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Abstract

Background: Chronic kidney disease (CKD) frequently causes death in older cats; its

early detection is challenging.

Objectives: To build a sensitive and specific model for early prediction of CKD in cats

using artificial neural network (ANN) techniques applied to routine health

screening data.

Animals: Data from 218 healthy cats ≥7 years of age screened at the Royal Veteri-

nary College (RVC) were used for model building. Performance was tested using data

from 3546 cats in the Banfield Pet Hospital records and an additional 60 RCV cats—

all initially without a CKD diagnosis.

Methods: Artificial neural network (ANN) modeling used a multilayer feed-forward

neural network incorporating a back-propagation algorithm. Clinical variables from

single cat visits were selected using factorial discriminant analysis. Independent sub-

models were built for different prediction time frames. Two decision threshold strate-

gies were investigated.

Results: Input variables retained were plasma creatinine and blood urea concentra-

tions, and urine specific gravity. For prediction of CKD within 12 months, the model

had accuracy, sensitivity, specificity, positive predictive value (PPV) and negative pre-

dictive value (NPV) of 88%, 87%, 70%, 53%, and 92%, respectively. An alternative

decision threshold increased specificity and PPV to 98% and 87%, but decreased sen-

sitivity and NPV to 42% and 79%, respectively.

Conclusions and Clinical Importance: A model was generated that identified cats in

the general population ≥7 years of age that are at risk of developing CKD within
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12 months. These individuals can be recommended for further investigation and

monitoring more frequently than annually. Predictions were based on single visits

using common clinical variables.
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1 | INTRODUCTION

Chronic kidney disease (CKD) is a progressive, heterogeneous syn-

drome afflicting older cats. It is characterized by persistent azotemia

(assessed most commonly by plasma creatinine concentration) in asso-

ciation with decreased urinary concentrating ability.1 Chronic kidney

disease results from loss of functioning nephrons, leading to a decrease

in total glomerular filtration rate (GFR).2 Nephron loss can result from

multiple continuous or intermittent primary disease processes2; which

trigger inflammation and repair processes leading to interstitial fibrosis,3

that is closely linked to decline in kidney function.4 Adaptation of the

remaining functioning nephrons leads to their hypertrophy, accompa-

nied by glomerular capillary hypertension and hyperfiltration.5 Such

intrinsic nephron damage may lead to further loss of functioning neph-

rons in the absence of any primary disease process.6

Chronic kidney disease is a frequent cause of death in cats

>5 years of age,7 and is a reason why routine annual health screening

assessing kidney function should be common practice for senior cats.8

However, early detection of decreased functioning renal mass is chal-

lenging because the relationship between GFR and surrogate markers

of GFR is exponential; when GFR decreases from normal, the change

in plasma concentration of the surrogate marker is small.9 Second, the

adaptation of remaining functioning nephrons tends to limit the

decrease in total kidney GFR.10

Techniques dependent on artificial intelligence (AI) can be effi-

cient in predicting a large variety of outcomes, particularly in the field

of medicine, and have capabilities offering advantages over traditional

statistical methodologies of multivariate regression.11 Artificial neural

networks (ANN) in particular have great capacity for prediction of

complex and nonlinear processes coupled with ease and flexibility of

implementation.12,13

Our objective was to build a sensitive and specific model for early pre-

diction of CKD in cats using AI mathematical tools and 2 populations of

cats; 1 small but well characterized and a second large but less well-defined.

2 | METHODS

2.1 | Datasets sourced from clinical studies

Data for the development of the diagnostic algorithm were extracted

from the database of the Feline Kidney Research Clinic at the Royal

Veterinary College (RVC database), which contains the data of cats

recruited to studies conducted there since 1995. These were cats that

owners had believed to be healthy and had been recruited to be screened

for kidney disease and followed longitudinally at 2 clinics in central London

(UK), the Beaumont Sainsbury Animals' Hospital (BSAH), Royal Veterinary

College, Camden, and the People's Dispensary for Sick Animals (PDSA), Bow.

A first dataset (RVC1) was extracted from the RVC database from

cats added between 1995 and November 2013 and used for predic-

tion algorithm development. A second dataset (RVC2) later was

extracted for validation purposes and consisted of (1) healthy cats

added to the database between November 2013 and April 2016 and

(2) cats that were in the database before November 2013 but were

not eligible for RCV1 because they only reached 18 months of follow-

up after November 2013. Some of the cats in the RVC1 and RVC2

groups contributed to other studies reported by the RVC.4,10,14-19

To be included in either the RVC1 or RVC2 dataset, cats had to be

≥7 years of age and considered healthy based on history, physical exami-

nation, blood biochemistry and urine screenings. Where available, blood

pressure measurements (standardized Doppler method, Parks Electronic

Doppler Model 811B, Perimed UK, Bury St Edmunds, UK)20 were included

in algorithm development but were not used to determine health status.

