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Rift Valley fever (RVF) is an emerging, zoonotic, arboviral hemor-
rhagic fever threatening livestock and humans mainly in Africa.
RVF is of global concern, having expanded its geographical range
over the last decades. The impact of control measures on epidemic
dynamics using empirical data has not been assessed. Here, we
fitted a mathematical model to seroprevalence livestock and
human RVF case data from the 2018–2019 epidemic in Mayotte
to estimate viral transmission among livestock, and spillover from
livestock to humans through both direct contact and vector-
mediated routes. Model simulations were used to assess the impact
of vaccination on reducing the epidemic size. The rate of spillover by
direct contact was about twice as high as vector transmission. As-
suming 30% of the population were farmers, each transmission
route contributed to 45% and 55% of the number of human infec-
tions, respectively. Reactive vaccination immunizing 20% of the live-
stock population reduced the number of human cases by 30%.
Vaccinating 1 mo later required using 50% more vaccine doses for
a similar reduction. Vaccinating only farmers required 10 times as
more vaccine doses for a similar reduction in human cases. Finally,
with 52.0% (95% credible interval [CrI] [42.9–59.4]) of livestock im-
mune at the end of the epidemic wave, viral reemergence in the
next rainy season (2019–2020) is unlikely. Coordinated human and
animal health surveillance, and timely livestock vaccination appear
to be key to controlling RVF in this setting. We furthermore dem-
onstrate the value of a One Health quantitative approach to surveil-
lance and control of zoonotic infectious diseases.
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Controlling zoonotic and vector-borne infections is complex,
as it requires an accurate understanding of pathogen trans-

mission within animal populations, and pathogen spillover to
humans, while accounting for environmental factors affecting
vector population dynamics (1, 2). Rift Valley fever (RVF) is an
emerging zoonotic arbovirosis causing hemorrhagic fever. RVF is
a threat for both animal and human health, mainly in Africa (3).
Livestock (cattle, sheep, and goats) are RVF virus (RVFV)-am-
plifying hosts, acquiring infection through the bites of infectious
mosquitoes (mainly Aedes spp. and Culex spp.) (4). Humans get
infected by direct contact with infectious animal tissues (upon
abortions or animal slaughter), although vector transmission may
also play a role (4, 5). Since 2015, RVF has been listed as a priority
emerging disease by the World Health Organization (WHO)
R&D Blueprint (6). A major concern is the expansion of its
geographical range over recent decades (5, 7). Current disease
control options for reducing disease risk in humans heavily rely on

controlling virus transmission in animal populations. The impact of
disease control measures in livestock on reducing RVF risk in hu-
mans has not yet been assessed, and doing so requires estimating
key transmission parameters between livestock, and from livestock
to humans, using animal and human epidemiological data.
Mayotte, an island located in the southwestern Indian Ocean

region, reported a RVF epidemic in 2007–2008 (8). In a previous
paper, we used longitudinal livestock seroprevalence data to
model RVFV emergence in the livestock population, and we
estimated that the likelihood of reemergence was very low in a
closed ecosystem (i.e., without introduction of infectious ani-
mals). However, a few imported infectious animals could trigger
another large epidemic, as the herd immunity declined due to
livestock population turnover (9). In 2018, about 10 y after the
previous epidemic, RVF outbreaks were reported in several East
African countries (e.g., Kenya, South Sudan, Uganda, Rwanda)
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(10, 11). In Mayotte, between November 2018 and August 2019,
a total of 143 human cases (RVFV RT-PCR confirmed) were
reported (Fig. 1A). The virus belongs to the Kenya-2 clade (12),
which is closely related to the strains detected in recent out-
breaks in Eastern Africa. The Veterinary Services of Mayotte,
the regional health authorities (Agence de Santé Océan Indien)
and the French Public Health Agency (Santé Publique France)
did further epidemiological investigations to assess temporal
patterns of infection in the animal population, and to identify
possible routes of human exposure to RVFV. These investiga-
tions generated a uniquely well-documented RVF epidemic
dataset, including RVF seroprevalence and incidence data in
animal and humans.
We present these data and use them to extend and fit a

mathematical model of RVFV transmission in livestock (9), and
explicitly account for viral spillover from livestock into the human
population. We fit this model simultaneously to the infection
patterns in livestock and humans observed during the 2018–2019
epidemic, allowing 1) to estimate the level of RVFV transmission
among livestock and spillover from livestock to humans by both
direct contact and vector-mediated routes, 2) to estimate the
likelihood of another epidemic the following year, and 3) to assess
the impact of potential vaccination strategies in livestock and
humans on reducing disease occurrence in humans.

