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Overexpression of the vitamin D receptor (VDR)
induces skeletal muscle hypertrophy
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ABSTRACT

Objective: The Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic
studies have focused on the loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myofibre size and function and
impaired muscle development. To understand the mechanistic role upregulation of the VDR elicits in muscle mass/health, we studied the impact
of VDR over-expression (OE) in vivo before exploring the importance of VDR expression upon muscle hypertrophy in humans.

Methods: Wistar rats underwent in vivo electrotransfer (IVE) to overexpress the VDR in the Tibialis anterior (TA) muscle for 10 days, before
comprehensive physiological and metabolic profiling to characterise the influence of VDR-OE on muscle protein synthesis (MPS), anabolic
signalling and satellite cell activity. Stable isotope tracer (D,0) techniques were used to assess sub-fraction protein synthesis, alongside RNA-Seq
analysis. Finally, human participants underwent 20 wks of resistance exercise training, with body composition and transcriptomic analysis.
Results: Muscle VDR-OE yielded total protein and RNA accretion, manifesting in increased myofibre area, i.e., hypertrophy. The observed in-
creases in MPS were associated with enhanced anabolic signalling, reflecting translational efficiency (e.g., mammalian target of rapamycin
(mTOR-signalling), with no effects upon protein breakdown markers being observed. Additionally, RNA-Seq illustrated marked extracellular matrix
(ECM) remodelling, while satellite cell content, markers of proliferation and associated cell-cycled related gene-sets were upregulated. Finally,
induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise type training.

Conclusion: VDR-OE stimulates muscle hypertrophy ostensibly via heightened protein synthesis, translational efficiency, ribosomal expansion
and upregulation of ECM remodelling-related gene-sets. Furthermore, VDR expression is a robust marker of the hypertrophic response to
resistance exercise in humans. The VDR is a viable target of muscle maintenance through testable Vitamin D molecules, as active molecules and

analogues.
© 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION enhances muscle function and myofibre cross-sectional area (CSA) in

the elderly [6,7] and athletes [8,9]. Despite previous controversy

The classical function of Vitamin D is to regulate calcium (Ca2+) and
phosphate (P;) homeostasis to maintain bone health and prevent bone-
related disorders [1,2]. However, Vitamin D influences tissues other
than bone, acting through its ubiquitously expressed Vitamin D re-
ceptor (VDR) [3], with exogenous Vitamin D upregulating VDR mRNA
and Vitamin D metabolism in skeletal muscle [4]. Studies have
demonstrated Vitamin D deficiency results in a reduction in skeletal
muscle mass and function [5]; conversely, vitamin D supplementation

regarding the presence of the VDR in skeletal muscle, recent studies
have confirmed expression of the VDR [10,11]. Furthermore, CYP27B1
(responsible for conversion of inactive 25-hydroxyvitamin D to active
1,25-dihydroxyvitamin Ds3) is present in fully differentiated skeletal
muscle of both rodents and humans [12]. The VDR is a nuclear re-
ceptor, binding to promotors of specific DNA sequences at Vitamin D-
responsive elements (VDRESs) to regulate transcription of Vitamin D-
responsive genes [13]. Furthermore, non-transcriptional VDR signalling
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has also been revealed [14] and may be functionally regulated through
post-translational modifications [15].

Ostensibly autonomous roles of the VDR in skeletal muscle (i.e., in-
dependent from Vitamin D) have also been reported, with decreased
VDR protein expression being linked to multiple disease states and
ageing [16,17]. Notably, multiple studies have explored the implica-
tions of loss of the VDR, primarily in whole-body knockout animal
models, with reductions in muscle fibre size and strength being
observed [18,19]. Likewise, transient muscle-specific VDR knockdown
impairs myogenic differentiation [20], and VDR expression is required
for Vitamin D-induced anti-proliferative/pro-differentiation effects in
myoblasts [21]. In clinical studies, VDR expression is elevated and
linked to regeneration following muscle damage [12] and is acutely
upregulated (1—3 h) following resistance exercise [22], indicating a
link to muscle growth and maintenance. However, despite pre-clinical
and clinical suggestions of a link between muscle VDR expression and
muscle mass/function, no studies have investigated the mechanistic or
functional role of increased VDR expression in skeletal muscle.
Therefore, the aim of this study was to explore the mechanistic role of
the VDR in skeletal muscle. To achieve this, we locally overexpressed
the VDR in vivo using electrotransfer techniques; in doing so, we
observed myofibre hypertrophy, upregulated mTOR signalling, global
muscle protein synthesis (MPS) and satellite cell recruitment. Finally,
we validated the clinical relevance of this by showing that upregulation
of VDR pathway expression is positively associated with muscle hy-
pertrophy following resistance training in humans.

