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Abstract

Background: A demyelinating polyneuropathy with focally folded myelin sheaths was

reported in 3 Miniature Schnauzers in France in 2008 and was predicted to represent

a naturally occurring canine homologue of Charcot-Marie-Tooth (CMT) disease. A

genetic variant of MTRM13/SBF2 has been identified as causative in affected Minia-

ture Schnauzers with this polyneuropathy.

Objective: To provide data on the long-term progression in affected Miniature

Schnauzers from Spain confirmed with the MTRM13/SBF2 genetic variant.

Animals: Twelve Miniature Schnauzers presented between March 2013 and June

2019.

Methods: Only dogs presented with consistent clinical signs and homozygous for the

MTRM13/SBF2 genetic variant were included. Clinical signs, age of onset and presen-

tation, time from onset to presentation, treatment, outcome, and time from diagnosis

to final follow-up were retrospectively reviewed.

Results: The hallmark clinical signs at the time of presentation were regurgitation

with radiologically confirmed megaesophagus (11/12) and aphonic bark (11/12) with

or without obvious neuromuscular weakness despite electrodiagnostic evidence of

appendicular demyelinating polyneuropathy. Age of onset and clinical presentation

were 3-18 and 4-96 months, respectively. Treatment was mostly symptomatic and

consisted of head elevation during meals, antacids, prokinetics, bethanechol, sildena-

fil, mirtazapine, or some combination of these. During the follow-up period

(7-73 months), clinical signs were unchanged in (11/12) cases with aspiration pneu-

monia developing occasionally (6/12) and being the cause of death in 1 dog.

Conclusions and Clinical Importance: Demyelinating polyneuropathy of Miniature

Schnauzers tends to remain stable over the long term leading to a good prognosis

with preventive feeding measures and symptomatic treatment to control aspiration

pneumonia.

Abbreviations: CMAP, compound muscle action potential; CMT, Charcot-Marie-Tooth; CSF, cerebrospinal fluid; MTMR, myotubularin-related; NCV, nerve conduction velocities; SBF2, set-

binding factor 2; T4, thyroxine.
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1 | INTRODUCTION

Inherited peripheral neuropathies in dogs are a heterogeneous group

of degenerative diseases affecting motor or sensory or both and auto-

nomic peripheral nerves. More than 50 inherited neuropathies have

been reported in the veterinary literature, for which clinical, electro-

physiological, histopathological, and, for some, mode of inheritance

data are available.1 However, the mode of inheritance often can only

be speculated upon and the specific genetic variants rarely are identi-

fied.2,3 For many inherited peripheral neuropathies in human beings,

the known mutations have allowed further characterization of this

group of diseases.3 The available knowledge about hereditary neurop-

athies in humans may be useful to identify genetic mutations in

affected dogs and vice versa.1

A presumptive inherited autosomal recessive demyelinating poly-

neuropathy was reported in 3 young Miniature Schnauzers in France

in 2008.4 The affected dogs were presented for clinical signs of

laryngeal paralysis or megaesophagus. Although generalized weakness

was not clinically detected, electrodiagnostic testing identified a

marked decrease in motor and sensory nerve conduction velocities

(NCV), indicating involvement of clinically unaffected nerves.

