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Supplementary information to Publication: 

Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil 
 

Geospatial analysis  

We adopted a Bayesian hierarchical model to compute relative risk for each census tract, due 
to the following reasons: (i) there is a large number of census tracts (n=30,815), (ii) there is 
substantial heterogeneity in the size of census tracts, and (iii) small counts in each tract obscure the 
spatial distribution of observed cases.  The number of observed cases in census tract 𝑖  is modelled 
using a Poisson distribution 𝑌௜ ൌ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆௜ሻ with mean 𝜆௜ ൌ 𝐸௜ 𝜇௜ where 𝐸௜ is the expected number 
of cases under a null model in which cases are uniformly distributed among the population. For 
example, the total number of cases in the MRSP multiplied by the proportion of the population in the 

census tract 𝐸௜௧ = ∑ ௒೔೔
∑ ௣௢௣೔ ೔

ൈ 𝑝𝑜𝑝௜. The factor of 𝜇௜ describes tract specific risk and models the 

additional variation in the observation process1. A log-linear model is used to estimate the relative risk 
𝜇௜. For example, the log relative risk is expressed as a sum of an intercept 𝛼, which represents the 
overall relative risk (in our case, the global relative risk is zero), and random effects (𝑍௜ሻ:  

 

log ሺ𝜇௜ሻ ൌ 𝛼 ൅ 𝑍௜ 

 

We used a Besag-York-Mollié model (BYM)2 to separate the random effects into a spatially 
structured 𝑈௜, and independent random effects, 𝑉௜, so (𝑍௜ ൌ 𝑈௜ ൅ 𝑉௜). In the BYM model, a conditional 
autoregressive (CAR) process is used to introduce correlation among the  𝑈௜ for each tract. Given the 
𝑈௜ of neighbouring tracts, the 𝑈௜ has a normal distribution with mean equal to the average of the 
neighbours’ 𝑈௜, and variance   𝑠௜
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 where #𝑁ሺ𝑖ሻ is the number of tracts that share boundaries 

with tract 𝑖 and ߬௎ is a precision parameter. The random effect, 𝑉௜ follows a zero mean normal 
distribution with unknown precision, ߬௏= ଵ

ఙೡమ
 (where 𝜎௏మ is the variance). Both random effects in the 

model capture extra-Poisson variability, and were expressed as the following:   
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The log of the precision parameters, ߬௎  and ߬௏ , follows a gamma distribution with shape 1 and rate 
0.0005. These are the default priors used by R-INLA and are minimally informative3. The prior 
default distributions in R-INLA were used for the precision parameters of both 𝑈௜ and 𝑉௜. These are 
minimally informative and are the recommended settings 4.  
 

To quantify the uncertainty in the point estimates of the mean relative risk estimates, we 
mapped the posterior probability of elevated relative risk in each census tract (Extended Data Fig. 9). 
This is the posterior probability, which a tract has an elevated risk of observing cases, formally, this is  
Prob(𝜇௜ > 1| data). For instance, a probability of 0.6 in a census tract indicates a 60% chance that this 
census tract is at greater risk of observing cases relative to the rest of the MRSP.  



 2 

 

Analysis of the relationship between income per capita and final diagnostic category in the 
Metropolitan Region of Sao Paulo (MRSP) 

We evaluated the relationship between final diagnostic category (COVID-19 or SARI cases 
with unknown aetiology) and socioeconomic status in the subset of cases in the MRSP with geocoded 
residential information. We focused on the cases in epidemiological weeks 12, 16 and 22, where the 
census tracts that reported cases varied across weeks. In each of the three weeks, if a census tract 
reported any COVID-19 or SARI cases with unknown aetiology with unknown aetiology, we 
calculated the proportion of the number of COVID-19 cases. Since most census tracts reported only 
one case each week, the proportion of COVID-19 of each census tract were mostly either 0 or 1 in a 
given week. Based on this observation and let i index the census tracts, we subsequently defined the 
binary outcome Yi of census tract i, where (i) Yi  =  0 if census tract i only reported SARI cases with 
unknown aetiology with unknown aetiology, i.e. no COVID-19 cases, (ii) Yi  =  1 if census tract i 
reported at least one COVID-19 case in the week. Logistic regression models were applied to 
investigate the association between this binary outcome and the log(X+1) transformed income per 
capita.  The analyses were adjusted by the logarithm of the population sizes. In addition, the census 
tracts were grouped by their geographic locations using cluster analysis, and the groupings were used 
as the random effect in the logistic regressions to account for potential spatial autocorrelation. The 
number of clusters was chosen based on the AIC/BIC values of the logistic regression models.  The 
analysis was performed individually for each of epidemiological weeks 12, 16 and 22.  