Results
The Course of the Epidemic in Livestock and Humans. Between No-
vember 2018 and August 2019, 143 RVF human cases were
reported. The epidemic peaked in mid-February (February
11–17, 2019), with 18 weekly confirmed cases, six to 7 wk fol-
lowing the rainfall peak (Fig. 1A). About two-thirds of investi-
gated cases reported a direct contact with livestock or its tissues
(including milk consumption) (68%, n = 86), while 32% (n = 41)
reported no previous contact with animals (Fig. 1 A–C, cases in
red and green, respectively).

Livestock sera (n = 1,169) collected by the Veterinary Services
between July 2018 and June 2019 were tested against RVF IgG.
To assess the timing of emergence of the virus in the livestock
population, we plotted quarterly age-stratified RVF IgG sero-
prevalence, using only tested animals for which the date of birth
was available (n = 493). In July to September 2018, that is, be-
fore the report of the first human case, most seropositive animals
were in the oldest age groups (Fig. 1D), probably indicating viral
exposure during the previous epizootic (9). The IgG seropreva-
lence increased in all age groups in January to March (Fig. 1E),
and then in April to June 2019 (Fig. 1F), demonstrating that the
emergence of the virus in the livestock population occurred si-
multaneously with the report of cases in humans, following an
interepidemic period of 10 y.
Ongoing viral phylogenetic analyses on human-derived sam-

ples (12), and IgM-positive livestock seized from informal trade
between June and August 2018 (SI Appendix, Table S6), suggest
that the virus was likely introduced from Eastern Africa into
Mayotte between June and August 2018, through the movements
of infectious animals.

Epidemic Model. We modeled virus transmission among livestock
as a function of rainfall. We divided the human population into
two groups. In the first group (named “farming” group), indi-
viduals were assumed to be in regular contact with animals, and
RVF viral spillover was modeled by both direct contact and
vector-mediated routes. In the other group, individuals could
acquire infection only by the vector-mediated route (“non-
farming” group). In the base case, the farming and nonfarming
groups represented 30% and 70% of the population, respectively
(13). We also explored the case assuming 10% farmers and 90%
nonfarmers. Spillover by direct contact assumed a time-invariant
transmission rate, and the vector-mediated transmission, defined
as a function of rainfall, varied over the study period (Materials
and Methods, Fig. 2, and SI Appendix, Tables S1 and S3).

Fig. 1. (A and F) RVF epidemic data in humans and livestock, and model fit (base case). (A) Weekly number of reported human cases and average daily
rainfall pattern (solid blue line). Human cases reporting a direct contact with animals or their products are presented in red (86 cases), those reporting no prior
contact with animals or their products are in green (41 cases), and lost to follow-up are in gray (16 cases). (B) Predicted median (red solid line) and 95% CrI (red
envelope) of the number of weekly reported human cases in the farming group, and weekly incident observed cases (red dots). (C) Predicted median (green
solid line) and 95% CrI (green envelope) of the number of weekly reported human cases in the nonfarming group, and weekly incident observed cases with
no prior contact with animals (green dots). (D) Quarterly age-stratified RVF IgG seroprevalence in livestock for the trimesters July to September 2018 (n = 173),
(E) January to March 2019 (n = 252), and (F) April to June 2019 (n = 67). In D–F, the black dots and vertical black lines represent the observed age-stratified
average IgG seroprevalence and their 95% CI. The model predicted values are showed by the median (solid blue line) and 95% CrI (blue envelopes).
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Transmission parameters. By fitting this model to the RVF datasets,
the time-varying reproduction number in the livestock pop-
ulation was estimated to peak at Rs,t = 1.9 (95% credible interval
[CrI] [1.5–2.5]), in the second half of January (January 14–27,
2019) (SI Appendix, Fig. S2A), 2 wk following the rainfall peak,
and 3 to 4 wk prior to the predicted epidemic peaks in livestock
and humans (Fig. 3A). This corresponded to a transmission rate
among livestock (βL−L,t) at 9.1 per 1,000,000 livestock heads
per day (95% CrI [7.9–11.2]) (SI Appendix, Fig. S2B). The
spillover rate from livestock to humans by direct contact (βCL−H)
was estimated to be 4.4 per 10 million persons per day (95% CrI
[2.9–7.0]) (SI Appendix, Table S3), which was 2.3 times higher
than the vector-mediated route (βVL−H,t) at its highest value (1.9
per 10 million persons per day [95% CrI (1.3–3.2)]; SI Appendix,
Fig. S2C).
Model predictions. Using the estimated parameters, the simulated
number of human reported cases was 173 (95% CrI [133–224]),
with about two-thirds from the farming group (n = 106) and one-
third from the nonfarming group (n = 67) (Table 1), in agree-
ment with the observed data (Fig. 1 B and C). The predicted age-
stratified IgG seroprevalence in livestock between January and
June 2019 were in good agreement with the observed data as well
(Fig. 1 E and F). The simulated incidence in livestock cases
peaked mid-February (February 11–17), concomitantly with the
peak in human vector-mediated transmission, while the number
of human cases by direct contact reached its maximum values
over the last 2 wk of February (February 11–24) (Fig. 3A). By the
end of the epidemic wave, 17,723 (95% CrI [14,170–20,481])
animals were affected, resulting in 52.0% (95% CrI [42.9–59.4])
of the livestock population being immune (Fig. 3B and Table 1).
The overall predicted number of human infections was estimated
to have reached 9,113 (95% CrI [7,361–11,355]) (Table 1). As-
suming that 30% of the population were farmers (directly ex-
posed to livestock), they were 3.6 times more likely than
nonfarmers to have experienced infection during the epidemic
(Table 1, no intervention, ratio of postepidemic seroprevalence
in farming versus nonfarming groups), corresponding to 45% of
cases resulting from direct contact with animals, and 55% from
vector transmission (SI Appendix, Table S4). If those directly
exposed (farmers) represented only 10% of the population, they