Megaesophagus was present in all of the affected French dogs, and

the electrophysiological findings were suggestive of a predominantly

demyelinating disease. Variable thickness of the myelin sheath with

areas of segmental demyelination and multifocal areas of focally

folded myelin sheaths, also known as tomacula, were found in periph-

eral nerve biopsy specimens.4 This disease was predicted to represent

a naturally occurring canine form of Charcot-Marie-Tooth (CMT) disease

(specifically CMT1, B1, and 4B2). In veterinary medicine, other neuropa-

thies in dogs such as hypertrophic neuropathy in the Tibetan Mastiff,

with characteristic onion bulb formation,5,6 and hypomyelinating neurop-

athy in the Golden Retriever7 have been thought to share similarities

with specific forms of CMT disease. Additionally, a suspected inherited

tomaculous neuropathy has been described in cattle8 and a neuropathy

has been described in chickens associated with acquired riboflavin

deficiency.9

Different genes and variants have been implicated in the path-

ogenesis of hereditary forms of demyelinating neuropathies in

humans associated with focally folded myelin sheaths.10 The pro-

tein products of these mutated genes include the myelin compo-

nents PMP22, P0, periaxin, proteins regulating myelin gene

transcription early growth response 2 and intracellular Schwann

cell proteins involved in the synthesis, transport and degradation of

myelin proteins, including the myotubularin-related (MTMR) pro-

teins.4 Although degenerative polyneuropathies in dog breeds were

reviewed in 2011 and compared with CMT,1 none of them were

found to share the same mutation as a specific form of the human

disease. The MTMR13/SBF2 (set-binding factor 2) gene has now

been implicated in degenerative polyneuropathy in both human

beings and the dogs of this previous report.11

Our objective was to provide new clinical data on demyelinating

polyneuropathy associated with a genetic variant of the SBF gene

family and describe the long-term clinical progression in a larger group

of affected Miniature Schnauzers diagnosed in Spain. This new infor-

mation will increase awareness of the disease in the veterinary com-

munity, while providing new data on disease progression.

2 | MATERIALS AND METHODS

2.1 | Case selection

Between March 2013 and April 2014, Miniature Schnauzers with pre-

sumed autosomal recessive demyelinating polyneuropathy of Minia-

ture Schnauzers and with compatible clinical, electrodiagnostic, or

histopathologic findings or some combination of these were evaluated

at 4 Spanish veterinary hospitals. Genome-wide association screening

using DNA from 10 affected dogs (2 original French cases,4 7 Spanish

cases, and 1 Belgian case) and 5 nonaffected siblings identified a vari-

ant in intron 19 of the SBF2 gene11 in all affected dogs, and heterozy-

gosity for the mutation in 3/5 of the nonaffected siblings.

Comprehensive details of the mutation detection process have been

described in a separate study11 and included a genome-wide associa-

tion study (GWAS) and resequencing of candidate genes.

After gene discovery, additional Spanish dogs evaluated between

June 2014 and June 2019 with consistent clinical signs were identi-

fied to be homozygous for the SBF2 genetic variant, and subsequently

also were included in our report.

We describe the presenting clinical signs, age of onset, age at pre-

sentation, time from onset to presentation, treatment, outcome, and

time from diagnosis to final outcome. Follow-up information was col-

lected during routine reevaluations or telephone interviews with the

owners. Where available, blood results, cerebrospinal fluid (CSF) anal-

ysis, electrodiagnostic testing, and histopathologic findings also were

included.

2.2 | Electrodiagnostic studies

A Keypoint portable electrodiagnostic unit (Alpine Biomed, Denmark)

was used for electromyography (EMG) and motor NCV testing. Elec-

tromyography and motor NCV testing were performed under general

anesthesia using IM concentric (coaxial) needles as recording elec-

trodes for the EMG and monopolar needles for the motor NCV.

Appendicular, axial, cranial, and laryngeal muscles were evaluated by

EMG. Motor NCV were recorded for the tibial and ulnar nerves. The F
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waves and amplitude of compound muscle action potentials (CMAP)

after repetitive stimulation also were determined. Reference values

were 46 ± 7 m/s for conduction velocities of tibial and ulnar nerves12

and 12.8 ± 3.9 to 16.2 ± 4.3 mV and 13.6 ± 4 to 20.2 ± 5.3 mV for

the CMAP amplitudes of the ulnar and tibial nerves, respectively.13

A nonaffected sibling was used as a matched control.

2.3 | Histopathology and histochemistry of muscle
and peripheral nerve biopsy specimens

Muscle and nerve biopsy specimens from the cranial tibial muscle and

common peroneal nerve, respectively, were collected under general

anesthesia after electrodiagnostic testing. Immediately after collec-

tion, unfixed chilled muscle and formalin-fixed muscle were shipped

by a courier service to the Comparative Neuromuscular Laboratory,

University of California, San Diego. Upon receipt, unfixed muscle was

snap frozen in isopentane precooled in liquid nitrogen and stored at

−80!C until further processed. Formalin-fixed muscle was processed

by standard methods into paraffin. Light microscopic evaluation of

histological and histochemical stains and reactions was performed

according to standard protocols14 and included hematoxylin and

eosin, modified Gomori trichrome, periodic acid Schiff, phosphorylase,

esterase, myofibrillar ATPase reactions with preincubation pH of 9.8

and 4.3, reduced nicotinamide adenine dinucleotide-tetrazolium

reductase, succinic dehydrogenase, acid and alkaline phosphatase, and

oil red O.

