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ABSTRACT 9 

In obesity, macrophages infiltrate peripheral tissues and secrete pro-inflammatory cytokines that impact 10 

local insulin sensitivity. Lipopolysaccharide (LPS) and the saturated fatty acid (FA) palmitate polarise 11 

macrophages towards a pro-inflammatory phenotype in vitro and indirectly cause insulin resistance (IR) 12 

in myotubes. In contrast, unsaturated FAs confer an anti-inflammatory phenotype and counteract the 13 

actions of palmitate. To explore paracrine mechanisms of interest, J774 macrophages were exposed to 14 

palmitate ± palmitoleate or control medium and the conditioned media generated were screened using a 15 

cytokine array. Of the 62 cytokines examined, 8 were significantly differentially expressed following FA 16 

treatments. Notably, CXCL16 secretion was downregulated by palmitate. In follow-up experiments using 17 

ELISAs, this downregulation was confirmed and reversed by simultaneous addition of palmitoleate or 18 

oleate, while LPS also diminished CXCL16 secretion. To dissect potential effects of CXCL16, C2C12 19 

myotubes were treated with palmitate to induce IR, recombinant soluble CXCL16 (sCXCL16), combined 20 

treatment, or control medium. Palmitate caused the expected reduction of insulin-stimulated Akt 21 

activation and glycogen synthesis, whereas simultaneous treatment with sCXCL16 attenuated these 22 

effects. These data indicate a putative role for CXCL16 in preservation of Akt activation and insulin 23 

signaling in the context of chronic low-grade inflammation in skeletal muscle. 24 
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1. INTRODUCTION 34 

Obesity, defined by the World Health Organization as ‘abnormal or excessive fat accumulation that may 35 

impair health’ [1], constitutes one of the major risk factors for type 2 diabetes (T2D). T2D prevalence has 36 

increased in recent decades, with the number of diagnosed adults rising from 108 million in 1980 to 422 37 

million in 2014 [2]. A blunted response to insulin leading to impaired glucose uptake and utilization in 38 

target tissues termed as insulin resistance (IR) is a key characteristic of T2D [3]. It can arise in obesity [4] 39 

and is a known risk factor for T2D development [5]. IR can precede the manifestation of overt 40 

hyperglycemia for over a decade [6] and, therefore, identifying and treating IR in a timely fashion can be 41 

important for avoiding progression to T2D. 42 

A state of chronic low-grade inflammation has been noted in obesity [7, 8] and linked to IR and T2D 43 

development. The first observation at the tissue level was an increase in tumor necrosis factor (TNF)-α 44 

secretion by adipose tissue (AT) from obese rodents that led to IR [9, 10]. This increased secretion was 45 

later attributed mainly to local accumulation of macrophages forming ‘crown-like’ structures surrounding 46 

dying adipocytes [11-13]. It is thought that an imbalance of M1 ‘classically activated’ macrophages that 47 

secrete proinflammatory cytokines and M2 ‘alternatively activated’ macrophages that are anti-48 

inflammatory and insulin-sensitizing might arise and cause complications [14]. There are discrepancies 49 

between studies concerning the action of certain cytokines, and studies targeting immune components 50 

have so far yielded mixed results. For instance, monocyte chemoattractant protein (MCP)-1, one of the 51 

most studied chemokines in inflammation-associated IR, is upregulated in diet-induced obesity and 52 

studies using in vitro and knock-out [15, 16] or transgenic overexpressing [17] in vivo  MCP-1 deficiency 53 

only partially restores insulin sensitivity in AT [18] and skeletal muscle [15] in mice-fed a HFD. Cytokines 54 

are pleiotropic molecules and multiple cytokines can shape the pro-inflammatory phenotype seen in 55 

obesity; thus, the complexity and redundancy of immune system activation in obesity call for further 56 

investigation. Recently, a ‘designer cytokine’, IC7Fc, an engineered fusion of interleukin (IL)-6 and ciliary 57 



neurotrophic factor, ameliorated glucose tolerance and decreased weight gain in obese mice, opening up 58 

a promising chapter for the use of novel biological agents in the treatment of T2D [19]. 59 

Initial studies in the field focused on inflammation in expanding AT; however, infiltration of macrophages 60 

has also been documented in skeletal muscle in obesity [15, 20-22], which might have implications for 61 

whole-body insulin sensitivity since muscle is the major site of postprandial glucose uptake and utilization 62 