would have been 14.7 times more likely than nonfarmers to have
experienced infection during the epidemic, with 58% of infec-
tions resulting from direct contact (“10–90 case”; SI Appendix,
Tables S3–S5). Finally, using a 21-d rainfall lag resulted in a 1-wk
delay of the epidemic peak, while having negligible impact on the
epidemic sizes (“21-d lag case”; SI Appendix, Table S3).
In this setting, the likelihood of virus reemergence in the

following rainy season (2019–2020) was less than 2.5% (Fig. 3A),
with the time-varying effective reproductive number Re,t falling
below unity following the epidemic peaks and remaining very
close to or below unity over the second year of the simulations
(Fig. 3C).
Vaccination scenarios. Probabilistic forecasts were also used to as-
sess the impact of different livestock and human vaccination
strategies on the size of the epidemic in both animals and hu-
mans (Fig. 4 A–D and Table 1). A reactive and mass vaccination
campaign in livestock immediately after the report of the first
human case in which 6,000 doses are delivered in December
2018 allowed a reduction in the epidemic size by a third (median
number of reported humans cases, 113 cases; median number of
livestock cases, 11,397), while waiting one more month would
have required 50% more vaccine doses to achieve a similar im-
pact (9,000 doses in January 2019; median number of humans
reported cases, 117; median number of livestock cases, 11,576).
Finally, a vaccination program targeting 80% of individuals in
the farming group (61,560 doses in December 2018) reduced
similarly the number of human cases (median, 111 cases), while,
of course, not impacting on the number of livestock cases.
Vaccinating half of the human population in both groups would
have required 128,250 doses (20 times more than livestock
doses), for a smaller impact (Table 1).

Discussion
We present a RVF epidemic dataset combining both livestock
and human surveillance data and use it to parameterize a math-
ematical model. We estimated transmission rates among livestock
and spillover to humans using empirical epidemic data, as well as
the fraction of human cases resulting from direct contact and
vector transmission. This model also allowed the quantitative as-
sessment of the importance of timely livestock vaccination in

Fig. 2. Model diagram. The livestock population is stratified in 10 yearly age groups. Humans are exposed to RVFV through infectious livestock. The farming
population can get infected by direct contact or vector transmission, and the nonfarming population acquires infection only by vector-mediated transmission.
Notations, equations, and assumptions on viral transmission are presented in SI Appendix, Methods and Tables S1 and S2.
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reducing disease risk in humans during an epidemic, useful to in-
form potential control programs, and illustrating the importance of
One Health surveillance in the management of zoonotic diseases.
The IgM testing of illegally imported livestock suggested that

the virus may have been introduced in Mayotte around June to
August 2018, which is in agreement with the timing of RVF
outbreaks on the East African mainland (11) and corresponds to
the dry season in Mayotte. Viral transmission might have been
maintained on the island at a low level in the dry season, or the
virus might have been several times introduced, and the epi-
demic started only following the start of the rainy season (that is,
in October). The epidemic is likely to have therefore resulted
from a recent viral reintroduction, rather that viral persistence

over the last 10 y, as concluded about the 2007–2008 epidemics,
in a previous study (9). Furthermore, since transovarial trans-
mission of the virus in vectors is believed to play a minor
mechanism for RVFV persistence on the island (14), we mod-
eled the epidemic following virus introduction on the island, and
not local reemergence from mosquito eggs.
The systematic testing by RT-PCR of humans showing