These datasets encompassed a large set of numerical and nonnumerical

variables per time point that described the cat's environment,21 signal-

ment, clinical examination findings, vaccination history, packed cell volume,

plasma biochemistry, urinalysis, and biomarkers such as parathyroid hor-

mone (PTH) and fibroblast growth factor 23 (FGF-23).

For cats that remained nonazotemic to be included in the datasets,

at least 1 follow-up visit had to have occurred ≥540 days (18 months)

after the initial screen at which the cat was examined, and blood and

urine samples must have been collected to assess renal function. The

datasets also included data from any follow-up visits between the initial

screen and 540 days. Similarly, the dataset contained all data from mul-

tiple visits by cats documented as azotemic (plasma creatinine con-

centration ≥ 2 mg/dL) after the initial screen.

All cats were categorized as either becoming azotemic after the initial

health screen (cases) or remaining nonazotemic over at least 18 months

(controls). A single group of veterinary-qualified staff from the RVC

reviewed the records from baseline to agree on the initial classification of

cats as healthy and from follow-up visits to verify the diagnosis of CKD.

2.2 | Dataset from a large group of primary care
clinics

To test the model performance on data collected by primary care

practitioners in a clinical service setting, a subset of domestic short,
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medium and long-haired cats visiting Banfield Pet Hospitals (Vancouver,

Washington) between January 1995 and June 2016 was identified. Data

extracted from 6.5 million electronic medical records included reproduc-

tive status, breed, age and laboratory results at each visit. From those

records, 24 497 CKD cats were identified by either a formal recorded

diagnosis of CKD or by at least 2 CKD-suggestive data points from the

following list: plasma creatinine concentration above normal, urine spe-

cific gravity (USG) below normal, and “CKD,” “azotemic,” “Royal Canin

Veterinary diet Renal,” or “Hill's prescription diet k/d” in the medical

notes. A first set of filters was applied to retain CKD cats presented in a

Banfield Hospital as healthy before the onset of CKD and for which there

were at least 2 visits with a measurement of plasma creatinine concentra-

tion as well as to remove outliers, yielding 1855 CKD cats. A second set

of filtering criteria then was applied to ensure that data were suitable for

modeling, including age between 7 and 22 years, and at least 2 visits at

which plasma creatinine and blood urea nitrogen (BUN) concentration

and USG were measured, yielding 1510 CKD cats.

For this Banfield dataset, cases were defined by a clinical diagno-

sis of CKD made using the equipment, training and guidelines in place

for each veterinarian at the time of diagnosis. No allowance was made

for the alteration of diagnosis at a subsequent visit, contrary medical

notes, or the possibility of a different diagnosis on the basis of subse-

quent clinical practices or guidelines, such as the International Renal

Interest Society (IRIS) guidelines.

Controls were cats that had not been diagnosed with CKD and

had a further 2 years of visits beyond the last data point provided to

the model, during which they remained free of CKD. They were not

specifically healthy cats and could have been diagnosed with any

other illness. The medical notes were searched electronically to remove

any control cats that seemed likely to have received a tentative diagno-

sis of CKD that was not formally recorded.

2.3 | Clinical assays

2.3.1 | RVC1 and RVC2 datasets

Owners were asked to withhold food for 8 hours before blood sam-

ples by jugular venipuncture were collected into lithium heparin and

plain tubes. Heparinized plasma was used for immediate biochemical

analysis (Idexx Laboratories, Wetherby, West Yorkshire, UK). A urine

sample collected by cystocentesis was required for study eligibility.

Urinalysis included measurement of specific gravity, pH (HI 9224 pH

meter, Hanna Instruments, Leighton Buzzard, UK), dipstick chemistry

analysis (Multistix Urine Chemistry Reagent Strips, Bayer Diagnostics,

Newbury, Berks, UK) and microscopic examination of sediment. Resid-

ual samples were centrifuged (Mistral 3000, Sanyo-Gallenkamp, Leics,

UK) at 4!C for 10 minutes, and stored at −80!C for later batched

measurement of urine protein-to-creatinine ratio and urine albumin-to-

creatinine ratio. Serum PTH and FGF-23 measurements were not

available for enough cats for model building.

2.3.2 | Banfield dataset

The clinical assays used for the Banfield database were dictated by

the procedures of the Banfield Pet Hospitals at the time of the cat

visits.

2.4 | Model development

Modeling was conducted in 3 phases. Phase 1 (2014) was the initial

development of the model and its predictive algorithms using the

RVC1 dataset. During this phase, the model was designed, the input

variables were selected and a first run of training and validation of the

model was undertaken. The performance of the initial model was

tested in phase 2 (2016) using the Banfield and RVC2 datasets as

new, independent data. Phase 3 (2016) consisted of a new cycle of

training and validation keeping the same input factors (creatinine,

BUN, and USG) but reinitializing and optimizing the model using all

3 datasets (RVC1, RVC2, and Banfield). Table 1 provides a summary

of modeling terminology.