2. MATERIALS AND METHODS

2.1. Animal handling

All animal experimental procedures were undertaken and approved by
the Royal Veterinary College’s Ethics and Welfare committee and
carried out under UK Home Office licence to comply with the Animals
(Scientific Procedures) Act 1986. Eight-week-old male Wistar rats
were housed at 22 + 0.5 °C under a 12 h day/12 h night cycle and
acclimatised to their new surroundings for one week. Animals were
fed a normal maintenance chow diet ad libitum (Special Diet Services,
LBS Biotechnology, Surry, UK) (with standard Vitamin D5 fortification at
621.7 IU/kg to prevent deficiency). Ten days after in vivo electro-
transfer (IVE), all rats were fasted overnight and underwent euthanasia
by injection of pentobarbitone. Animals were fasted to determine
“basal” anabolic signalling responses separate from growth condi-
tions (i.e., fed response). A sub-set of animals underwent an intra-
peritoneal glucose tolerance test (IPGTT) combined with administration
of 2-[1 ,2—3H(M]-deoxy—u-glucose tracer (Perkin—Elmer; Seer Green,
Bucks, UK) to assess muscle glucose uptake and glycogen content as
previously described [23]. Blood was collected by tail nick at 0, 15, 30,
60 and 90 min post glucose injection and measured immediately
using an Accu-Check Advantage meter (Roche Diagnostics, Burgess
Hill, West Sussex, UK). Muscles were rapidly dissected after eutha-
nasia; transverse sections were mounted on cork tiles in optimum
cutting temperature (OCT) medium and snap-frozen in liquid nitrogen-
cooled isopentane. The remaining muscle was freeze-clamped and
stored at —80°C. For glucose uptake into muscles, plasma at each
time point was deproteinised and radioactivity determined by liquid
scintillation counting in Ultima Gold XR (Perkin—Elmer) on an LS6500
Multipurpose scintillation counter (Beckman Coulter, High Wycombe,
UK) before the area under the curve (AUC) was calculated. Frozen
muscle was powdered and homogenised in water and phosphorylated
deoxyglucose separated by an anion exchange resin Bio-Rad

Laboratories, Hemel Hempstead, UK) before B-scintillation counting to
calculate the clearance of deoxyglucose into each muscle [23].

2.2. In vivo electrotransfer (IVE)

IVE procedures were undertaken as previously described [24]. Briefly,
animals were anaesthetised using isofluorane (2.5%) and their hind
limbs shaved and prepared with ethanol. Tibialis anterior muscles
(TAM) were injected intramuscularly with six spaced 50-pl aliquots of
lenti-shRNA particles prepared in endotoxin-free sterile saline at
0.5 mg/ml. TAMs were chosen due to their relatively superficial
nature and previously validated ability to overexpress specific proteins
through IVE genetic manipulation [24]. Animals received pCMV6-
mVDR (Origene, MR206711) into the right and empty pCMV6 con-
trols into the left TAM. Immediately following this, one 900 V/cm, 100
us pulse and four 90 V/cm, 100 ms pulses were administered across
the distal limb via tweezer-electrodes attached to an ECM-830
electroporator (BTX, Holliston, MA). Animals subsequently received
a subcutaneous injection of carprofen (50 mg/kg) before recovery
from anaesthesia.

2.3. Measurement of muscle protein synthesis (MPS)

Seven days post-IVE, animals received a D>0 bolus through oral
gavage (7.2 ml/kg, 70 atom %) to measure cumulative MPS. To
determine peak D-0 body water enrichment, 2 animals were
euthanised 2 h after oral gavage, and blood was collected in pre-
chilled tubes containing lithium heparin. These were subsequently
cold centrifuged at 1,750 g, with plasma fractions separated into al-
iquots and frozen at —80°C. Ten days after IVE, animals were over-
night fasted and euthanised before blood and muscle was collected.
Isolation of myofibrillar, mitochondrial, cytoplasmic and collagen pro-
tein was undertaken as previously described [25]. Briefly, 50 mg of
muscle was homogenised in ice cold homogenisation buffer, before
continuous vortexing for 10 min and centrifugation at 13,000 g for
5 min at 4 C, and sarcoplasmic protein containing supernatant was
collected and precipitated in 1 M of perchloric acid (PCA). The pellet
was further homogenised using an ice cold dounce homogeniser in
cold mitochondrial extraction buffer (MEB) before centrifugation at
1,000 g for 5 min at 4°C and supernatant collection. Pelleted myofi-
brillar proteins were solubilised in 0.3 M of NaOH at 37 °C for 30 min.
Collagen was pelleted by centrifugation at 13,000 g for 10 min, and
myofibrillar containing supernatant was removed and precipitated in
1 M of PCA. Pellets were washed in 70% ethanol, before being
hydrolysed overnight at 110 °C in 1 ml of 0.1 M HCl and 1 ml of H
Dowex resin.

Hydrolysed amino acids were eluted into 2 M of NH40H then evapo-
rated to dryness. Deuterium labelling of protein-bound alanine was
determined though conversion to its tert-butyldimethysilyl derivative
and assessed by single ion monitoring (SIM) of m/z 260 and 261 by
gas chromatography-mass spectrometry. D,0 enrichment of plasma
was measured using a modified acetone exchange method [26]. Two
microliters of 10N NaOH and 1 pl of acetone was added to 100 pul of
plasma and vortex mixed for 15 s. Following 24 h of incubation at room
temperature, to allow the exchange of hydrogen atoms for deuterium,
acetone was extracted into n-heptane and injected into a gas
chromatograph-mass  spectrophotometer. D0 enrichment was
measured via SIM of m/z 58 and 59 referenced to a standard curve of
known D-0 enrichments. The fractional synthetic rate (FSR) was
calculated using the following equation:

FSR (%/h) = [(MPEAg))/[3.7x (MPEww) X £] x 100
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MPE,;, represents protein-bound alanine enrichment, MPEyy represents
plasma water enrichment (corrected for mean number of deuterium moieties
incorporated per alanine, 3.7) and £ signifies time in hours [27].