A likelihood ratio test (LRT) is applied to each analysis to examine whether the log(X+1) 
transformed income per capita provides information in addition to the information from the log 
population size and the random effects. The regression coefficients and LRT P-values of income are 
presented in (Supplementary Table S3). 

 

Estimating basic reproduction number (R0) 

Since SARS-CoV-2 is a novel virus, and we are subsetting data to avoid the impact of either 
non-pharmaceutical interventions or depletion of the susceptible pool, we deemed it reasonable to 
model the incidence of infection with an exponential approximation to the early behaviour of an SIR 
model, i.e., the incidence grows exponentially 5. This model makes several strong assumptions about 
the dynamics of the epidemic: (i) the populations under consideration mix homogeneously, (ii) the 
proportion of the population that is susceptible stays close to 100%, (ii) the proportion of infections 
that are observed, and the basic reproduction number are constant throughout time, and (iv) the delay 
between infection, and notification is a constant. Although there are obvious violations of these 
assumptions, they provide a convenient starting point for estimating the basic reproduction number. 
Ignoring the delay between infection and observation will on average only translate the results in time 
by the incubation period and the delay from infection to diagnosis. 

Under the assumptions outlined above, the expected number of daily cases, �(�) on day � is 
given by the following equation: �(�) = �R0��0�(R0−1)�.� where � is the probability of an infection 
being counted in the time series, R0, is the basic reproduction number, � is the rate at which 
individuals cease to be infectious and i0, is the proportion of the population that was infectious at the 
start of the observations. We assume that the observed number of cases on day n was drawn from a 
negative binomial observation where the mean is �(�) and the variance, � = � + �2/�, with fixed 
size parameter, � (dispersion parameter). The product of � and �0 is denoted ξ. Since the probability 
of being observed and the initial condition only appear as the product ξ in the likelihood, there is an 
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identifiability problem preventing the estimation of � and �0 individually, consequently we only 
consider their product, ξ. Although in this model it is theoretically possible to estimate both R0 and �, 
in practice this is difficult so we will use an informative prior to constrain � to a priori plausible 
values. 

Regarding prior distributions, for R0 we used a uniform prior over values from 1 to 10. The 
removal rate, �, was given an informative prior distribution: a normal distribution with mean (1/5 + 
1/14) / 2 = 0.1357, leading to an average duration 7.4 days during which an individual is infectious. 
Moreover, the average duration of infectivity is constrained to be between the extremes of 5 and 14 
days. These values for the infective duration were found in the literature 6,7. The standard deviation of 
the prior distribution for � is (1/5 - 1/14) / 4 = 0.03124, this ensures that 95% of the prior probability 
lay within these bounds. For the parameter ξ, we used a log-normal prior with a log mean of 0.0 and a 
log standard deviation of 1.0. For the size parameter of the negative binomial, k, a log-normal 
distribution was used with a log-mean of 0.0 and log-standard deviation of 1.0 to enable this 
parameter to have a large range of values. 

Samples from the posterior distribution were obtained using MCMC running 4 chains from 
random initial conditions using the mcmc library available on CRAN2 and using coda for 
diagnostics8,9. Trace plots of the posterior samples suggested that the chain had converged and mixed, 
and there was an effective size of at least several hundred for each of the 4 parameters of this model. 
The prior and posterior distributions were checked to ensure that (beyond the removal rate) each 
parameter was being informed by the data. Each data set: Brazil and Europena countries (Italy, the 
United Kingdom, France, and Spain) or Brazilian states (São Paulo, Rio de Janeiro, Amazonas, and 
Ceará) were run as independent analyses, the model fit from the point estimate along with the 
corresponding trace plots and prior/posterior comparisons is shown in Extended Data Figs. 5 and 6. 
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