2.5 | Model design and dataset building

All cats had at least 2 visits with known outcomes of negative or posi-

tive CKD status, these being the initial visit at which all enrolled cats

were required to have a negative CKD status, and at least 1 follow-up

TABLE 1 Terminology

Model A global algorithm developed with artificial intelligence tools that allowed the outcome of CKD to be predicted based on a limited
set of data

Submodel A model that was developed to predict occurrence of CKD within each time period studied (ie, 0, 3, 6, 9, 12, or more than 12 months
+). All the submodels together form the final model

Model
building

Development of the model based on a subset of individual-level data that encompassed a range of clinical and laboratory parameters
in cats with known CKD outcomes

Model
validation

The process by which the accuracy of the model in correctly predicting CKD status was tested using a different subset of data that
is, independent data from different cats to those used for the model building

Phase Each phase of the model building represented the application of a given dataset or combination of datasets to either build or validate
the model
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F IGURE 1 Design of datasets for time-delineated submodels. The chart shows the flow of data into time-delineated submodels with respect
to a single visit. A cat had a separate M0 status for each of its visit, which were analyzed independently. A given visit was associated with a
chronic kidney disease (CKD) status (positive or negative) for each of the submodels M0, M3, M6, M12 or M12+, depending on the time interval
in months between the visit and the date when the cat was diagnosed or not with CKD. Cats diagnosed with CKD at or before the date of any
visit were included as positive for the associated M0 submodel but excluded from other submodels, because unlike M0 these were designed to
predict a future not a present status. *M0 status at the initial visit was negative for all cats because this was an eligibility criterion. †Once a cat
was positive at any of the visits it was automatically recorded as positive for all subsequent visits and was no longer followed up that is, it no
longer provided input for submodels other than M0
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visit. For each visit, a dataset was built a posteriori by coupling disease

status at the time of the visit, the set of variables measured from the

samples taken, and the visit date. Each dataset was used as input to

create 6 submodels that could use measures from a single visit to pre-

dict the current (submodel M0) or future occurrence of CKD within

3, 6, 9, 12, or >12 months (submodels M0, M3, M6, M9, M12, and

M12+, respectively; Figure 1). The CKD status of a cat at the time of a

visit was termed the M0 status. Every visit was considered separately

and had an independent M0 status in order to establish a prediction

tool based on a single visit. The input data used to build the sub-

models therefore were visits and not the cat's history. Once a cat

became CKD positive at any visit, it was automatically entered into

the model with a positive status for all subsequent visits, even if any

of the following submodels predicted a negative output (Figure 1).

2.5.1 | Initial selection of variables

The raw dataset was cleaned from 116 to 16 variables by excluding

55 with >40% missing data, all remaining 36 qualitative variables

because of their minimal relevance to CKD or paucity of abnormal

findings, and 9 blood variables that were not consistently present with

the same other variables to constitute complete sets of measures.

Variables remaining were: age, creatinine, USG, chloride, total plasma

protein, phosphate, total plasma calcium, albumin, globulin, urea, ala-

nine transaminase, alkaline phosphatase, bilirubin, cholesterol, sodium,

and potassium. Factor discriminant analysis (FDA) with a threshold

fixed to j0.5j was used for variable selection from these 16 vari-

ables.22,23 It was applied separately on each submodel dataset to

ensure that the best predictors for each time range were retained.

2.5.2 | Artificial neural network modeling

The ANN modeling was undertaken using a multilayer feed-forward

neural network, so-called multilayers perceptron (MLP), incorporating

a back-propagation algorithm.24,25 In the first step of the model build-

ing, a set of input/output vector pairs was presented to the network

for the “training” process. For each input vector, the neural network

model calculated an output vector, and by comparing this output vec-

tor with the actual output vector, an error term for the outputs of all

hidden and output neurons was derived. The weights and biases were

updated using this error term, and the procedure was repeated in

order to minimize the error. A 10-fold cross-validation approach was

used with 5 repetitions for each submodel, and the 20 best ANNs

were selected each time to form an “ensemble model.” During the

training step, the internal parameters of the MLP were tuned simulta-

neously in a full factorial design that tested all combinations for each

submodel.

These parameters were the number of hidden layers, the number

of neurons in the hidden layer and the decay. There was 1 hidden

layer, neuron numbers were tested from 2 to 30, and decay was set

to vary from 0.001 to 0.1. Receiver operator curves (ROCs) were

generated for the validation datasets by plotting the true positive rate,

or sensitivity, against the false positive rate (equal to 1-specificity)

across various thresholds. Optimal parameter values were selected

based on the area under the curve (AUC) of the ROCs as the measure

of model accuracy.

