TNC, and ELN. For PRG4, where staining was confined to the 589 

pericellular area, staining intensity was measured using HistoQuest Analysis software 590 

(Tissuegnostics, RRID:SCR_014823). 591 

Quantification of tendon elastin 592 

The elastin content of SDFT and CDET samples from each age group (n=12; 3 from each 593 

age group) was quantified using the FASTINTM Elastin Assay (Biocolor, Carrickfergus, 594 

UK) (Godinho et al., 2017). Briefly, SDFT and CDET tissue was powdered (~15ௗmg wet 595 

weight) and incubated with 750ௗµl of 0.25ௗM oxalic acid at 100ௗ°C for 2 one hour cycles to 596 

extract all soluble a-elastin from the tissue. Preliminary tests showed two extractions were 597 
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sufficient to solubilise all a-elastin from developing SDFT and CDET. Following 598 

extraction, samples and standards were processed in duplicate according to the 599 

manufacturer’s instructions and their absorbance determined spectrophotometrically at 600 

513ௗnm (Spectrostar Nano microplate reader, BMG Labtech, Aylesbury, UK). A standard 601 

curve was used to calculate the samples’ elastin concentration and elastin was expressed as 602 

a percentage of tendon wet weight. 603 

Laser-capture microdissection 604 

Laser-capture microdissection was used to collect samples from the fascicles and IFM of 605 

SDFT samples from all age groups (n=4 for each age group with the exception of the 0-1 606 

month group where n=3). For this purpose, 12 µm transverse cryosections were cut from the 607 

SDFT samples and mounted on steel frame membrane slides (1.4 µm PET membrane, Leica 608 

Microsystems, Wetzlar, Germany). Frozen sections were dehydrated in 70% and 100% ice-609 

cold ethanol, allowed to briefly dry, and regions of fascicle and IFM laser-captured on an 610 

LMD7000 laser microdissection microscope (Leica Microsystems, Wetzlar, Germany) and 611 

collected in LC/MS grade water (FisherScientific, Hampton, New Hampshire). Collected 612 

samples were immediately snap frozen and stored at -80 oC for mass spectrometry analysis. 613 

Mass spectrometry analysis 614 

Mass spectrometry analysis of laser-captured SDFT fascicle and IFM samples was carried out 615 

as previously described by Thorpe et al. (2016) (Thorpe, Peffers, et al., 2016). Samples were 616 

digested for mass spectrometry analysis with incubation in 0.1% (w/v) Rapigest (Waters, 617 

Herts, UK) for 30 min at room temperature followed by 60 min at 60 °C and subsequent 618 

trypsin digestion. LC MS/MS was carried out at the University of Liverpool Centre for 619 

Proteome Research using an Ultimate 3000 Nano system (Dionex/Thermo Fisher Scientific, 620 

Waltham, Massachusetts) for peptide separation coupled online to a Q-Exactive Quadrupole-621 
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Orbitrap mass spectrometer (Thermo Scientific, Waltham, Massachusetts) for MS/MS 622 

acquisition. Initial ranging runs on short gradients were carried out to determine the sample 623 

volume to be loaded on the column and subsequently between 1-9 µL of sample was loaded 624 

onto the column on a one hour gradient with an inter-sample 30 min blank. 625 

Protein identification and label-free quantification  626 

Fascicle and IFM proteins were identified using Peaks® 8.5 PTM software (Bioinformatics 627 

Solutions, Waterloo, Canada), searching against the UniHorse database 628 

(http://www.uniprot.org/proteomes/). Search parameters used were: peptide mass tolerance 629 

10 ppm, fragment mass tolerance 0.01 Da, fixed modification carbamidomethylation, variable 630 

modifications methionine oxidation and hydroxylation. Search results for peptide 631 

identification were filtered with a false discovery rate (FDR) of 1%, and for protein 632 

identification with a minimum of 2 unique peptides per protein, and a confidence score >20 (-633 

10lgp>20). Label-free quantification was also carried out using Peaks® 8.5 PTM software for 634 

the SDFT fascicle and IFM separately. Protein abundances were normalised for collected 635 

laser-capture area and volume loaded onto the mass spectrometry column and differentially 636 

abundant proteins between the age groups in the SDFT fascicle and IFM were identified 637 

using a fold change ≥2 and p<0.05 (PEAKS adjusted p values). The mass spectrometry 638 

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 639 

partner repository, with the dataset identifier PXD012169 and 10.6019/PXD012169. With the 640 

IFM showing changes both in its protein composition and mechanical properties during 641 

development and TGFB1 being linked to protein composition, differentially expressed 642 

matrisome proteins identified in the IFM were correlated to TGFB1 whole tendon mRNA 643 

expression and the IFM mechanical properties using the Pearson correlation coefficient 644 

(p<0.05). 645 

Gene ontology and network analysis 646 
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The dataset of identified proteins in the SDFT fascicles and IFM were classified for cell 647 

compartment association with the Ingenuity Pathway Analysis software (IPA, 648 

RRID:SCR_008653, Qiagen, Hilden, Germany) and for matrisome categories with The 649 

Matrisome Project database (Hynes & Naba, 2012). Protein pathway analysis for the 650 

differentially abundant proteins between age groups in the SDFT fascicle and IFM was 651 

carried out in IPA. Protein interactions maps were created in IPA allowing for experimental 652 

evidence and highly predicted functional links. 653 

Neopeptide identification 654 

For neopeptide identification, mass spectrometry data was analysed using Mascot server 655 