2.4. gRT-PCR

RNA from skeletal muscle was extracted into TRizol reagent (Invitrogen
15596026) and reverse transcribed using a High-Capacity cDNA
Reverse Transcription kit (Applied Biosystems 4368814), both
following the manufacturer’s recommendations. qRT-PCR was per-
formed using SYBR Select Master Mix (Applied Biosystems 4472908)
with primers designed in-house using Primer Express® (Table S1) on
a ViiA®7 Real-Time PCR system in triplicate (Life Technologies).
Quantification was performed using the 2-ACT method and normalised
to glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

2.5. Western blotting

For signalling targets, muscles were homogenised in ice-cold ho-
mogenisation buffer using clean sharp scissors. Samples were
centrifuged at 11,000 g for 10 min at 4°C, and the supernatant was
removed and quantified by Nanodrop. Extraction of VDR proteins
required homogenisation and preparation in a hyperosmolar lysis
buffer (HLB) (urea 6.7 M, glycerol 10%, Tris—HCI 10 mM, SDS 1%,
DTT 1 mM, PMSF 1 mM and protease inhibitor cocktail tablet (Roche,
West Sussex, UK)) as previously described [28]. All samples were
diluted in homogenisation buffer and 1x Laemmli loading buffer to the
same concentration.

Samples were loaded onto a Criterion XT Bis-Tris 12% sodium dodecyl
sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gel (Bio-Rad,
Hemel Hempstead, UK) for electrophoresis for 1 h at 200 V. Separated
proteins were transferred onto a polyvinylidene difluoride (PVDF)
membrane for 45 min at 100 V, then blocked in 5% low-fat milk in Tris-
buffered saline and 0.1% Tween-20 (TBST) for 1 h at room temperature.
Membranes were then incubated at 4°C overnight in 5% milk diluted in
TBST primary antibody solutions. Afterward, membranes were washed
3 x 5 min with TBST and incubated for 1 h at room temperature in their
respective horseradish peroxidase (HRP) conjugated secondary anti-
body, anti-rabbit (Cell Signalling Technologies) 1:2,000 5% low-fat milk
in TBST or anti-mouse (Cell Signalling Technologies) 1:2,000 5% low-
fat milk in TBST. Membranes were washed 3 x 5 min in TBST and
incubated for 5 min in enhanced chemiluminescence reagent (Millipore,
Watford, UK) and visualised using a Chemidoc XRS. Bands were
quantified using ImagelLab software and normalised to total loaded
protein visualised by Coomassie brilliant blue staining [29]. Primary
antibodies against p-AKT Ser473 (1:2,000, #4060), Pan-AKT (1:2,000,
#4685), p-TSC2 Thr1462 (1:2,000, #3611), TSC2 (1:2,000, #4308), p-
mTOR Ser2448 (1:2,000, #2976), mTOR (1:2,000, #2972), p-p70S6K1
Thr389 (1:2,000, #9234), p70S6K1 (1:2,000, #2708), p-S6RP Ser235/
236 (1:2,000, #2211), S6RP (1:2,000, #2217), p-4e-BP1 Thr37/46
(1:2,000, #2855), 4e-BP1 (1:2,000, #9644), p-elF4E Ser209 (1:2,000,
#9741), elF4E (1:2,000, #9742) were from Cell Signalling Technologies.
Primary antibodies against VDR (D-6) (1:2,000, SC-13133) were from
Santa Cruz.

2.6. Immunofluorescence and co-localisation

Five-micrometre-thick muscle cross-sections were cut at —22°C using
a Cryostat, mounted on glass slides before air-drying at room tem-
perature. Sections were fixed in acetone/ethanol (3:1) for 5 min, before
washing three times in phosphate-buffered saline (PBS).

Fibre CSA, VDR expression and co-localisation analysis was under-
taken at the University of Birmingham. For CSA analysis, primary
antibodies toward VDR (Rabbit, Ab109234, Abcam) and dystrophin
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(Mouse, MANDYS1(3B7), Developmental Studies Hybridoma Bank,
lowa City) were diluted in 5% goat serum in PBS 1:50 and 1:200,
respectively. Antibodies were applied to each section and incubated for
2 h in a humidity chamber at room temperature before being washed
in PBS three times. Secondary fluorescent anti-rabbit (Alexa Fluor®
594, A11012, Invitrogen) and anti-mouse (Alexa Fluor® 488, A21121,
Invitrogen) antibodies were diluted in PBS 1:200 and sections incu-
bated for 30 min in a humidity chamber at room temperature. Slides
were subsequently washed three times in PBS, and a 1:1,000 4',6-
diamidino-2-phenylindole (DAPI) stain (Invitrogen) in PBS applied for
5 min before three further PBS washes. Mounting media (Invitrogen)
was applied to each section and dried in darkness overnight. Additional
sections were probed using anti-MHC lla (SC-71) or anti-MHC lib (BF—
F3) diluted 1:50 in PBS. Sections were subsequently imaged in a
blinded fashion using a Nikon Eclipse E600 and analysed using
ImagePro 3D capture software. Three random fields of view were
measured per section. For mTOR and LAMP2 co-localisation, primary
antibodies toward mTOR (#05—1592, Millipore) and LAMP2 (AP1824d,
Abgent) in 5% goat serum in PBS at 1:200 and 1:100, respectively.
Secondary fluorescent antibodies anti-mouse IgGy1 (Alexa Fluor®
594, A11005) and anti-rabbit (Alexa Fluor® 488, A11034) were
additionally used as stated before.

Subsequent analysis for of PAX7+- satellite cells (SCs) was undertaken
at Orebro University. Briefly, muscle cross-sections were mounted and
air-dried as previously described. Sections were incubated with pri-
mary antibody towards PAX7 (Developmental Studies Hybridoma Bank)
before incubation with a biotinylated anti-mouse secondary antibody
(BA-9200, Vector Laboratories) as described in (Bankolé et al., 2013).