[23]. To dissect the interplay between macrophages and myotubes, experiments employing in vitro 63 

models have used macrophage conditioned medium (CM) to treat myotubes in culture in an attempt to 64 

isolate the interaction between these two cell types. Elevated free fatty acids (FAs) [24, 25] and 65 

lipopolysaccharide (LPS) [26-29] have been documented in obesity and T2D and have been associated 66 

with the pathogenesis of IR. In vitro, LPS and the saturated FA (SFA) palmitate polarize macrophages 67 

towards a pro-inflammatory ‘M1’ phenotype, whereas the unsaturated FAs (UFAs) palmitoleate and 68 

oleate confer an anti-inflammatory ‘M2’ phenotype [30-33]. Several studies have indicated differential 69 

effects of palmitate and UFAs as well as LPS on macrophage gene expression and secretome [30-32, 34-70 

37]. CM generated by palmitate-treated macrophages (PA CM) has been shown to induce IR in myotubes, 71 

while CM from UFA-treated macrophages is insulin-sensitizing [31, 38, 39]. The components of PA CM 72 

that might be of relevance are still being established, but a study by Talbot et al. put forward TNF-α, a 73 

known major inflammatory mediator of IR in myocytes [40], as a strong candidate [31]. The mechanisms 74 

underlying the indirect effects of UFAs are less clear. Talbot et al. demonstrated that CM generated by 75 

macrophages treated with palmitate plus palmitoleate (PA+PO CM) did not have detrimental actions on 76 

insulin sensitivity of myotubes in contrast to PA CM [31], suggesting that addition of palmitoleate alters 77 

the macrophage secretome in  a favorable way. The mediators that differ between PA CM and PA+PO CM 78 

involved in these differential indirect effects on myotubes have not been clarified.  Thus, following on 79 

from the study by Talbot and colleagues, the same CM model established in the lab was employed to 80 

examine the secretome of J774 macrophages and establish how FAs and LPS may differentially modify it, 81 



as well as identify mediators not previously studied. The use of a cytokine array allowed for screening of 82 

62 candidate cytokines/chemokines potentially involved in pro-/anti-inflammatory actions, chemotaxis, 83 

adhesion and regulation of insulin sensitivity. 84 

 85 

2. RESULTS 86 

2.1. Screening of J774 CM using a cytokine array reveals differential secretion upon treatment 87 

with palmitate 88 

In order to screen J774 CM for cytokines and chemokines of interest, a cytokine array was selected 89 

comprising cytokines that have been implicated in both pro- and anti-inflammatory functions as well as 90 

cytokines and chemokines that have not been studied before in the context of inflammation-associated 91 

IR. 500 μM palmitate was used, as this concentration has been shown to polarize macrophages towards 92 

a pro-inflammatory phenotype [38, 41]. Combined treatment with palmitoleate was used as palmitoleate 93 

has been shown to counteract the effects of palmitate [31]. The results for 62 cytokines were analyzed. 94 

Figure 1 focuses on those whose levels were significantly affected by FA treatment. 95 

 96 



 97 

Figure 1. Cytokines and chemokines that are differentially regulated with FA treatments compared to control. A. 98 

Representative blots from cytokine array membranes incubated with CM from J774 pre-treated with control, 99 

palmitate 500 μM and palmitate 500 μM + palmitoleate 500 μM. The location of selected chemokines and cytokines 100 

is marked. B. CXCL16. C. MCP-1. D. MCP-5. E. MIP-1α. F. MIP-1γ. G. MIP-2. H. PF-4. I. sTNFRI. Fold expression of 101 

cytokines and chemokines relative to control (BSA+Ethanol). Data are presented as mean ± SEM analyzed by one-102 

way ANOVA followed by Tukey’s post hoc analysis (n=4). *p<0.05, **p<0.01 vs control. 103 

 104 

8 cytokines were affected by treatment with PA and PA+PO CM. Specifically, C-X-C Motif Chemokine 105 

Ligand 16 (CXCL16) was downregulated in PA CM by 52% compared to control CM (p<0.01), while 106 

secretion in PA+PO CM was comparable to control CM. Platelet factor 4 (PF-4) secretion in PA CM was 107 

decreased by 39% compared to control (p<0.05), while MIP-1α secretion had a similar decrease of 40% in 108 