Specimens from the peroneal nerve were immersion fixed in 10%

buffered formalin before shipment to the Comparative Neuromuscu-

lar Laboratory. Upon receipt, nerves were postfixed in 1% aqueous

osmium tetroxide for 3 hours and then dehydrated in a graded alcohol

series and propylene oxide. After infiltration with a 1:1 mixture of pro-

pylene oxide and araldite resin for 4 hours, nerves were placed in

100% araldite resin overnight and then embedded in fresh araldite

resin. Thick sections (1 μm) were cut and stained with para-

phenylediamine before light microscopic evaluation.

3 | RESULTS

3.1 | Clinical presentation, clinical pathology
results, and additional testing

Twelve Miniature Schnauzers (5 intact males, 4 intact females,

1 neutered male, and 2 neutered females) were included. Median age

of onset was 12 months (range, 3-18 months) and median age at pre-

sentation was 25 months (range, 4-96 months). Median time from

onset of clinical signs to presentation was 11 months (range,

0-84 months). Regurgitation associated with megaesophagus and

aphonic bark were the most frequent clinical signs in 11/12 cases.

Other inconsistently present clinical signs were slightly delayed con-

scious postural reactions (6/12) and weak flexor reflex in the pelvic

limbs (3/12). One dog had muscle tremors in the pelvic limbs and

decreased palpebral reflex, and another dog had exercise intoler-

ance. One of the included dogs also presented with seizures,

decreased left menace response and delayed left-sided postural

reactions suggesting an independent right forebrain lesion. Com-

puted tomography of the brain with IV contrast medium and cister-

nal CSF analysis were performed and found to be normal. Thus,

epilepsy of unknown origin was suspected. These findings are sum-

marized in Supplemental Information.

Blood evaluations including CBC and serum biochemistry profile

(8/12), serum thyroxine and thyroid stimulating hormone concentra-

tion (3/12), adrenocorticotropic hormone stimulation test (3/12), and

dynamic bile acid stimulation test (1/12) were performed and results

were within reference ranges, except for 1 dog that had an increased

serum cholesterol concentration. Acetylcholine receptor antibody

titers were determined in 2/12 dogs and were within the reference

range. Echocardiography and a Holter evaluation in 2 of the dogs

were normal. In 2 additional dogs, lumbar CSF analysis was within the

reference range.

3.2 | Electrodiagnostic studies

Electrodiagnostic studies were performed in 5/12 dogs on the right

tibial (2/5), left tibial (4/5), right ulnar (1/5), and left ulnar (2/5) nerves.

The median motor NCV was 29.55 m/s (range, 23.2-35.9 m/s) in the

right tibial nerve and 26.8 m/s (range, 20-52.2 m/s) in the left tibial

nerve. The motor NCV in the sole right ulnar nerve tested was

24.4 m/s proximally and the motor NCV in the left ulnar nerves tested

were 36.7 m/s (1/2) and 18.2 m/s (1/2), both proximally. The CMAP

amplitude was measured in 2 right tibial nerves and found to be

4.4 mV proximally and 4.6 mV distally, and 6.1 mV proximally and

3.4 mV distally, respectively; in 3 left tibial nerves it was found to be

5.5 mV proximally and 6.4 mV distally, 4.2 mV proximally and

11.7 mV distally, and 11 mV proximally and 16.6 mV distally; and in

1 right ulnar it was found to be 9.0 mV proximally and 12.4 mV dis-

tally. The shape of the curve was polyphasic in 3/5. In the nonaffected

sibling used as an age-matched control, the right tibial and left ulnar

nerves were evaluated. Motor NCV was 55.9 m/s proximally and

71.4 m/s distally for the right tibial nerve, and 55.7 m/s for the left

ulnar nerve. The CMAP amplitude was 18.2 mV proximally and

24.1 mV distally for the right tibial nerve and 17.7 mV proximally and

17.1 mV distally for the left ulnar nerve.