2.7. RNA-seq analysis

RNA was extracted using an RNeasy mini kit (Qiagen), following the
manufacturer’s recommendations. All RNA samples had RIN [30]
scores of greater than 8. RNA was prepared using the Tru-Seq RNA
library preparation kit (Illumina). RNA-sequencing was carried out by
Edinburgh Genomics using the lllumina HiSeq 4000 platform gener-
ating 75 bp paired end reads. After initial quality control and base
calling, tag data were examined with Fast QC [31] and adaptor se-
quences trimmed where necessary using trimmomatic [32]. Unpaired
reads were found to be of low quality and were dropped from the
analysis. No set of paired reads failed quality control. Alignment and
feature counts were generated using the Rsubread package in R [33].
Differential expression was examined using the edgeR package [34].
The count data was filtered as recommended by the authors of edgeR
by identifying the count-per-million (CPM) at a count of 10 [35] and
subsequent normalisation was obtained with the trimmed mean of M-
values method [36]. Differential expression was analysed using the
glmFit function of edgeR with design matrices to account for biological
pairing between treated and control limbs. Subsequent gene-set
testing was carried out using the GSEABase library [37] in R using
gene-sets from the Molecular Signatures Database maintained by the
Broad Institute [38]. PathVisio v 3.3.0 [39,40] was used to construct all
pathway analysis, utilising pathways from the WikiPathways [41] re-
pository. The Rattus norvegicus Derby Ensembl 91 database was used
for identity mapping of genes, with log-fold changes (</> 0.26) of
each gene mapped to pathway nodes and significantly altered genes
(p < 0.05) visualised.

2.8. Human participants

Muscle samples from the Derby resistance exercise training (RET)
study [42] underwent additional analyses. Ethical approval for the
original study and subsequent analysis was granted by The University
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of Nottingham Medical School Ethical Advisory Committee. Male and
female healthy participants aged 18—75 were recruited (n = 37, 23
male, 14 female 48.4y+2.6 y), ensuring confounding age-associated
decreases in VDR expression and response to RET were reduced. All
subjects trained three times a week for 20 weeks, with sessions
lasting approximately 60 min. Training intensity was 70% 1-repetition
max (RM), based on single sets of 12 repetitions with 2-min rests
between sets of seated chest press, lat pull down, seated lever row,
leg extension, seated leg curl, seated leg press, back extension and
abdominal curls. Biopsies of vastus lateralis muscle were taken pre-
RET regime, and post-RET biopsies were taken 3—7 days after the
final training session before microarray analysis (Geo accession
GSE47881, by Affymetrix Human Genome U133 Plus 2.0 Array, VDR
NM_000376). DXA measurements were taken pre-/post-RET. Thirty-
seven participants from whom both pre- and post-training plasma
samples were available were included from the original study, with
samples taken 3—7 days before and after the RET period. Participants
trained throughout the vyear and received no Vitamin D
supplementation.

2.9. Plasma 25[0H]D measures

Vitamin D plasma levels were assessed by liquid chromatography
tandem mass spectrometry (LC-MS/MS), measuring both 25 [OH]D,
and 25 [OH]D3 before combining the values for a total 25 [OH]D value.
Deuterated 2H3-25 [OH]D, and 2Hz-25 [OH]Ds internal standards in
ethanol were added to each plasma sample before addition of ice-cold
methanol and incubation at 4°C for 10 min. Heptane was subsequently
added, and vortex mixed for 30 s. The heptane layer containing 25 [OH]
Dy, 25 [OH]D3 and internal standards was evaporated to dryness,
resuspended in acetonitrile: ddH20 (65:35). Samples were run against
a standard curve of known concentrations.

2.10. Statistical analysis

The results are shown as mean 4= SEM. All analysis was performed by
an unpaired (or paired where appropriate) t-test for two group com-
parisons, a one-way analysis of variance (ANOVA) with Bonferroni
post-hoc analysis between multiple groups and linear regression for
correlations on GraphPad Prism7. A P value less than 0.05 was
considered to represent statistical significance.

3. RESULTS

3.1. In vivo VDR-OE stimulates muscle fibre hypertrophy via
enhanced translational efficiency and capacity

To examine the muscle-specific role of the VDR, we employed in vivo
electrotransfer (IVE) to induce intracellular uptake of DNA constructs
injected into rat tibialis anterior muscles [43], causing VDR gain of
function (overexpression) (VDR-OE) (Figure 1A). Basal VDR expression
was confirmed at both the mRNA and protein level, albeit at low levels
similar to previous investigations [12]. VDR-OE was observed at the
mRNA level (VDR-OE: +190,000 + 9,000%) and the protein level
(VDR-0E: +1,232 + 311%) after 10 days (Figure 1B,C) at supra-
physiological levels, similar to previous instances of IVE [23]. Addi-
tionally, sarcoplasmic VDR-OE was clearly visible in myofibres when
immuno-stained using the anti-VDR antibody (Figure 1D). Moreover,
VDR-OE evoked marked increases in myofibre CSA (Figure 2A) (VDR-
OE 1,904 + 116 um2 vs. Control 1,627 + 69 umz, P < 0.05),
predominantly in fast type lla fibres (VDR-OE 1,393 + 17 umz VS.
Control 1,218 4+ 18 umz, P < 0.05) (Figure 2B,C) in comparison to
contralateral control limbs. This was coupled to a greater protein
content in VDR-OE (VDR-OE 0.86 + 0.07 mg vs. Control

0.55 + 0.08 mg, P < 0.01, Figure 2D), which also coincided with a
greater total RNA content per unit muscle (VDR-OE 8.79 4+ 0.72 mg
vs. Control 6.39 + 0.47 mg, P < 0.05, Figure 2E), suggestive of
enhanced ribosomal biogenesis. Despite these increases, total DNA
content (Figure 2F) and glucose uptake/glycogen content
(Figure 2G,H) per unit of muscle were unaffected after 10 days of
VDR-OE.