dengue-like syndrome performed in Mayotte over the last 10 y
(since 2008) provided additional evidence that RVF had been
absent from the island for a decade, and that the presented
epidemic curve accurately reflected its actual timing. During the
epidemic, mitigation strategies such as vector control around
houses of human cases (i.e., postdetection) and the diffusion of
prevention messages on milk consumption and exposure to ani-
mals were communicated, from February 27 onward (15), that is, 2
wk after the peak. Therefore, these measures are likely to have
little impact on the epidemic size, unaffecting the time of the
epidemic peak. In addition, the timing of the epidemic was cor-
roborated by the observed changes in livestock seroprevalence,
exhibiting a clear pattern of viral emergence. Most livestock sera
(90%) were collected and tested as part of the regular annual
surveillance campaign. As 10% of these samples were collected in
areas reporting human cases, the proportion of seropositive ani-
mals may have been overestimated. However, most animal sam-
pling was conducted from January 2019 onward, when RVFV had
already spread across the whole island. In addition, our model
predicted that 52.0% (95% CrI [42.9–59.4]) of the livestock
population was immune at the end of the simulated epidemic
wave (August 2019), which was in line with estimates from the
previous emergence in 2007–2008 (9). Furthermore, in line with
our model predictions, RVFV did not reemerge in the following
2019–2020 rainy season in Mayotte, as evidenced by the sustained
systematic testing of dengue-like syndromes (16).
RVFV can be transmitted by multiple species of mosquitoes,

and their presence varies across Africa (17). In Mayotte, RVFV
has never been detected in mosquitoes in the wild. However, 47
species of mosquitoes have been described, from which several
could be potential vectors (e.g., Aedes aegypti, Ae. circumluteolus,
Anopheles coustani, Culex pipiens, Cx quinquefasciatus, Cx anten-
natus, Eretmapodites quinquevittatus, andMansonia uniformis) (14,
18, 19). Each of these vectors may have specific bioecology and
population dynamics. While future research should aim at col-
lecting such data, in their absence, we used rainfall as a proxy for
the presence of RVF vectors, as it was found to be associated with
the occurrence of RVF outbreaks (17, 20). We assumed a 14-d lag
between rainfall and its impact on vector abundance based on
previous modeling studies on RVF vector population dynamics
(21, 22). This resulted in a maximal value of Rs,t of 1.9 (95% CrI
[1.5–2.5]), which is in line with previous estimations of R0 (23–25),
and assuming a 21-d lag, at the most, delayed the epidemic peak
by 1 wk. Temperature above 26 °C may also promote RVFV
transmission (26–28). However, with the average annual temper-
atures in Mayotte varying between 25 and 35 °C (9), we assumed
that in this specific setting temperature would not be a major
driver for viral transmission. In areas with cooler temperatures,
such as South Africa (29), temperature may need to be taken into
account (30).
Previous RVF models parameterized the transmission rate

from livestock to humans by direct contact as an input parameter
at 1.7 per 10,000 persons per day (23, 31, 32). The epidemiological
investigations conducted in this epidemic assessed whether human
cases reported a direct contact with animals or their tissues. By
combining this information with data on the fraction of people in
contact with livestock in the population (30%), this allowed dis-
entangling and estimating both RVFV spillover to humans by
direct contact and by vector transmission from epidemic data.
These estimated transmission rates can be used as a benchmark
for further modeling work. The model predictions showed that

Fig. 3. (A and C) Model predictions over two rainy seasons (2018–2019 and
2019–2020). (A) Predicted (reported and unreported) number of infectious
livestock (blue) and humans by direct contact (red), and vector-mediated
route (green). (B) Predicted median (solid lines) and 95% CrI envelopes of
the predicted proportion of susceptible (green) and immune (black) livestock
over the course of the epidemic. (C) Values of Re,t = Rs,t*St over the course of
the epidemic. In all panels, the vertical blue line corresponds to the predicted
epidemic peak in livestock (1,186 infections) and nonfarmers (240 infections)
(February 11–17). The highest incidence in the farming group is estimated to
be February 11–17 and February 18–24 (354 and 353 infections, respectively);
the second of these weeks is represented with the red line. The vertical black
line corresponds to the end of the fitting period (August 2019).
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55% of human cases resulted from vector transmission, and 45%
from direct contact. The main route of RVFV transmission to
humans reported to date, during epidemics, is the transmission by
direct contact (33–35). Here, while the proportion of vector-
mediated infections decreased with the proportion of the farm-
ing population (to 42% if only 10% of the population have regular
contact with animals), it remained high, suggesting that the vector-
mediated transmission might have played an important role in this
setting. During this epidemic, all those with dengue-like syn-
dromes consulting a general practitioner (GP) were tested against
RVFV by RT-PCR. The reported human cases therefore captured
RVF cases from both exposed and nonexposed groups, giving
confidence that our estimates on the direct contact and vector
transmission routes had limited bias. In addition, the high diversity
of potential RVF vectors present in Mayotte, as mentioned in the
above paragraph, and their feeding preferences for livestock and
humans [for example, Cx pipiens and Cx antennatus (14)], might
have also contributed to facilitate vector spillover transmission. In
the 1977 epidemic in Egypt, the vector route is believed to have
played an important role with Cx pipiens being a major vector, and
resulting in several thousands of human cases (36). However, we
acknowledge that the relative importance of vector transmission
versus direct contact during an epidemic may vary across ecosys-
tems. Yet, we provide quantitative information on the zoonotic
transmission of RVFV.
A limitation of the model was that the reporting rate in hu-