Because the prediction was based on a single visit, the final calcu-

lation applied the best submodels on all the initial data based on one

visit from each cat. The process was repeated using the different visits

for each cat, and the average values for each variable (sensitivity,

specificity, PPV, and NPV) are reported.

2.6 | Model performance

Performance of the model in each phase was based on the repeated

application of the submodels on 1 selected visit by a cat. For each

submodel, the percentage of correct to incorrect answers was calcu-

lated and the algorithm optimized the model to the lowest rate of

errors.

Two strategies were used to set decision thresholds for determin-

ing the predicted state of a cat from the probability output of the

model. Strategy 1 was to select the optimal threshold for ensuring

both high specificity and sensitivity using the Youden's index.26 Strat-

egy 2 was to define the threshold that would ensure a high specificity

corresponding to the highest positive predictive value (PPV), with the

trade-off of a potentially low sensitivity. This approach aimed to

decrease false positives at the risk of potentially increasing false

negatives.

The NPV and PPV were dependent upon CKD prevalence, and

differed between submodels because they were based upon visits not

cats. The NPVs and PPVs also were calculated for the CKD prevalence

normalized to 10%,15%, 20%, and 30% for all submodels.

The independence of forward predictive submodels from each

other meant it was possible to have a positive prediction within 1 time

frame followed by a negative prediction within any later time frame.

Such disagreements between submodels are termed incoherences.

The rate of incoherence between submodels was calculated for

the final model (ie, the proportion of cases predicted by any of

the submodels that were not confirmed by ≥1 of the following

submodels).

2.7 | Modeling software

All calculations were carried using R software (v 3.3.3, open-source

software; https://cran.r-project.org/bin/windows/base/old/3.3.3/)

with the MASS (Discriminant analysis, https://cran.r-project.org/

package=MASS), ADE4 (Multivariate analysis (FDA), https://cran.r-

project.org/package=ade4), CARET (Data modeling, https://cran.r-

project.org/package=caret), pROC (ROC curves, https://cran.r-

project.org/package=pROC), and NNET (ANN, https://cran.r-

project.org/web/packages/nnet/index.html) libraries dedicated to

modeling and machine learning.
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2.8 | Study conduct

The Ethics and Welfare Committee of the RVC and the Royal Canin

ethics committee approved the clinic protocols for screening healthy

cats for CKD in the RVC datasets. Samples were collected and stored

with the informed consent of the cats' owners.

3 | RESULTS

3.1 | Composition of datasets

Data from 218 RVC cats (RVC1 dataset) were used to design and

build the initial model in phase 1, and data from 60 RVC2 cats and

3486 Banfield cats were used to validate the model in phase 2 as an

independent dataset (Table 2). Visits were excluded due to missing

data (701 from RCV1 dataset) and for cats <7 years of age (31 from

RCV1; 9835 from Banfield), leaving a total of 10 576 visits for

analysis—672, 60 and 9844 from RCV1, RCV2, and Banfield datasets,

respectively (Tables 2 and 3). The baseline characteristics of cats are

summarized in Table 4. Most cats were neutered, the overall propor-

tion of female cats ranged from 51% to 56%, mean age ranged from

11.1 years in the Banfield data set to 13.2 years in the RCV1 dataset.

Over the study period, 76% of cats in the RVC1 dataset and 57%

of Banfield cats remained nonazotemic, corresponding to an overall

prevalence of visits with a positive CKD for the model building of

24% and 43%, respectively. Of the cats included in phase 1 of the

modeling (RVC1 dataset), 11.5% showed azotemia within 6 months

and 15% at 12 months. In phase 3 of the modeling, in which the same

model design was used to regenerate the model by fresh training and

validation using a combined dataset of RVC1 plus RCV2 plus Banfield,

11.4% of included cats showed azotemia within 6 months and 24% at

12 months.

Table 3 shows the total number of visits made by cats with and

without CKD that contributed to the modeling (negative controls and

positive cases, respectively). Table 3 also shows the number of visits

with positive or negative status that formed the input for each sub-

model. The prevalence of CKD for each submodel is presented in

Supporting Information Table S1.

3.2 | Input variables selection

For each of the time-delineated submodels (M0-M12+) the same 3

variables had a discriminant weight ≥ j0.5j on FDA: creatinine, USG

and urea (Figure 2); these were retained as input variables for the pre-

dictive model. Using the final dataset for phase 3 (RVC1 plus Banfield

plus RVC2), the correlation between creatinine and USG as well as

the correlation between urea and urine SG varied between −0.2 and

−0.3 (Figure 2). The correlation between creatinine and urea was

approximately 0.54. These correlations were low enough to exclude

potential modeling problems associated with covariation of predictors.

3.3 | Model performances

The performance of the model in each phase of development is sum-

marized in Tables 5 and 6. The ROCs illustrating the accuracy, sensi-

tivity and specificity of submodel M12 are shown in Figure 3.