PA CM compared to control (p<0.05). Soluble tumor necrosis factor receptor I (sTNFRI) secretion was 109 

reduced by 48% in PA CM and 37% in PA+PO CM (p<0.01 vs control). Similarly, MCP-1 was reduced in both 110 

PA CM (by 41%, p<0.01) and PA+PO CM (by 33%, p<0.05) compared to control CM. Secretion of MCP-5, 111 

MIP-1α, MIP-1γ and MIP-2 were all decreased in PA+PO CM (by 36%, 47%, 38% and 38% versus control 112 

CM, respectively, p<0.05). The results for the remaining cytokines that were analyzed but were not 113 

significantly altered by the treatments are presented at Supplementary Figure 2. 114 

 115 

2.2. Validation of differential expression of chemokines and cytokines of interest using ELISA 116 

Appropriate controls to account for intra- and inter- assay variability were used when calculating the 117 

results. However, antibody arrays can have limitations associated with high-throughput screening assays 118 

as well as protein-protein interactions [42-44]. Therefore, it was decided to validate the data for 119 

differentially expressed cytokines using specific ELISAs, which also allow for absolute quantification of 120 

cytokine concentrations in CM. 121 

500 μM palmitate was used in the experiments for array analysis to mirror previous literature using high 122 

concentrations of palmitate, in accordance with reports of elevated palmitate in obese and insulin-123 

resistant individuals. However, to make sure that the results were not compromised by lower cell numbers 124 

due to loss of viability (see Supplementary Figure 3), the validation experiments were performed using 125 

FAs at 200 μM. In addition to palmitate and the combination of palmitate+palmitoleate, other FA 126 

treatments were also tested (palmitoleate alone, oleate, palmitate + oleate, palmitoleate + oleate) as well 127 

as LPS. 200 μM palmitate has been reported to alter macrophage gene expression, differentially to LPS, 128 

while 200 μM oleate had no effect [37].  129 



Of the 8 differentially secreted cytokines and chemokines, CXCL16, MCP-1, PF-4, MIP-1α, MIP-2, and 130 

sTNFRI were validated using ELISA. MCP-5 is a murine chemokine, with no known equivalent for humans 131 

[45], so it was not examined further. The results of the ELISAs are presented in Figure 2. 132 

Regulation of CXCL16 secretion was confirmed, as palmitate significantly decreased its secretion by 56% 133 

compared to control (mean ± SD: 690.5 ± 255.3 pg/mL vs 1572 ± 447.6 pg/mL, p<0.01). Simultaneous 134 

incubation of palmitate with oleate or palmitoleate, restored secretion to control levels (1700 ± 211.1 135 

pg/mL and 1562 ± 213.6 pg/mL respectively, p>0.05 vs control). Intriguingly, LPS also decreased CXCL16 136 

secretion by 47% compared to control (836.4 ± 201.4 pg/mL, p<0.05 vs control). Secretion of sTNFRI 137 

followed a pattern similar to that identified by the cytokine array for palmitate incubation, although the 138 

reduction, compared to control, did not reach statistical significance (197 ± 24.63 pg/mL in PA CM vs 408.4 139 

± 25.37 in control CM, p=0.11). There was no reduction observed for PA+PO CM (328.8 ± 53.22, p>0.05 vs 140 

control CM). Nevertheless, significant differences were observed between LPS and PA as well as PO 141 

treatments. There was a 65% decrease in PA CM compared to LPS CM (197 ± 24.63 pg/mL vs 557.1 ± 184.4 142 

pg/mL respectively, p<0.01) and a 47% decrease in PO CM compared to LPS CM (294.8 ± 56.7 pg/mL vs 143 

557.1 ± 184.4 pg/mL respectively, p<0.05). 144 

 145 



 146 

Figure 2. Secretion of selected cytokines and chemokines in J774 media after treatment with FAs, LPS or vehicle. 147 

A. CXCL16. B. sTNRI. C. PF4. D. MCP-1. E. MIP-1alpha. F. MIP-2. Activated J774 macrophages were treated with 200 148 

μM palmitate, 200 μM oleate, 200 μM palmitoleate, FA combination, 10 ng/mL LPS or control (1% w/v BSA + 0.6% 149 

v/v ethanol) for 8 h. Cells were washed with PBS and fresh medium was added for 16 h. CM were collected and 150 

analyzed by ELISA. Data are presented as mean ± SEM analyzed by one-way ANOVA followed by Tukey’s post hoc 151 

analysis (n=3 independent experiments).  *p<0.05, **p<0.01, ****p<0.0001.  152 



No statistically significant differences were observed for PF-4, although palmitate tended to reduce 153 

secretion compared to control (1317 ± 98.45 pg/mL vs 4258 ± 822.7 pg/mL, p=0.17) and oleate (1317 ± 154 