mans was unknown, and defined based on data from the
2007–2008 epidemic (37). This relied on the assumption that
both the 2007–2008 and 2018–2019 epidemics affected the same
number of people. While there are no data available on human
infection patterns to support this assumption, our previous work
estimated a postepidemic livestock seroprevalence (9) that was
similar to our current estimates, supporting the assumption that
both epidemic sizes may be comparable. Further data collection
estimating human postepidemic seroprevalence would be nec-
essary to allow an accurate estimation of this reporting rate. In
addition, the livestock model was built with similar assumptions
to our previous paper (9). This included a latent (E) and an
infectious (I) period of 7 d in livestock, accounting for the

extrinsic incubation period in the vector (3 to 7 d), and the latent
(1 to 6 d) and infectious stages (3 to 6 d) in livestock (38–41),
without explicitly modeling these processes. Although this may
have slightly impacted on the predicted timing of the epidemic
peak in humans, our model predictions were in agreement with
the observations. In addition, this did not impact on the fitting to
the livestock data, as we fitted on the (R) compartment, aggre-
gating data over 3-mo periods. We further assumed that livestock
and humans in the (R) compartment represented the immune
population, with immune livestock represented by IgG seropos-
itivity. These assumptions were made on the basis that immunity
is conferred by lifelong neutralizing antibodies following RVF
infection, and that the production of these antibodies are ac-
companied by the production of IgG (42, 43). We also assumed
homogeneous mixing. Mayotte is a small island (374 km2), eco-
logical conditions show limited spatial heterogeneity (19), and
livestock production systems are extensive with animals raised
outdoor year round (9), compatible with the assumption that the
livestock population, from all age groups, was equally exposed to
RVF mosquito vectors. Accounting for spatial heterogeneity and
testing for finer vaccination protocols would have required the
use of epidemic data at a smaller spatiotemporal resolution. Our
model can, however, be expanded into a metapopulation struc-
ture, and parameters further refined, in ecosystems with epide-
miological data (in both animals and humans) and entomological
data (vector population dynamics) available at finer spatial and
temporal scales.
The impact and cost-effectiveness of livestock vaccination

have been assessed in specific RVF high-risk areas in Kenya
using simulation modeling (40, 41). Our analysis demonstrates
the impact of vaccination strategies on reducing the number of
human and animal cases, through a model calibrated from epi-
demic data. Our findings provide evidence that reactive animal
vaccination is the most effective control measure, preventing
both human and livestock cases, and requiring a smaller number
of vaccine doses. The characteristics of the vaccine used in the
vaccination scenarios (highly immunogenic, single dose, and
safe) were those optimal targeted by WHO R&D Blueprint (44),
and not the existing ones. Therefore, we present the “best-case”

Table 1. Predicted epidemic sizes and postepidemic seroprevalence in livestock and humans (farming and nonfarming groups),
without intervention and for the different vaccination scenarios, predicted median (95% CrI)

Scenarios No intervention

Livestock vaccination: month, no. of doses (vaccination coverage)

Human vaccination: month, no. of doses
(vaccination coverage)

Farming
Farming and

nonfarming (50%)

December, 3,000
(10%)

December, 6,000
(20%)

January, 3,000
(10%)

January, 6,000
(20%)

January, 9,000
(30%)

December, 61,560
(80%) December,128,250

Epidemic size
Livestock 17,723

(14,170–20,481)
14,385

(11,013–17,077)
11,397

(8,653–13,945)
15,264

(11,945–17,901)
13,214

(10,402–15,623)
11,576

(9.190–13,819)
17,726

(14,283–20,536)
17,748 (14,182–20,541)

Human, reported cases [percentage total]
Total 173 (133–224) 142 (107–185) 113 (82–152) 150 (114–197) 131 (96–179) 117 (83–159) 111 (78–153) 135 (100–181)
Farming 106 [61%] 87 [61%] 69 [61%] 92 [61%] 80 [61%] 71 [61%] 44 [40%] 67 [50%]
Nonfarming 67 [39%] 55 [39%] 44 [39%] 59 [39%] 51 [39%] 46 [39%] 67 [60%] 68 [50%]