When the initial model from phase I (RVC1 dataset) was established,

specificity and sensitivity were optimized (strategy 1). The submodels had

specificities ranging from 0.72 to 0.93 and sensitivities from 0.83 to 0.93

(Table 5). The negative predictive values (NPVs) were close to 1 and the

PPVs were approximately 70%. A second strategy was tested optimizing

specificity and, in doing so PPV, but at the cost of decreasing sensitivity

and NPV (Table 6).

In phase 2, applying the Banfield and RCV2 datasets to the initial

model was associated with high accuracy and sensitivity but a

decrease in specificity and PPV for both strategies but especially

strategy 1, which had an accuracy of 0.82-0.89, sensitivity of

0.93-0.97, specificity of 0.23-0.65 and PPV of 0.27-0.62 (range

across submodels, Table 5).

TABLE 2 Numbers of cats and visits
used to create and validate the model

Model phase/dataset Cat status Cats Visits

Phase 1/RVC1 Controls, n 166 447

Cases, n 52 225

Prevalence of CKD 24% 33%

Phase 2/Banfield + RVC2 Controls, n 2025 4981

Cases, n 1521 4923

Prevalence of CKD 43% 50%

Phase 3/Banfield + RVC1 + RCV2 Controls, n 2191 5428

Cases, n 1573 5148

Prevalence of CKD 42% 49%

Notes: Controls were cats remaining free from chronic kidney disease for 18 months after the initial quali-
fying visit. Cases were cats that were diagnosed with chronic kidney disease at visits after the qualifying
visit.
Abbreviations: CKD, chronic kidney disease; RVC, Royal Veterinary College.
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When the model was updated in phase 3 using the Banfield,

RVC1 and RVC2 datasets, the sensitivity for strategy 1 was generally

slightly lower than for phases 1 and 2 and the NPV was similar

(Table 5). Specificity and PPV were intermediate. Strategy 2 in phase

3 improved specificity to levels similar to those for strategy 2 in phase

I and PPV was higher than for phase 2 (Table 6). Sensitivity was

decreased compared with other phases and a modest decrease in

NPV was noted.

The accuracy of the model in all phases was close to 90% with

the exception of submodel M12+, for which accuracy was closer to

80% (Tables 5 and 6). In the final model, the rate of incoherence

between submodels was 3.2%. The values (ie, model output) of inco-

herent observations were very close to the threshold value for the

model cut-off.

The range of NPVs and PPVs associated with CKD prevalence

fixed to between 10% and 30% are shown in Supporting Information

Tables S2 (strategy 1) and S3 (strategy 2).

4 | DISCUSSION

A model was developed that identifies cats ≥7 years of age that are at risk

of developing azotemic CKD within 12 months, based on laboratory

variables very familiar to veterinarians in general practice. The work is dis-

tinct from classical CKD prediction research in cats10,19,21,27 owing to its

use of ANN and the large size of the population for model validation and

refinement.

Artificial neural network modeling is a powerful tool that can har-

ness the value of large and complex datasets and that, in the era of

“big data,” is of increasing interest in medical diagnostics (imaging and

histopathology in particular) and prognostics.28,29 Disease predictions

from ANN models are not limited by an understanding of the associ-

ated pathophysiology because they are based purely on mathematical

relationships. Modeling by ANN is well established in human medicine

as a tool to define populations at risk and to assist diagnosticians,12

particularly in cancer, neurology and cardiology, where early diagnosis

can impact leading causes of death.28 The high morbidity and mortal-

ity rate of CKD in cats, combined with the difficulty of early diagnosis,

suggest that ANN could be helpful in feline renal medicine. The first

ANN model for predicting disease development in cats was a model

to predict CKD.30 The model presented here validates this approach.

The model derived in our study had an accuracy (percentage of

true positives plus true negatives) of approximately 90%. When the

model was set to interpret the computer simulations using a strategy

that maximized both sensitivity and specificity (strategy 1), it was able

to identify 87% of cats that would develop CKD within 12 months,

and 70% of the cats that would not develop CKD within this time

frame on the basis of plasma creatinine and BUN concentrations and

USG at a single visit. The corresponding PPV (53%) meant that at least

1 in every 2 cats “positive” by this screening would develop azotemic

CKD within 12 months. This strategy is appropriate if it is considered

more important to correctly identify cats that will not develop CKD

within the 12 months (ie, high NPV) than to correctly identify cats

that will develop CKD. Also, the PPV of the model developed here will

be calculably higher in older populations of cats because the preva-

lence of CKD increases,7 which may inform the owner or veterinarian

as to its relative merits for an individual cat. An overall effect of

increasing PPV with increasing CKD prevalence was identified

when submodels were normalized to fixed prevalences of 10%-

30% (Supporting Information Tables S2 and S3). The sensitivity of

the model for predictions beyond 12 months was decreased, but

the specificity increased.