(Matrix Science, RRID:SCR_014322) with the search parameters: enzyme semiTrypsin, 656 

peptide mass tolerance 10 ppm, fragment mass tolerance 0.01 Da, charge 2+ and 3+ ions, and 657 

missed cleavages 1. The included modifications were: fixed carbamidomethyl cysteine, 658 

variables oxidation of methionine, proline, and lysine, and the instrument type selected was 659 

electrospray ionization-TRAP (ESI-TRAP). The Mascot-derived ion score was used to 660 

determine true matches (p<0.05), where p was the probability that an observed match was a 661 

random event. The peptide list was exported and processed with the Neopeptide Analyser, a 662 

software tool for the discovery of neopeptides in proteomic data (Peffers et al., 2017). 663 

Obtained neopeptide abundances for each sample were normalised for total peptide 664 

abundance for that protein and sample, and normalised neopeptide abundances were 665 

subsequently summed for each protein and the total neopeptide abundance analysed for 666 

differential abundance across the age groups in the SDFT fascicles and IFM using p<0.05 and 667 

FDR 5% (ANOVA and Benjamini-Hochberg FDR). 668 

Relative mRNA expression 669 
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Laser capture microdissection collects very small amounts of tissue which is not adequate for 670 

mRNA expression analysis and therefore whole tendon was used for the mRNA expression 671 

analysis. RNA extraction from whole SDFT and CDET was carried out followed by reverse 672 

transcription. Quantitative real-time PCR (qRT-PCR) was performed on an ABI7300 system 673 

(Thermo Fisher Scientific Waltham, Massachusetts) using the Takyon ROX SYBR 2X 674 

MasterMix (Eurogentec, Liege, Belgium). qRT-PCR was undertaken using previously 675 

validated gene-specific primers for DCN, FMOD, BGN, COMP, COL1A1, COL1A2, 676 

COL3A1, TGFB1, and GAPDH as a reference gene (Peffers et al., 2013; Taylor et al., 2009) 677 

(Supplementary File 2). Relative expression levels were normalised to GAPDH expression 678 

and calculated with the formula E−ΔCt following primer efficiency calculation. 679 

SiRNA TGFB1 silencing and TGFb1 addition in tenocytes 680 

Tenocytes isolated from young adult SDFT (passage 3, n=4, average age: 5 years old) were 681 

transfected with custom Accell equine TGFB1 siRNA pool and an Accell non-targeting 682 

siRNA (Dharmacon, Horizon Discovery Ltd, Cambridge, UK) for 4 days to silence TGFB1. 683 

Experiments were carried out in the following 24 hours once TGFB1 knockdown was 684 

satisfactory. For TGFB1 stimulation, 10 ng/mL recombinant human TGFB1 (Peprotech, 685 

Cranbury, USA) was added to equine tenocytes for 24 hours, whilst control cells were 686 

incubated in the same media without any additions. qRT-PCR was undertaken as described 687 

above, using previously validated gene-specific primers for TGFB1, BGN, COMP, DCN, 688 

ASPN, FBLN5, COL1A2, COL3A1, and RPS20 as a reference gene (Peffers et al., 2013; 689 

Taylor et al., 2009) (Supplementary File 2).  690 

Statistical analysis 691 

Statistical analysis was carried out in SigmaPlot (RRID:SCR_003210, Systat Software Inc, 692 

San Jose, California) unless otherwise stated. Details of the n numbers for each experiment 693 
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and the statistical test used for the analysis of the data are listed in Supplementary File 3. 694 

Heatmaps were designed in GProX (RRID:SCR_000273) (Rigbolt et al., 2011). The Central 695 

Limit Theorem (CLT) was used to assume normality where n>30 and where n<30 normality 696 

was tested using the Shapiro-Wilks test. If data were found not to be normally distributed 697 

their log10 transformation or ANOVA on Ranks was used for statistical analysis but the 698 

original data was presented in graphs. 699 
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 937 
Figure 1 ± Figure supplement 1. SDFT and CDET in the equine forelimb, tendon 938 

structure, and schematic showing procedure for biomechanical testing. (a) Schematic of 939 

the equine forelimb with the CDET and SDFT highlighted. (b) Tendon structure (partially 940 

reproduced from Figure 1, Spiesz et al. 2015, Journal of Orthopaedic Research, published 941 

under the Creative Commons Attribution 4.0 International Public License (CC BY 4.0; 942 

https://creativecommons.org/licenses/by/4.0/). (c) H&E section of fascicle and IFM and 943 

schematic of fascicle and IFM dissection and biomechanical testing. 944 

 945 

 946 



47 
 

 947 
Figure 3 ± Figure supplement 1. Scoring of histologic variables for the IFM and fascicle 948 

in the SDFT and CDET through postnatal development. * significant difference between 949 

tendons, a-f significant difference between age groups. Error bars depict standard deviation. 950 
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 951 

 952 

 953 
Figure 4 ± Figure supplement 1. Scoring of ELN staining for the IFM and fascicle in the 954 

SDFT and CDET through postnatal development. Error bars depict standard deviation. 955 

 956 

 957 

 958 

Figure 5 ± Figure supplement 1. Classification of SDFT IFM and fascicle identified 959 

proteins and differentially abundant proteins (p<0.05, fROd chaQge�2) accRUdiQg WR WheiU 960 

associated location.  961 
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 963 
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 964 

Figure 5 ± Figure supplement 2. Relative mRNA expression of major ECM genes in 965 

whole tissue SDFT and CDET through postnatal development. * significant difference 966 

between tendons, a-e significant difference between age groups. Error bars depict standard 967 

deviation. 968 