98.45 pg/mL vs 4880 ± 1636 pg/mL, p=0.06). The chemokines MIP-2 and MCP-1 were significantly 155 

upregulated with LPS treatment compared to control. LPS induced a 3.1-fold increase in MIP-2 (14141 ± 156 

7904 pg/mL vs 4568 ± 1202 pg/mL, p <0.05) and a 4-fold increase in MCP-1 (15476 ± 1523 pg/mL vs 3844 157 

± 367.4 pg/mL, p<0.0001). There was a trend for downregulation of MCP-1 in PA CM (1931 ± 773.1 pg/mL 158 

vs 3844 ± 367.4 pg/mL, p=0.14). Finally, MIP-1α levels did not appear to be influenced by the different 159 

treatments. 160 

Overall, the results of these experiments revealed some trends that were similar to the results of the 161 

cytokine array analysis. Importantly, CXCL16 secretion followed the same pattern, with robust 162 

downregulation by palmitate and restoration to control levels with addition of UFAs. LPS also caused a 163 

reduction in CXCL16 levels, whereas it strongly stimulated secretion of the chemoattractants MIP-2 and 164 

MCP-1. 165 

 166 

2.3. Long-term (hours) and acute (minutes) treatment with sCXCL16 influences Akt and 167 

ERK1/2 activation in C2C12 myotubes 168 

To test the effects CXCL16 could elicit on resident cells in skeletal muscle, differentiated C2C12 myotubes 169 

were treated with sCXCL16 (1, 10, or 100 ng/mL) or control medium for 16 h and effects on Akt and ERK1/2 170 

phosphorylation were examined using immunoblotting (Figure 3A). Akt activation was significantly 171 

increased with all concentrations of sCXCL16 compared to control leading to a 2- to 2.4-fold upregulation 172 

(2.4-fold upregulation by 1 ng/mL sCXCL16, p<0.001; 2.2-fold upregulation by 10 ng/mL sCXCL16, p<0.01; 173 

2-fold upregulation by 100 ng/mL CXCL16, p<0.01 versus control; Figure 3B). 1 ng/mL sCXCL16 significantly 174 



enhanced ERK1/2 phosphorylation (p<0.05 versus control; Figure 3C), while higher concentrations did not 175 

have a statistically significant effect. 176 

High concentrations of sCXCL16 have been used consistently for in vitro experiments [46-53] in order to 177 

examine effects within the limitations of cell culture systems. Acute treatment with 100 ng/mL sCXCL16 178 

had a biphasic effect on Akt activation, inducing phosphorylation at 1 minute and then, a second phase of 179 

phosphorylation at 40 and 60 minutes (Figure 3E). No significant effects were observed on the 180 

phosphorylation state of ERK1/2 (Figure 3F). 181 

 182 

Figure 3. Effect of acute and long-term treatment with sCXCL16 on insulin signaling pathway intermediates in 183 

C2C12 myotubes. A. Differentiated C2C12 myotubes were treated with sCXCL16 (1, 10 or 100 ng/mL), or control for 184 

16 h. Expression and phosphorylation of Akt and ERK1/2 were assessed using Western blotting. Representative blots 185 

of 3 independent experiments are shown. B. Akt phosphorylation assessed by densitometry. C. ERK1/2 186 

phosphorylation assessed by densitometry. D. Differentiated C2C12 myotubes were treated with 100 ng/mL 187 



sCXCL16 for the timepoints indicated. Expression and phosphorylation of Akt and ERK1/2 were assessed using 188 

Western blotting. Representative blots of 3 independent experiments are shown. E. Akt phosphorylation assessed 189 

by densitometry. F. ERK1/2 phosphorylation assessed by densitometry. B, C, E, F: Data are expressed as fold-change 190 

relative to control treatment. Data are mean ± SEM analyzed using one-way ANOVA followed by Tukey’s post hoc 191 

analysis (n=3 independent experiments). *p<0.05, **p<0.01. ***p<0.001 versus control. 192 