TABLE 3 Number of control (negative) and case (positive) cat visits used to build and test (phase 1 and 3) and test (phase 2) the submodels

Submodel

Phase 1 Phase 2 Phase 3

Negative control Positive case Negative control Positive case Negative control Positive case

M0 521 151 8314 890 8835 1041

M3 514 7 8109 205 8623 212

M6 490 31 7899 415 8389 446

M9 471 50 7598 716 8069 766

M12 456 65 7350 964 7806 1029

M12+ 447 74 4281 4033 4728 4107

Notes: Submodel M0 was based on each clinic visit assessing the status of a cat with respect to a diagnosis of chronic kidney disease (CKD). Submodels
M3-M12+ were for the prediction of the CKD status of negative cats in time frames out to 3, 6, 9, 12 months, and more than 12 months after M0.

TABLE 4 Baseline characteristics of cats in the datasets used for
modeling

RCV1 RCV2 Banfield

Total number of cats, n 218 60 3486

Intact males, n (%) 2 (0.92) 1 (1.67) 4 (0.11)

Neutered males, n (%)) 94 (43.1) 28 (46.7) 1705 (48.9)

Intact females, n (%) 1 (0.46) 0 16 (0.11)

Spayed females, n (%) 121 (55.5) 31 (51.7) 1761 (50.5)

Domestic short-hair, n (%) 169 (77.5) 45 (75.6) NR

Domestic long-hair, n (%) 140 (6.4) 11 (17.6) NR

Pure breed, n (%) 35 (16.1) 4 (6.8) 0

Age, mean (SD) years 13.2 (3.9) 12.6 (2.5) 11.1 (2.9)

Abbreviation: NR, not recorded.
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F IGURE 2 Input variables selection using factorial discriminant analysis. The figure shows the discriminant weight of each input variable on
the model response of positive or negative for chronic kidney disease. The highest values are shown in red and are the variables retained in the
model. M0-M12 are the submodels corresponding to the screening visit and prediction time frames of 3, 6, 9, and 12 months. ALP, alkaline
phosphatase; ALT, alanine transaminase; creat, plasma creatinine; Tp-protein, total plasma protein; UrineSG, urine specific gravity
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This model is a tool for prediction, not a diagnostic algorithm. Its

value is in identifying cats at higher risk of developing CKD in the

future (or, in the case of submodel M0, a greater likelihood of having

current CKD), so that they can be recommended for closer monitoring

than an annual health check (ie, every 3-6 months), and be considered

for further investigations to determine the presence of any underlying

disease leading to loss of functioning nephrons. It has the potential to

increase the likelihood that CKD is diagnosed early, supporting more

timely preventive medicine, especially in the older cat population.

Although not intended for research purposes, it is possible that the

TABLE 5 Performance criteria of
submodels in the 3 modeling phases
based on a decision threshold set to
maximize both sensitivity and specificity
(strategy 1)

Modeling phase Performance measure M0 M3 M6 M9 M12 M12+

Phase 1 Accuracy 0.97 0.97 0.88 0.86 0.87 0.87

Sensitivity 0.92 0.83 0.93 0.91 0.91 0.93

Specificity 0.90 0.93 0.80 0.81 0.78 0.72

PPV 0.72 0.77 0.66 0.70 0.70 0.66

NPV 0.95 0.89 0.98 0.97 0.96 0.97

Phase 2 Accuracy 0.89 0.89 0.88 0.88 0.87 0.82

Sensitivity 0.93 0.94 0.96 0.96 0.97 0.94

Specificity 0.65 0.59 0.39 0.42 0.23 0.23

PPV 0.29 0.30 0.27 0.33 0.31 0.62

NPV 0.98 0.97 0.98 0.97 0.96 0.76

Phase 3 Accuracy 0.91 0.89 0.88 0.88 0.88 0.82

Sensitivity 0.90 0.87 0.86 0.86 0.87 0.71

Specificity 0.81 0.77 0.74 0.73 0.70 0.81

PPV 0.44 0.45 0.47 0.52 0.53 0.85

NPV 0.98 0.95 0.94 0.93 0.92 0.64

Notes: Submodel M0 was based on each clinic visit assessing the status of a cat with respect to a diagno-
sis of chronic kidney disease (CKD). Submodels M3-M12+ were for the prediction of the CKD status of
negative cats in time frames out to 3, 6, 9, 12 months, and more than 12 months after M0.
Abbreviations: AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.