Given the marked protein accretion with VDR-OE, we next determined
the extent to which changes in post-transcriptional protein catabolism
or anabolism were responsible for myofibre hypertrophy. In doing so,
we observed a significantly higher global (i.e., total mixed muscle
lysate) MPS rate in VDR-OE muscles than in control muscles (VDR-OE
17.3 £ 2.2 %d vs. Control 10.2 + 0.7 %d, P < 0.01) (Figure 3A). This
was reflected in the systematic upregulation of individual sarco-
plasmic, myofibrillar, mitochondrial and structural collagen fractions.
To investigate the molecular underpinnings of VDR-OE-mediated in-
creases in MPS, we undertook analysis of AKT-mTORc1 signalling
pathways (essential for the upregulation of MPS [44,45]) and
demonstrated increased phosphorylation and expression of multiple
AKT/mTORc1 signalling intermediates (Figure 3B). VDR-OE enhanced
protein expression of mTOR, along with that of multiple downstream
(i.e., RPS6, 4E-BP1), but not upstream (i.e., AKT/TSC2), signalling
intermediates. To confirm the enhanced activation of mTOR, immu-
nohistochemical staining was undertaken to study the co-localisation
of mTOR and lysosome-associated membrane protein 2 (LAMP2)
(VDR-OE 0.26 =+ 0.03 AU vs. Control 0.16 & 0.02 AU, P < 0.05,
Figure 3C,D). Following VDR-OE, there was significantly greater mTOR
localisation with LAMP2, consistent with mTOR localisation at the
lysosome, which is a pre-requisite for its activation [46].

Cellular growth and mTOR activation also requires heightened ribo-
somal biogenesis [47]. In support of this, total RNA content (per mg
muscle) was higher in VDR-OE muscles, reflecting a greater synthetic
capacity [48]. Furthermore, qRT-PCR screening of multiple ribosomal
genes, demonstrated significant increases in the expression of
numerous ribosomal short (e.g., Rps77 VDR-OE 177 + 26% vs.
Control 100 & 17%, P < 0.05, Figure 4A) and long genes (e.g., Aps21
VDR-OE 192 4+ 34% vs. Control 100 + 18%, P < 0.05) following VDR-
OE. Importantly, screening of multiple proteolytic markers indicated no
downregulation within autophagic- or caspase-mediated degradation
but demonstrated increased expression of proteasomal-mediated
degradation markers (e.g., 7rim63 VDR-OE 168 + 29% vs. Control
100 + 9%, P < 0.05, Figure 4B).

3.2. RNA-Seq analyses demonstrate VDR-OE stimulates
remodelling processes

Initial RNA-Seq analysis demonstrated that VDR-OE was associated
with altered expression of 3,330 genes (P < 0.05) (Figure 5A) and
numerous gene-sets (n = 310, FDR <5%) (Supplemental file 2),
particularly relating to the extracellular matrix (ECM) (Figure 5B),
including multiple gene-sets directly tied to ECM remodelling (i.e.,
NABA_CORE_Matrisome (P = 1.24E-14), NABA_ECM_Regulators,
P = 2.56E-09), collagen formation (i.e., Reactome_Collagen forma-
tion, p = 1.01E-11), integrin-mediated signalling (i.e., PID_Integrin1
pathway, P = 2.82E-11) and KEGG_ECM receptor interaction,
P = 1.80E-09) consistent with hypertrophic remodelling and growth. In
contrast, VDR-OE also induced notable downregulation of gene-sets
related to tRNA aminoacetylation (i.e., Reactome_Cytosolic tRNA
aminoacetylation, P = 5.29E-18) and anabolic signalling gene-sets
(i.e., BIOCARTA_mTOR pathway, p = 1.71E-05). Additional tran-
scription factor (TF) analysis demonstrated upregulation of Pax- (i.e.,
Pax08_01 p = 0.0015, Pax04_01 p = 0.017) and serum response
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Figure 1: In vivo experimental design and grouping. (
(n = 7). (C) Representative western blot and quantification of VDR-OE (=7

A) Schematic deS|gn of in vivo paired contralateral experiments. (B) Confirmation of contralateral VDR-OE by qRT-PCR
n). (D) Representative images of muscle fibres stained for dystrophin (green), DAPI (blue) and VDR (red).

Scale bars represent 200 pm. Data are mean + SEM. Significance indicated measured by paired t-test. (For interpretation of the references to color in this figure legend, the reader

is referred to the Web version of this article.)

factor (SRF)- (i.e., SRF_01 p = 0.0027, SRF_Q4 p = 0.021) related
gene-sets (Supplemental File 2).