Humans, all cases: reported and nonreported [percentage total]
Total 9,113

(7,361–11,355)
7,490

(6,057–9,333)
5,956

(4,642–7,621)
7,916

(6,393–10,113)
6,916

(5,422–8,924)
6,170

(4,708–8,226)
5,789

(4,456–7,671)
7,109 (5,669–9,201)

Farming 5,559 [61%] 4,569 [61%] 3,633 [61%] 4,829 [61%] 4,219 [61%] 3,764 [61%] 2,316 [40%] 3,512 [50%]
Nonfarming 3,554 [39%] 2,921 [39%] 2,323 [39%] 3,087 [39%] 2,697 [39%] 2,406 [39%] 3,473 [60%] 3,588 [50%]

Postepidemic seroprevalence
Livestock 52.0 (42.9–59.4) 42.8 (34.2–50.3) 34.4 (27.5–41.3) 45.1 (36.7–52.2) 39.2 (32.3–45.5) 34.6 (28.7–40.3) 52.0 (43.24–59.62) 52.1 (43.1–59.6)
Humans:

farming
7.2 (5.7–9.3) 6.0 (4.7–7.8) 4.8 (3.6–6.4) 6.3 (4.9–8.4) 5.5 (4.1–7.4) 4.9 (3.6–6.8) 2.9 (2.1–4.4) 4.6 (2.5–6.2)

Humans:
nonfarming

2.0 (1.4–2.7) 1.6 (1.1–2.2) 1.3 (0.9–1.8) 1.7 (1.2–2.3) 1.5 (1.0–2.1) 1.3 (0.9–1.9) 2.0 (1.4–2.7) 2.0 (1.4–2.7)
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scenarios. RVF vaccines currently available have different immu-
nogenic and safety characteristics, with some of them requiring
boosters (45). Scenarios using vaccines requiring boosters may have
shown a delayed impact on the epidemic compared with the sce-
narios tested, by increasing the time to build up immunity. In
practice, the choice of which vaccine to use in the field may vary
with epidemiological context, and administering a vaccine with a
booster would require at least doubling resources. During this ep-
idemic in Mayotte, livestock were not vaccinated due the absence of
a vaccine with a European Union (EU) marketing authorization
(Mayotte is an EU outermost region) (46). However, we highlight
the importance of developing contingency plans, including emer-
gency funds, should a suitable vaccine becomes available.
In conclusion, we have presented a uniquely detailed investi-

gation into an outbreak of an emerging arbovirus, combining
animal and human data, with a mathematical model for RVF.
Our estimates can be used as a benchmark to parameterize RVF
epidemic models developed for other areas. The model can be
recalibrated to other epidemic settings to estimate ecosystem-
specific transmission parameters, or further extended should
epidemiological and entomological data be available at suitable
space–time resolutions. Disease surveillance in animals, contin-
gency planning, and the timely implementation of livestock
vaccination are key for reducing human disease risk. This work
represents a collaboration between public health and animal

health agencies, a farmers’ association, and researchers, initiated
from the start of the epidemic. Delays in getting livestock data
occurred due to tropical storms and fieldwork constraints in
remote areas. Nevertheless, we addressed in practice the chal-
lenges of a quantitative One Health approach (47) and illus-
trated its value to surveillance and the future control of zoonotic
emerging infectious diseases.

Materials and Methods
RVF Datasets.
Human data. Human incident case data were collected from patients showing
dengue-like symptoms and consulting a GP, and who subsequently tested
positive for RVFV RT-PCR (48). Cases were interviewed using a structured
questionnaire administered by Santé Publique France health epidemiologists
(49). The number of incident cases was aggregated by week.
Livestock data. During the study period, livestock sera were sampled by field
veterinarians according to two protocols: RVF targeted surveys around hu-
man cases and the regular annual surveillance campaign (Système d’Epidé-
miosurveillance Animale à Mayotte [SESAM]), which has been implemented
since 2008 (8). The sera from the RVF targeted surveys were collected be-
tween January and March only. However, due to the rapidly increasing
number of human cases and logistics constraints, the Veterinary Services
instead requested field veterinarians to sample animals from the annual
surveillance campaign only; hence relatively few samples were collected
from the targeted survey. In total, between July 2018 and June 2019, a total
of 1,169 livestock sera were collected (1,023 from the annual surveillance