TABLE 6 Performance criteria of
submodels in the 3 modeling phases
based on a decision threshold set to
maximize specificity and PPV (strategy 2)

Modeling phase Performance measure M0 M3 M6 M9 M12 M12+

Phase 1 Accuracy 0.97 0.97 0.88 0.86 0.87 0.87

Sensitivity 0.81 0.72 0.64 0.59 0.64 0.64

Specificity 0.98 0.98 0.97 0.97 0.96 0.96

PPV 0.89 0.91 0.89 0.91 0.91 0.95

NPV 0.89 0.86 0.83 0.81 0.81 0.81

Phase 2 Accuracy 0.89 0.89 0.88 0.88 0.87 0.82

Sensitivity 0.90 0.90 0.85 0.81 0.87 0.70

Specificity 0.75 0.73 0.76 0.80 0.66 0.80

PPV 0.34 0.37 0.44 0.52 0.46 0.82

NPV 0.97 0.97 0.95 0.93 0.93 0.66

Phase 3 Accuracy 0.91 0.89 0.88 0.88 0.88 0.82

Sensitivity 0.51 0.35 0.41 0.45 0.42 0.46

Specificity 0.95 0.98 0.98 0.98 0.98 0.97

PPV 0.65 0.78 0.81 0.84 0.87 0.96

NPV 0.91 0.86 0.84 0.82 0.79 0.53

Notes: Submodel M0 was based on each clinic visit assessing the status of a cat with respect to a diagno-
sis of chronic kidney disease (CKD). Submodels M3-M12+ were for the prediction of the CKD status of
negative cats in time frames out to 3, 6, 9, 12 months, and more than 12 months after M0.
Abbreviations: AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.
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model also could help identify higher-risk cats for assessing the effi-

cacy of interventions for early kidney disease in randomized con-

trolled clinical trials.

The ability of the model to make accurate predictions at the time of

presentation (M0), suggests that apparently healthy cats with a positive

prediction of CKD might be at high risk of suffering from early renal dis-

ease, despite having plasma creatinine and BUN concentrations within

the normal reference ranges as well as a USG slightly >1.035. The model

might therefore help veterinarians to identify cats with combinations of

laboratory results close to but not exceeding normal limits, and potentially

allow them to make an earlier diagnosis. Importantly, the model was fitted

to cats on the basis of a single presentation, so a veterinarian would not

need to have historical data for an accurate prediction. Of course, serial

monitoring is an important part of early detection of chronic disease in

veterinary patients and cannot be replaced by results from a single visit.

The high NPV supports the expert-recommended annual frequency of

health examinations for a cat with a “negative” prediction and no sign of

kidney impairment or other risk factors,31,21 although no test is perfect

and practitioners should be aware that some negative cats might develop

CKD within a year.31

Strategy 2 for interpreting the model output favored specificity

and a high PPV, making it more appropriate if there is an emphasis on

not erroneously predicting that a cat will develop CKD (ie, limiting

false positives) at the cost of missing some cats that will develop CKD

(increase in false negative rate). On this basis, the model correctly

identified at least 8 of 10 positive cats that would develop azotemia

within 12 months. The decreased sensitivity meant that only 4 of

10 cats at risk would be detected, and the decrease in NPV to 79%

meant that 2 in 10 cats predicted to be negative would be false nega-

tives. The choice of strategy for setting the decision threshold should

be guided by the purpose of the test and the population characteris-

tics of the cats being screened. It may be more important for a screen-

ing test that predicts the future development of a disease to favor the

detection of potential positives over false negatives, especially where

the recommended action for positive individuals is not harmful, and in

the case of more frequent health checks, is relatively inexpensive.

Phase 1 of the modeling process designed the model using well

characterized cats from a clinical research database (RVC1 dataset).

Despite the modest size of the dataset (218 cats), the model devel-

oped from it was robust, retaining high accuracy when presented with

Banfield and RVC2 data from 3546 cats in phase 2. Artificial neural

network modeling is very much dependent on the dataset on which it

has been trained. The decrease in sensitivity observed during phase

2 therefore was expected. It might have been because of the difference

(A)

(B)

(C)

F IGURE 3 Legend on next coloumn.

F IGURE 3 Receiver operator curve (ROC) curves of the submodel
M12 for the 3 modeling phases. M12 is the submodel for predicting
the development of CKD in a time frame of 12 months. A, Phase
1 consisted of the design of the model from the RCV1 dataset,
including a first run of training and validation. B, In phase 2 the model
was tested using the Banfield plus RVC2 datasets as independent
data. C, Phase 3 consisted of a new cycle of training and validation
keeping the same model design but using all 3 datasets (RVC1 plus
RVC2 plus Banfield). The ROCs show all sensitivity/specificity pairs
across the full range of potential thresholds, thereby encompassing
both strategies for decision threshold setting. The dashed lines
delineate the 95% confidence intervals obtained using boot strapping.
S1 is the decision threshold for strategy 1, which aimed to maximize
both specificity and sensitivity. S2 is the decision threshold for
strategy 2, which aimed for a high specificity corresponding to the
highest positive predictive value. RVC, Royal Veterinary College
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in the way CKD was diagnosed between the 2 institutions, demo-

graphic differences, or other factors that remain to be determined.