In summary, the most prominent abnormalities were slow motor

NCV (range, 20-42 m/s) and low CMAP amplitudes (range,

4.2-46.0 mV) associated with polyphasic CMAPs (Supplemental Infor-

mation). These electrophysiological findings were suggestive of a

demyelinating disease of the peripheral nerves tested (Figure 1).

3.3 | Histopathology and histochemistry

Muscle and peripheral nerve biopsy specimens were obtained in

1 affected Miniature Schnauzer dog. No specific abnormalities were
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identified in the biopsy specimens from the cranial tibial muscle. The

density of myelinated nerve fibers was subjectively appropriate in the

peroneal nerve. Numerous inappropriately thin myelinated fibers and

scattered hypermyelinated fibers consistent with tomacula were

observed (Figure 2). These findings were consistent with those

described in the previous report.4

3.4 | Genetic testing

All of the included cases were tested for the same splicing mutation in

intron 19 of the MTMR13/SBF211 gene and found to be homozygous

for the mutation. In a litter of 5 2-month-old dogs, 2 of the litter were

found to be carriers (heterozygous for the mutation) and the other

3 had 2 normal copies of the gene.

3.5 | Treatment and outcome

Treatment was aimed at ameliorating clinical signs and consisted of

head elevation during and 30 minutes after meals (12/12), as well as

F IGURE 1 Motor nerve conduction velocities (NCV) of the right tibial nerve of a nonaffected dog (A) and affected dog (B) of the same litter.
Note the slow motor NCV (range, 20-42 m/s) and polyphasic and low compound muscle action potential (CMAP) amplitudes in the affected dog
in contrast with the nonaffected dog

F IGURE 2 Biopsy specimen from the peroneal nerve (1-μm-thick
resin sections). Characteristic changes include nonconcentric myelin
protrusions around nerve fibers consistent with tomacula (arrows
with short tails) and inappropriately thin myelinated fibers (arrows
with long tails). Axonal degeneration was not a feature

4 FARRÉ MARINÉ ET AL.



antacids (omeprazole [3/12] and famotidine [1/12]), intestinal protec-

tants (sucralfate [2/12] and amalgate [1/12]), prokinetics (met-

oclopramide [3/12], cinitapride [1/12] and mirtazapine [3/12]), and

antiemetics (maropitant [2/12]). In 3 cases, sildenafil was used as

adjunctive treatment. Bethanechol also was used in 2/12 cases. The

frequency of regurgitation remained unchanged in all dogs except in

2 of those receiving mirtazapine, in which episodes decreased from

several times daily to once every 2 to 3 days. In the dog with seizures,

phenobarbitone was added to the treatment regimen. When aspira-

tion pneumonia developed (6/12), antibiotics also were prescribed

(amoxicillin-clavulanate acid, 4/12; enrofloxacin, 1/12; and cephalexin,

1/12).

Median time from diagnosis to final follow-up was 22.5 months

(range, 7-73 months). Regardless of treatment, clinical signs slowly

progressed in 1/12 dogs leading to clinically evident pelvic limb weak-

ness, muscular atrophy, decreased flexor reflexes, and delayed pos-

tural reactions 67 months after diagnosis. In the other dogs, clinical

signs were unchanged for 0 to 88 months with aspiration pneumonia

developing occasionally in 6 dogs. Four dogs were dead at the time of

writing. Death was directly attributed to the disease in only 1 dog

after developing aspiration pneumonia 73 months after diagnosis.

One dog was euthanatized because of acute renal failure caused by

Leishmania spp. infection 36 months after diagnosis. Another dog died

after a short period of anorexia 17 months after diagnosis, and the

cause of death in the last dog 26 months after diagnosis was

unknown.

4 | DISCUSSION

Charcot-Marie-Tooth disease constitutes a large group of hereditary

motor and sensory peripheral neuropathies in humans characterized

by phenotypic and genetic heterogeneity, which can be inherited as

autosomal dominant, autosomal recessive or X-linked traints. Clinical,

electrophysiological and pathological features allow differentiation of

3 main subtypes: demyelinating (CMT1), axonal (CMT2), and interme-

diate (I-CMT) forms.15 To date, genetic variants in >24 genes have

been found to cause different forms of CMT disease in people.10

Inherited motor and sensory neuropathies in 22 dog breeds have been

reviewed and suggested to have a link with CMT subtypes in humans.