Fig. 4. (A and D) Impact of vaccination strategies on the epidemic size. (A) Median weekly number of predicted reported incident human cases, and cor-
responding (B) final human epidemic size (reported cases). (C) Median weekly number of predicted incident infected livestock, and corresponding (D) total
livestock epidemic size. In A and C, the red solid line presents the scenario with no intervention (scenario 1); the black lines present vaccinations in December
2018 (black solid, 3,000 doses; dashed black, 6,000 doses) (scenarios 2 and 3); the blue lines present the vaccinations in January 2019 (blue solid, 3,000 doses;
dashed blue, 6,000 doses; dotted blue, 9,000 doses) (scenarios 4–6); the dark green and the light green lines represent the vaccination of farmers (scenario 7),
and the vaccination of the two groups (scenario 8), respectively. Note that, in C, the curves representing the incident livestock cases for no intervention and
the vaccination scenarios targeting humans overlap.
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and 146 from human investigations) and tested against RVF IgG [ID Screen
RVF Competition ELISA; IDVet; Se = 97%, Sp = 100% (50)]. Date of birth was
available for 493 of these sampled animals (with 9% from RVF targeted
surveys; SI Appendix, Table S7). In order to follow the emergence of the virus
in the livestock population over a year, we plotted quarterly age-stratified
RVF IgG seroprevalence (Fig. 1 D–F).
Origin of the virus. To investigate the possible time window of virus intro-
duction from imported infected animals, we collated serological data from
illegally imported livestock seized by the Veterinary Services between June
and August 2018. These animals were tested for RVF IgM by ELISA (indicative
of recent infections) (SI Appendix, Table S6).

Epidemic Model. We modeled the RVF epidemic from the start of the rainy
season, the first week of October 2018 (October 1–7), 1 mo prior to the report
of the first human case, up to the first week of August 2019 (July 29 to
August 4). No more human cases were reported after this date. The model
diagram is presented in Fig. 2, the model equations are detailed in SI Ap-
pendix, Methods, and the assumptions on viral transmission are summarized
in SI Appendix, Table S1.
Transmission among livestock. We adapted the previously developed susceptible–
exposed–infectious–recovered model of RVFV transmission among Mayotte
livestock (9) to the current epidemiological context. We kept the previous un-
derlying demographic livestock population age structure (10 yearly age groups),
and we used a discrete-time deterministic framework, with a daily time step. In
the previous model, the transmission parameter among livestock (βL−L,t) and
corresponding time-varying reproductive number (Rs,t) were assumed to be
vector-borne and modeled as a function of monthly NDVI (normalized differ-
ence vegetation index) values, as a proxy for vector abundance. Here, instead of
using monthly NDVI, we used rainfall data (51) at a daily time step, since the
model time step and the human epidemic curve available for fitting had a
smaller time resolution. We also included a lag of 14 d between rainfall and its
impact on the vector abundance (21, 22). To look at the temporal pattern of the
viral transmission over time, we also calculated Re,t, the time-varying effective
reproduction number, as the product of Rs,t with the proportion of susceptible
livestock at time t.
Spillover into humans. We added a module simulating RVFV transmission from
livestock to humans (Fig. 2). The human population was divided into those
that have regular contact with livestock (farming) and those that do not, the
nonfarming population. We assumed that susceptibles from the farming
population (SHF ) became infected (EHF ) following exposure with infectious
livestock by direct contact at a constant rate βCL−H, and by the vector-

mediated route at a time-varying rate βVL−H,t. Infected individuals from the
farming population, EHF, successively moved through their respective infec-
tious (IHF ) and immune states (RHF ), assuming they remained immune until
the end of the study period. Susceptibles from the nonfarming population
(SHNF ) became infected (EHNF ) following exposure to infectious livestock by
the vector-mediated route only, at a time-varying rate βVL−H,t. The time-

varying rate βVL−H,t was scaled to the within-livestock transmission rate
(βL−L,t), which was rainfall dependent. The model equations, transmission
parameters, and the formulation of the forces of infection from livestock in
the farming λF,t and nonfarming groups λNF,t are presented in SI Appendix,
Methods.
Parameterization and model fitting. Input parameters were those related to the
natural history of infection and demographics in both livestock and human
populations (SI Appendix, Table S2). In the “base case,”we assumed that the
proportion of farmers (PHF) was 30%, and 70% were nonfarmers (13), and
the rainfall lag was 14 d (SI Appendix, Table S3). The proportion of immune
animals at t0 was informed from the aggregated July to September 2018 IgG
livestock seroprevalence campaign (Fig. 1D). The reporting fraction of hu-
man cases was set to ρ = 1.9%, as a postepidemic serological study in hu-
mans, conducted in 2011 in Mayotte, estimated that 3.5% (95% CI [2.6–4.8])
of the human population was RVF IgG-positive (37). Assuming a population
size of 212,645 inhabitants in 2012 (52), this corresponded to an average of
7,442 persons being seropositive. Assuming that the sizes of the 2007–2008
and 2018–2019 epidemics were similar (as seroprevalence data from live-
stock suggest), then 143 cases in the 2018–2019 epidemics would be corre-
spond to a reporting fraction of 1.9% (95% CI [1.4–2.6]). Finally, input
rainfall data were downloaded from the Meteofrance website, as cumulated
rainfall over 10-d periods (51). Daily rainfall was calculated by dividing these
values by 10 over each 10-d period.