3.3. VDR-OE increases satellite cell recruitment

Given the crucial role of satellite cells (SC) in skeletal muscle growth,
we next assessed paired box protein 7 (PAX7, expression required in
proliferating satellite cells) immunochemical staining of VDR-OE
muscles (Figure 6A), which showed a tendency for higher satellite
cell content in all fibre types (VDR-OE 0.020 + 0.004 per fibre vs.
Control 0.016 4+ 0.003 per fibre, P = 0.07, Figure 6B). While no
alteration in fibre type distribution was observed, VDR-OE lIx fibres
displayed a greater SC content than contralateral controls (VDR-OE
0.024 4 0.007 per fibre vs. Control 0.014 4+ 0.006 per fibre,
P < 0.05). To assess the influence of VDR-OE upon satellite cell
proliferation and content, we screened the expression of multiple
myogenic genes (Figure 6C). (mMRNA) Pax7 expression was increased
(VDR-OE 1.35 + 0.07 FC vs. Control 1.00 + 0.13 FC, P < 0.05),
reflecting the increase in PAX7 protein. In addition to this, Pcna
expression, a marker of satellite cell entry into the cell cycle [49], was
higher in VDR-OE muscles (VDR-OE 2.1 + 0.4 FC vs. Control
1.00 + 0.2 FC, P < 0.05). Furthermore, Mstn expression, a known
inhibitor of PAX7 and skeletal muscle hypertrophy [50], was reduced
markedly (VDR-OE 0.6 + 0.1 FC vs. Control 1.00 + 0.2 FC, P < 0.05),
which was accompanied by a moderate increase in Fstn (a myostatin
inhibitor) expression (VDR-OE 1.6 & 0.3 FC vs. Control 1.00 £ 0.2 FC,
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P = 0.09). We further measured the expression of multiple myogenic
regulatory factors (MRFs) (Figure 6C). Interestingly, proliferative MRF
genes (i.e., Myod1 and Myf5) tended to be more highly expressed,
whereas MRFs key to differentiation (i.e., Myog and Mrf4) [51] were
unchanged. Additional RNA-Seq pathway analysis demonstrated an
extensive upregulation in multiple cell cycle-related genes (Figure 6D),
highlighting the widespread positive upregulation of cell proliferation.
Taken together, these results indicate greater SC activity following
VDR-0E, which is in agreement with the upregulation of Pax TF
observed with RNA-Seq analysis (Supplemental File 2).

3.4. VDR expression, but not Vitamin D status or HOMA-IR,
correlates with muscle hypertrophy in humans

To determine the relevance of increased muscle VDR expression in
relation to human muscle mass, we quantified VDR expression in
humans (18-75y, n = 37) who had undertaken 20-weeks of whole-
body resistance exercise training (RET) but did not receive Vitamin D
supplementation. Average Pre and post RET Vitamin D (25 [OH]D)
plasma was 42.4 + 3.1 and 51.2 &+ 3.5 nmol/l, respectively (Sup-
plemental data). Fasted-resting Vastus lateralis muscle biopsies and
blood samples were taken before and after the training program; gene
expression was measured by microarray analysis [42]. While VDR
expression did not correlate with changes in strength (Figure 7A), lean
mass gains positively correlated with changes in VDR gene expression
(Figure 7B). Furthermore, when lean mass changes were plotted in
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quartiles, “responder status” for muscle hypertrophy tracked with VDR
expression (Q1 0.4 £ 9.3% vs. Q4 28.3 + 8.7%, P < 0.05, Figure 7C)
(with no differences in VDR expression observed between quartiles
pre-RET (data not shown)).

As VDR expression is correlated with Vitamin D exposure, we
investigated changes in fasted circulating Vitamin D status (total 25-
hydroxyvitamin D) and muscle VDR expression; however, no corre-
lation was observed (Figure 7D). Additionally, no links were observed
between plasma Vitamin D and lean mass gains (Figure 7E). How-
ever, changes in the gene expression of the Vitamin D handling
enzyme CYP27B1 displayed a positive correlation with VDR
(Figure 7F), as did the expression of the Vitamin D-inactivating
enzyme CYP24A1, which displayed a moderate negative correlation
with VDR expression (Figure 7G). Finally, insulin sensitivity (HOMA-IR
index) responses to RET was unrelated to Vitamin D status or muscle
VDR expression (Figure 7H,I), consistent with our pre-clinical findings
(Figures 2G).

4. DISCUSSION

Despite numerous relationships between Vitamin D deficiency and loss
of-function of VDR and low muscle mass and loss of function [5], the
mechanistic role of VDR overexpression was undefined. Here, we
explored whether overexpression of the VDR, independent of manip-
ulation of Vitamin D, would positively regulate muscle mass in vivo.
Herein, we reveal that transient gain-of-function of the VDR in skeletal

muscle, leads to muscle hypertrophy and extracellular remodelling
ostensibly through the post-translational upregulation of mTORc1
signalling coupled with enhanced ribosomal biogenesis and satellite
cell proliferation. Finally, clinical observations show translational
relevance, with correlative analysis revealing VDR expression patterns
in muscle, tracked with gains in lean mass in humans undertaking
prolonged, supervised resistance exercise training over 20-weeks.

Our investigations demonstrate that overexpression of the VDR in
skeletal muscle results in robust myofibre hypertrophy, alongside
concurrent gains in protein content synonymous with muscle growth,
with increased protein synthesis across muscle protein sub-fractions
(i.e., myofibrillar, sarcoplasmic, mitochondrial and collagen). Funda-
mentally, this mirrors previous investigations whereby deletion of the
VDR induced myofibre atrophy and loss of muscle strength [18,19]
and where muscle-specific deletion of the VDR resulted in reduced
whole-body lean mass and function [10]. Crucially, increases in MPS
are indispensable for protein accretion, occurring mainly via AKT/
mTORc1 signalling [44], with rapamycin-mediated inhibition of mTOR
blocking increases in MPS, e.g., as seen in response to resistance
exercise (RE) [45]. While no parallel studies exist to the present
investigation in relation to VDR-OE, exogenous Vitamin D supple-
mentation activates AKT/mTORc1 signalling, resulting in increases in
MPS that are correspondingly inhibited by rapamycin [52]. Further-
more, Vitamin D enhances anabolic stimulation of insulin/leucine via
AKT/mTORc1, increasing MPS in muscle cell culture and augmenting
signalling capacity, increasing insulin receptor expression [53].
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Recent investigations have also demonstrated that VitD deficient
patients (<50 nmol/l) with lower back pain have reduced spinal
muscle VDR expression, corrected in response to 5 weeks of VitD
supplementation [54]. Moreover, the same investigators demon-
strated heightened anabolic capacity through enhanced muscle p-
AKT/AKT content in response to supplementation [55]. Notably, we
demonstrated enhanced protein expression of mTOR, along with that
of all downstream signalling intermediates in VDR-OE muscles.
Furthermore, heightened expression of mTOR corresponded with
greater lysosomal (i.e., LAMP2) and cell membrane colocalisation,
akin to mTOR activation by amino acids [46] or RET [56]. Thus, given
that Vitamin D exerts its effects through both transcriptional and post-
translational actions [13,14], the mTOR signalling and subsequent
enhancement of MPS may be autonomously VDR-mediated,
enhancing anabolic signalling capacity. Importantly, protein accre-
tion may also occur as a result of a reduction in muscle protein
breakdown (MPB) alongside increased MPS [57]. Analysis of VDR-OE
muscle indicated no decrease in proteolytic markers (i.e., autophagy
and calpain), indicating that muscle hypertrophy ostensibly occurred
through the enhancement of protein synthesis, rather than the sup-
pression of protein breakdown [57]. Moreover, observed increases in
proteasomal markers are consistent with hypertrophic growth models
(e.g., functional overload), whereby both protein synthesis and pro-
teasomal degradation increase, with MuRF1 expression required for
proper growth and remodelling [58].