However, in contrast with CMT, all of the described inherited

polyneuropathies in dogs seem to share an autosomal recessive mode

of inheritance, although not confirmed by pedigree analysis. It is also

difficult to clearly differentiate between demyelinating and axonal

neuropathies, and onion bulb formation is infrequent in dogs.1

In humans, mutations in the SBF2 gene causes CMT4B2. The

SBF2 gene encodes for a pseudophosphatase of the MTMR protein

family, which has a role in regulating vesicular trafficking in Schwann

cells. Loss of this protein may lead to uncontrolled folding of myelin,

producing the typical focally folded myelin sheaths or tomacula seen

in CMT4B15 and in affected Miniature Schnauzer dogs. Despite dogs

and humans sharing a mutation in the same gene (SBF2) and having a

similar histopathologic appearance of the nerves, the clinical

phenotype differs substantially between the human and the canine

forms. Regurgitation and aphonic bark because of megaesophagus

and laryngeal paralysis predominate in dogs, and pelvic limb weakness

is rare. On the other hand, appendicular limb weakness and decreased

reflexes dominate the human phenotype. In human medicine, it is well

known that different genetic variants in the same gene can give rise

to markedly different phenotypes.16 Indeed, involvement of bulbar

and facial nerves resulting in vocal cord paresis or diaphragm weak-

ness most frequently has been reported in the CMT4B1 form (caused

by a mutation in the MTMR2 gene) or other CMT types, but not in

CMT4B2.15-18 In 1 report of a patient with CMT disease, esophageal

and gastric smooth muscle function impairments were observed, but

this clinical scenario is not usually described.19 Substantial divergence

in clinical signs between affected humans and dogs may be related to

the striated muscle of the esophagus in dogs as compared to smooth

muscle in humans. Theoretically, CMT disease in dogs may be domi-

nated by striated muscle dysfunction.19

The CMT4B2 disease is characterized by autosomal recessive

inheritance mode and often affects children between 4 and 13 years

of age (mean age, 8 years).15 This observation is comparable to the

findings in the affected Miniature Schnauzers with a young age of

onset (between 3 and 18 months of age). Electrodiagnostic findings

are characterized by a marked decrease in NCV and amplitude, and

prolonged distal latency. Although not evaluated in the Miniature

Schnauzer dogs, sensory NCV also are severely decreased. Fibrillation

potentials, positive sharp waves and a decrease in the recruitment

pattern of motor unit potentials are found in people during needle

electromyography. Polyphasic motor unit potentials and giant action

potentials can be present in distal muscles.15 In the dogs reported

here, slow motor NCV (range, 20-42 m/s), as well as polyphasic and

low CMAP amplitudes were found. In people, increased protein con-

centration (up to 280 mg/dL) may be found in lumbar CSF, despite

normal cell counts.15,20 Unfortunately, CSF was only evaluated in

3 dogs and results were within reference ranges.

Histopathological findings in CMT4B2 are characterized by a

severe loss of myelinated nerve fibers with the remaining fibers gen-

erally hypomyelinated, hypermyelinated or unmyelinated. The patho-

logical hallmark is the presence of nerve fibers with focal regions

where myelin is thrown into irregular protrusions from the outer mye-

lin sheath, known as myelin outfoldings or tomacula. Inward protru-

sions, which extend towards the axon, also are present and referred

to as myelin infoldings. The protrusion may contain axons or exclu-

sively Schwann cell cytoplasm. Supernumerary Schwann cell pro-

cesses or basal lamina structures may encircle some fibers (so-called

onion bulbs) indicating the occurrence of repeated episodes of demy-

elination and remyelination, and abnormal proliferation.21-23 Muscle

biopsy has been performed in a few patients and has identified only

minor abnormalities compatible with neurogenic atrophy.15,17 In the

sole dog in our series in which muscle and nerve biopsies were per-

formed, and in the French dogs previously reported,4 minimal to no

changes were identified in muscle biopsy specimens and inappropri-

ately thin myelinated nerve fibers and scattered hypermyelinated

fibers (tomacula) were identified.
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In human medicine, the diagnosis of CMT4 subtypes is based on