Another ANN model for CKD prediction in cats had a sensitivity

of 63% and specificity of 99% to predict CKD 12 months before diag-

nosis.30 Their model was different because it relied upon changes over

time in the plasma creatinine and BUN concentrations and USG. Our

model was designed to study any new case on the basis of a single

visit, without a medical history, making it practical for a veterinarian

who does not have easy access to past biochemistry test results. The

previous model30 also included age, which was not retained in our

model on the basis of the FDA results, probably because most of the

healthy cats screened by the RVC were ≥9 years of age. Both models

used large datasets from clinical practice, but we have demonstrated

that a model can also be created from a much smaller dataset of well-

characterized cats from clinical studies. The previous model gave pre-

dictions of CKD up to 2 years before diagnosis.30 We focused on a

12-month predictive window, which fits with the annual frequency of

veterinary visits for routine vaccination and associated health screening.

Other studies have used a combination of traditional univariate and

multivariate logistical regression to identify clinical variables associated with

subsequent development of azotemia.19 Of their 2 models, the 1 with the

higher sensitivity identified 83% of their population of cats that would in

fact develop azotemia with a specificity of 47%, based on data from the

research setting only. Although specificity was relatively low in phase 2 of

the modeling reported here, additional training and validation in phase

3 increased it to at least 70%. These differences in approaches and results

suggest that the ANNmodel may be more suitable for a screening test.

The 2 populations used for the ANN modeling encompassed a diverse

group of cats over >20 years, during which time health care practices have

varied. The size and relevance of a dataset from general practice were con-

sidered to outweigh any disadvantages of this approach. Although the

model's accuracy was lower for longer predictive intervals, it remained high

when both RVC and Banfield data were used. A specific strength of the

Banfield dataset was the inclusion of control cats with medical conditions

other than CKD. Any mass screening tool for clinical practice must have

predictive value in client-owned cats presented to veterinary practice for

different reasons and with a range of preexisting conditions. The preva-

lence of CKD in the Banfield population was considerably higher than in

the RCV1 dataset despite the Banfield cats being generally younger, but it

is not outside of reported ranges.32,33 It is plausible that CKD is more likely

to be detected if cats are being monitored for plasma creatinine and BUN

concentrations and USG simultaneously, which was required for our model.

Furthermore, the ability of the RVC model to predict CKD in the Banfield

cat population supports its relevance.

Of the 16 variables in the cleaned dataset, plasma creatinine and BUN

concentrations and USG were clearly the most appropriate input variables

by FDA. These are classical markers of renal disease, routinely used in clini-

cal practice to diagnose CKD and are easy to measure from readily avail-

able samples. Additional biomarkers, including GFR,9 serum symmetric

dimethylarginine (SDMA) concentration27,34 and the phosphaturic hormone

FGF-2310 potentially could improve predictions, but were not evaluated

here.35 Although GFR is recognized as the gold standard measure for the

early detection of CKD, it cannot be used for screening senior cats.9,36 In a

small retrospective study in colony cats, SDMA was shown to be a sensi-

tive and specific biomarker for early diagnosis of CKD up to 4 years in

advance of abnormal serum creatinine concentration suggesting impaired

renal function.27 The utility of both SDMA and FGF-23 should be studied

more extensively to test their rigor in the field.10

Further development of the ANN modeling used in our study is

possible. Although the dataset used to build the model was very large

and diverse, it still may contain nuances unique to this dataset. This

issue can be overcome by continuously training the model on new

datasets collected from the field. Only visits without missing data

were used to ensure the robustness of the model. It could be updated

using statistical techniques to generate missing data, in order to assess

its predictive strength when data values exist for only 1 or 2 of the

selected variables. The clinical utility of the model also could be

improved if sufficient data was available to extend the prediction time

frame beyond 18 months. The rate of incoherence between sub-

models was 3.2%. This rate is very low and inherent to the use of inde-

pendent submodels. Moreover, when a negative prediction appeared to

contradict an earlier positive prediction, the variables were very close to the

thresholds of the submodels, indicating that those individuals were at the

margin of being reported as positive. Reporting an estimate of closeness to

the threshold along with the binary outcome might be useful to clinicians.

In summary, ANN techniques have been used to generate a

model that can identify individuals in the general population of cats

≥7 years of age that are at risk of developing CKD within 12 months,

and that therefore will benefit most from more frequent clinical

follow-up to maximize the opportunities for early CKD diagnosis and

intervention. Predictions were based on the widely used variables of

plasma creatinine and BUN concentrations and USG from a single

visit, making the model highly applicable to clinical practice without

the need for historical data. The model also may help improve the

selection of older cats suitable for prospective clinical trials to investi-

gate interventions aimed at delaying the onset of azotemia.
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