Efficient regulation of MPS requires coordination of anabolic signalling
combined with translational capacity (i.e., ribosomal content) to
facilitate hypertrophy [59]. It follows that VDR-OE increased AKT/
mTORc1 signalling activity, in tandem with global rates of mRNA
translation reflected in increased protein synthesis across muscle
protein sub-fractions (i.e., myofibrillar, sarcoplasmic, mitochondrial
and collagen). Response to hypertrophic RET corresponds to an in-
duction of muscle RNA content and translational capacity [60]. As
such, greater total RNA content in VDR-OE muscles in addition to an
increase of numerous rRNA’s (by targeted qRT-PCR) demonstrates
systematic adaptations required for sustained and successful hy-
pertrophic growth. This is further substantiated as phosphorylation of
ribosomal S6K1 via mTORc1-signalling, controls ribosomal biogenesis
through induction of ribosomal biogenesis genes [61]. Moreover,
recent investigations have determined that the VDR directly binds to
multiple ribosomal 40s and 60s proteins, regulating transcriptional
activity [62]. Finally, the downregulation of ribosomal gene-sets (by
RNA-Seq analysis), in the presence of markedly upregulated total
RNA pools, confirm a previously reported paradox that successful
muscle growth is associated with down-regulation of “growth” gene-
sets [42] when growth has been successful in high-responders to RE
training. While initially appearing contradictory, RNA-Seq analysis
requires specific library preperation using poly(A) capture, whereby
highly abundant ribosomal RNAs and smaller species (<200 nucleo-
tides) are selectively removed (accounting for >80% of total RNA) [63].
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Importantly, both increased synthetic capacity (ribosomal content) and
activity (signalling) demonstrate systematic increases, promoting a
positive environment for sustained trophic growth in response to
VDR-OE.

To facilitate hypertrophy, a robust upregulation of the muscle ECM is a
characteristic transcriptional response, which in this study was echoed

A B

by our observation increased collagen protein synthesis. For instance,
during synergist ablation-mediated hypertrophy, global changes in the
muscle transcriptome paired with broad increases in anabolic sig-
nalling proteins evident across the time-course of muscle growth [64].
Moreover, ECM-related gene expression is heightened, with notable
enhancement of basement membrane collagens assisting in the
transmission of force in muscle [64]. Here, we used RNA-Seq analysis
to demonstrate that ECM, integrin and structural gene-sets to be
among the most upregulated, notably including enrichment of the core
matrisome; a collection of genes encoding fundamental ECM proteins,
including ECM glycoproteins, collagens and proteoglycans [65]. In
skeletal muscle, the ECM provide structural support to growing fibres
and enables mechanical transmission [66] via integrin-mediated sig-
nalling and focal adhesion complexes, vital to downstream AKT/
mTORc1 anabolic signalling in response to muscle contraction [67,68].
Previous investigations have identified 3,000 VDR-target genes, with
50% being transcriptionally regulated by Vitamin D including matri-
some and ECM-associated genes [69]. This regulation is recapitulated
in VDR knockdown primary human skeletal muscle cells, as exogenous
VitD induces VDR dependant systemic upregulation of focal adhesion,
integrin signalling and ECM-related gene-sets [70]. Together, our
findings indicate the VDR is at the nexus of ECM gene regulation, which
may permit more effective contractile stimulated anabolic signalling
and is likely a robust biomarker of protein accretion and hypertrophy.
Satellite cells (SCs) are indispensable for the regeneration of skeletal
muscle [50,71] and likely have a mechanistic role in muscle hyper-
trophy through provision of myonuclei for fusion into pre-existing
myofibres [72]. Here, we showed that VDR-OE was sufficient to
enhance SC proliferation in vivo, as indicated by an increase in the
recruitment of PAX7-positive cells [73], particularly in fast type IIX fi-
bres. In support of this, further probing of RNA-Seq via TF (supple-
mentary file 2) and pathway analysis demonstrated that VDR mediated
upregulation of key SC regulatory genes, e.g., SRF (a regulator of SC
proliferation and recruitment through paracrine signalling [74]) and
multiple Pax genes. Recent investigations have demonstrated antip-
odal influences, whereby myocyte deletion of the VDR in mice results in
systemic downregulation of cell cycle-related genes [10]. This is
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further substantiated by a reciprocal comprehensive up-regulation in
cell cycle pathway genes. Potential regulatory functions of VitD upon
cell cycle pathways have previously been observed in THP-1 cells.
Thus, while stimulation of the VDR by VitD provides a positive
modulatory role upon proliferation, it is likely to occur due to the
positive role of increased VDR expression [75]. Similarly, past work
has shown that VDR expression increases in skeletal muscle
regenerating from injury [12] and is co-localised to SCs (PAX7-
positive nuclei) [76]. Further, muscle cell motility (essential for SC
fibre infiltration) is improved by administration of low Vitamin D
concentrations (10 nmol) in an in vitro wound model (i.e., myoblasts
and fibroblasts) [77]. It is important to note that the enhanced satellite
cell proliferation is unlikely to have participated in the demonstrated