clinical findings, neurophysiologic studies, family history, and molecu-

lar genetic testing that ultimately permit the diagnosis.24 Treatment is

symptomatic and includes special shoes or ankle or foot orthoses or

both to correct foot drop and aid walking; surgery as needed for

severe pes cavus; forearm crutches, canes, and wheelchairs as needed

for mobility; exercise as tolerated; and treatment of pain, depression,

sleep apnea, and restless leg syndrome.24 In cases of vocal cord paral-

ysis, treatment may include cordotomy, vocal fold lateralization or

medialization to preserve speech, and tracheotomy.19 One patient

described with CMT syndrome and gastrointestinal involvement was

treated with promethazine, metoclopramide, and ondansetron, which

helped partially.25 In the dogs reported here, treatment was mostly

symptomatic and consisted of head elevation during meals, antacids,

prokinetics, and bethanechol resulting in little improvement in the fre-

quency of regurgitation. Sildenafil has been shown to decrease regur-

gitation frequency and increase weight gain in dogs with idiopathic

megaesophagus26 but was used in only 3 of our cases and resulted in

no short-term improvement, although owners withdrew the medica-

tion in 2 dogs less than a month after initiation. On the other hand,

bethanechol has been shown to increase the amplitude of esophageal

contractions.27 The lack of any clinically relevant improvement in our

cases and those reported in the literature could be a result of different

etiology of the megaesophagus in the dogs treated with bethanechol

or sildenafil. Also, metoclopramide and cisapride have been shown to

be ineffective and can even aggravate clinical signs.28,29 The antide-

pressant mirtazapine was used in 3 cases, resulting in a slight decrease

in the frequency of regurgitation in 2 of them, but the low number of

dogs receiving this medication precludes any conclusion on its effi-

cacy. The use of different treatments in our retrospective study, in

addition to the low number of cases, represent the major limitations

of our study. Additional studies are needed to evaluate the efficacy of

individual treatments in miniature Schnauzers with this demyelinating

polyneuropathy. Novel treatments such as ascorbic acid,30-33 proges-

terone antagonists (onapristone34 and lonaprisan35), curcumin36,37

and pharmacological inhibition of histone deacetylase 638 are being

studied in human medicine,39 but although >80 CMT-causing genes

have been identified to date, an effective treatment has not yet been

developed for these diseases in people.40

Animal models (primarily in mice and Drosophila spp.) representing

the most frequent forms of CMT in humans are now available,40,41 but

none is a spontaneously occurring disease. The disease described here is

the first spontaneously and naturally occurring demyelinating inherited

CMT polyneuropathy in a large animal model with a confirmed genetic

variation. However, the differences in phenotype compared to humans

might pose a limitation to the use of affected Schnauzers as an animal

model for the human disease. However, identification of a treatment

that slows progression of the disease in affected dogs still could be valu-

able for testing in a clinical trial of affected humans.

In CMT disease, life expectancy is not known to be altered in

most cases, with some patients presenting in infancy or early child-

hood with inability to ambulate and weakness of proximal and distal

muscles. In some cases, however, the neuropathy can lead to

restrictive pulmonary impairment, vocal cord dysfunction or sleep

disturbances,19 shortening lifespan, with death occurring in the fourth

or fifth decade, mostly as a result of respiratory failure.31 In the cases

described here, despite lack of an effective treatment, clinical signs

remained unchanged in all but 1 dog for up to 73 months, with aspi-

ration pneumonia developing occasionally (6/12). Only1 dog prog-

ressed slowly to clinically evident pelvic limb weakness 67 months

after diagnosis, but without impairment in quality of life. Although

4 dogs were dead at the time of writing, only 1 death was directly

attributed to the disease after development of aspiration pneumonia.

This finding demonstrates that the demyelinating polyneuropathy of

Miniature Schnauzers tends to remain stable, leading to a fair to

good prognosis if aspiration pneumonia and anorexia can be avoided

or managed.
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