Five parameters were estimated by fitting the model to the human and
livestock epidemic data (SI Appendix, Table S3). Two parameters related to
the rainfall-dependent transmission among livestock (A and B), two pa-
rameters estimated the spillover to humans, via contact with livestock (βCL−H)

and via vectors (human vector transmission scaling factor X), and the fifth
parameter was the number of infectious livestock at t0 (IL,t0). Parameter
estimation was done by fitting simultaneously the 1) quarterly age-stratified
simulated proportion of immune livestock (pa,q) to quarterly RVF IgG sero-
prevalence (Fig. 1 E and F); 2) the simulated weekly number of reported
incident cases in the farming population to the observed cases reporting a
contact with animals (Fig. 1B); and 3) the simulated weekly number of
reported incident cases in the nonfarming population to the observed cases
not reporting a prior contact with animals (Fig. 1C). Values of those five pa-

rameters were sampled from their posterior distribution θ = {A,B, βCL−H,X, IL,t0}
using a Monte Carlo Markov chain Metropolis–Hastings algorithm, imple-
mented in the fitR package (53). Finally, to assess the impact of stratifying the
human population, and the impact of the rainfall lag on viral transmission, we
also fitted the model to estimate these five parameters assuming that 10% of
the population were farmers (PHF = 10%), and a rainfall lag of 21 d (SI Ap-
pendix, Table S3). Details on model equations, parameter estimation, and
model fitting are presented in SI Appendix, Methods.
Forecasting and vaccination scenarios. We did probabilistic projections for eight
scenarios (Table 1), using the base case parameters (SI Appendix, Table S3).
For all scenarios, we simulated 2,500 stochastic trajectories by sampling
parameter values randomly from the joint posterior distributions. Scenario 1
aimed at estimating the likelihood of virus reemergence, without disease
control intervention, in the following rainy season (in 2019–2020), in a closed
ecosystem, using the same rainfall data as during the 2018–2019 rainy sea-
son. Scenarios 2–6 aimed at assessing the impact that different livestock
vaccination strategies could have had on the number of human and livestock
cases during the 2018–2019 epidemic. We assumed the use of a single-dose
highly immunogenic vaccine (90% vaccine efficacy) (44, 45), and a 14-d lag
between vaccination and buildup of immunity. Figures of vaccination cam-
paigns in Mayotte in 2017 (against blackleg, a livestock disease), showed
that about 3,000 vaccine doses are routinely administered to livestock over
a year by local veterinarians. Scenario 2 tested the impact of administrating
3,000 doses in one month, in December 2018, immediately after the report
of the first human case (joint animal–human alert date for response), cor-
responding to the current vaccinating capacity in Mayotte in an emergency
setting. Scenario 3 assumed an extravaccine supply and an emergency mass
vaccination, allowing 6,000 doses to be administered in December 2018. We
also assessed the impact of vaccinating livestock in January 2019, 1 mo fol-
lowing the report of the first human case, allowing extra time for organizing
the vaccination campaign: 3,000 doses (scenario 4), 6,000 doses (scenario 5),
and 9,000 doses (scenario 6). Finally, to assess the impact of a reactive and
mass vaccination only in humans, we simulated a 80% vaccination coverage
of the farming population in December 2018 (i.e., 61,560 doses) (scenario 7),
and a 50% vaccination coverage of the two groups (i.e., 128,250 doses)
(scenario 8). Vaccination equations and diagram are presented in SI Ap-
pendix, Methods and Fig. S1.
Ethics statement. The livestock data were collected under the under the
Mayotte disease surveillance system (SESAM) with the approval of the Di-
rection of Agriculture, Food, and Forestry of Mayotte. For human data,
according to French law, only “research involving a human being” (research
defined by article L. 1121-1 and article R. 1121-1 of the Code de la Santé
Publique) is compelled to receive the approval of ethics committee. This
study was based on anonymous data collected from health professionals for
public health purposes relating to the health surveillance mission entrusted
to Santé Publique France by the French Law (article L. 1413-1 Code de la
Santé Publique). Therefore, the study did not meet the criteria for qualifying
a study “research involving a human being” and did not require the ap-
proval of an ethics committee. Furthermore, as the data were anonymous, it
did not require an authorization of the French data protection authority
(Commission Nationale Informatique et Libertés).

Data Availability. The data are presented in SI Appendix, Tables S8 and S9.
The codes are provided. All study data are included in the article and
SI Appendix.
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