muscle hypertrophy within the relatively short duration of VDR-0E (10
days), as fusion to pre-existing fibres is not likely to have occurred
because only proliferative MRFs were increased at this time. That
said, these data support the notion that the VDR alone can regulate
SC proliferation, an essential aspect of muscle regeneration, while
our findings both corroborate and extend the mechanistic evidence
that enhanced SC proliferation is a feature of VDR-OE-induced
muscle hypertrophy.

Given that different VDR genotypes [78] and altered regulation of VDR
expression in human muscle [6] have been associated with the control
of muscle mass, we next investigated the relevance of our findings in
relation to human muscle mass following 20 weeks of RET [42],
specifically, correlative muscle VDR transcriptional responses. In a
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previous investigation, VDR protein expression was shown to increase
in response to acute resistance exercise in rats [22]. Our RET study
resulted in an upregulation of the VDR, and crucially, showed that the
heterogeneity of the gains in lean mass to the hypertrophic stimulus
were closely correlated with VDR upregulation. A relationship was also
evident with muscle Vitamin D-handling enzymes; CYP27B1 expres-
sion positively correlated with an upregulation of VDR, potentially
regulating local control of Vitamin D metabolism [8,9]. Therefore,
Vitamin D status alone may not regulate muscle mass/function, but
rather, sufficient VDR expression may be required. This may explain
the ambiguity of efficacy seen within some Vitamin D supplemental
studies and muscle function in both elderly [79] and young healthy
individuals, as often VDR expression is not measured [7,9].

10

Furthermore, disparities between VDR regulation and plasma VitD
may be due to technical difficulties in the quantification of VitD
metabolites (i.e., distinction between metabolites e.qg., 25 [0H]D3 and
3-epi-25 [OH]D3 [80]), seasonal variance or there being no direct
relationship in human skeletal muscle. Finally, previous in-
vestigations have proposed that VitD has a role in type 2 diabetes
(T2D) and glucose metabolism, enhancing glucose transport in
muscles [81], while other investigations have observed inverse
correlations between plasma 25 [OH]D and Homeostatic Model
Assessment of Insulin Resistance (HOMA-IR) in humans [82,83].
However, we saw no relationship between changes in VitD status and
HOMA-IR. Likewise, glucose uptake and glycogen storage were
unchanged in response to VDR-OE. This may be due to VitD-/VDR-
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mediated influences upon glucose stimulated insulin secretion,
relative to glucose metabolism, as observed in Vitamin D deficient
T2D rat models [84]. Moreover, continual reduction in serum insulin
concentrations following an OGTT has been described in VDR mutant
mice [85]. This indicates that if VitD/VDR does have a role in glucose
homeostasis, our models may be insufficient to detect this, or it could
be mediated through effects on insulin secretion (not measured in our
model), rather than glucose uptake in skeletal muscle.

There are also limitations within this study. These in vivo data are
limited to the TA muscle, a predominantly type Il fibre muscle used
during the in vivo measures. While previous investigations have
demonstrated faster type Il-prominent muscle hypertrophy to a greater
extent than slower type-l muscles (i.e., soleus), heightened MPS and
fibre CSA increases consistent responses between muscle types [86].
Moreover, differences between baseline characteristics of differing
muscle types is an important consideration, with ribosomal content in
soleus muscles exceeding that of faster muscles. Thus, VDR regulated
mechanisms of hypertrophy may differ between metabolically distinct
muscles. While robust VDR upregulation is observed in response to
RET, correlative analysis is unable to determine causative mecha-
nisms; thus, further investigation is required to elucidate these.
Furthermore, while direct comparisons between in vivo and correlative
human data should be cautiously undertaken, we demonstrate coor-
dination of overarching principles of muscle hypertrophy through
regulation of MPS and ribosomal expansion. Finally, we demonstrate
in vivo increases in anabolic signalling capacity and activation (total
and phosphorylated respectively). VDR manipulation may influence
how muscle responds to the stimulation of these pathways by diet (i.e.,
amino acids) or exercise. These data provide intriguing insight into the
autonomous role of the VDR in skeletal muscle health and mainte-
nance. Moreover, future studies may be able to elucidate the role of
VDR within established anabolic stimuli, such as acute feeding re-
sponses or mechanical loading. Thus, Vitamin D analogues or targeted
therapies increasing VDR expression may be a potential manner in
which to enhance anabolic responses to dietary intervention or exer-
cise, which is of particular importance in age-related anabolic blunting
and sarcopenic development.

In conclusion, we demonstrate a positive role of enhanced VDR
expression on skeletal muscle, showing that gain of function of VDR
autonomously stimulates hypertrophy associated with increased AKT/
mTOR anabolic signalling, muscle protein synthesis, ribosomal
biogenesis and satellite cell activation. VDR expression and Vitamin D
processing enzymes are significantly correlated with RET-induced
hypertrophy in humans. Based on these data, VDR expression may
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