 193 

2.4. Simultaneous exposure to sCXCL16 reverses the detrimental effects of palmitate on insulin 194 

signaling and sensitivity in C2C12 myotubes 195 

To determine whether sCXCL16 exerts beneficial effects on insulin signaling and sensitivity, C2C12 196 

myotubes were treated with 750 μM palmitate, 100 ng/mL sCXCL16, combination of the two factors, or 197 

control medium for 16 h and then exposed to insulin (100 nM) or vehicle (Figure 4). The expected 198 

downregulation of Akt phosphorylation (46% decrease compared to control insulin, p<0.01) was observed 199 

in myotubes exposed to palmitate (750 μM) for 16h (Figure 4B). Insulin-stimulated ERK1/2 200 

phosphorylation was 1.9-fold higher compared to baseline control (p<0.01; Figure 4C). Simultaneous 201 

exposure to palmitate and sCXCL16 restored the insulin-stimulated phosphorylation status of Akt and 202 

ERK1/2 to control levels (p>0.05 versus control insulin). In further experiments, glycogen synthesis was 203 

used as an index of glucose disposal in C2C12 myotubes (Figure 4D). Treatment with palmitate suppressed 204 

the physiological insulin-stimulated increase in glycogen synthesis. Simultaneous treatment with sCXCL16 205 

was able to reverse this effect, leading to a statistically significant increase in insulin-stimulated glycogen 206 

synthesis compared to baseline. 207 

 208 



209 

Figure 4. Effect of sCXCL16 on insulin-stimulated phosphorylation of insulin signaling pathway intermediates and 210 

glycogen synthesis in C2C12 myotubes. Differentiated C2C12 myotubes were treated with 750 μM palmitate, 100 211 

ng/mL sCXCL16, a combination of the two, or control medium for 16 h. Cells were then serum-starved for 2 h and 212 

either glycogen synthesis assay was performed, or cells were exposed to 100 nM insulin or vehicle for 30 min. 213 

Expression and phosphorylation of Akt and ERK1/2 were assessed using Western blotting. A. Representative blots 214 

of 4 independent experiments. B. Akt phosphorylation assessed by densitometry. C. ERK1/2 phosphorylation 215 

assessed by densitometry. B, C: Data are expressed as fold-change relative to control insulin treatment. Data are 216 

shown as mean ± SEM analyzed using two-way ANOVA followed by Tukey’s post hoc analysis (n=4 independent 217 

experiments). D. Effect of sCXCL16 on insulin-stimulated glycogen synthesis in C2C12 myotubes. Data are expressed 218 

as fold-change to baseline control treatment. Data are shown as mean ± SEM analyzed using two-way ANOVA 219 



followed by Tukey’s post hoc analysis (n=6 independent experiments). Filled bars: baseline samples; dotted bars: 220 

insulin-stimulated samples. *p<0.05, **p<0.01, ***p<0.001. 221 

 222 

3. DISCUSSION 223 

Cytokines and chemokines secreted by macrophages have been implicated in chemoattraction, 224 

inflammatory polarization of immune cells and enhancement or impairment of insulin sensitivity in 225 

peripheral tissues. So far, results on antagonism or genetic deletion of single cytokines in obesity and IR 226 

are inconclusive but developing successful individualized treatments targeting inflammation could prove 227 

an effective strategy for obese insulin resistant individuals who exhibit chronic low-grade inflammation. 228 

In the studies described in this paper, CM from macrophages treated with palmitate and palmitate + 229 

palmitoleate were screened with a cytokine array to examine differential expression and the results were 230 

followed-up in additional experiments analyzed using specific ELISAs. Interestingly, secretion of a 231 

relatively recently described chemokine, CXCL16, was strongly downregulated by both palmitate and LPS 232 

treatment. 233 

CXCL16 has been associated with atherosclerosis and cardiovascular disease [54-56] as well as cancer [57], 234 

and is considered mainly pro-inflammatory. It exists in two forms, soluble and transmembrane, and both 235 

forms are expressed by macrophages [58]. The literature so far has mainly focused on the 236 

chemoattractant, proliferative and scavenging properties of CXCL16 in inflammatory diseases and cancer. 237 

A few publications have investigated CXCL16 in the context of metabolic disease [59-63], but there is no 238 

data concerning its possible action on resident tissue cells in insulin-sensitive tissues such as skeletal 239 

muscle. The only known receptor for CXCL16, CXCR6, is a class A G-protein-coupled receptor [64, 65], with 240 

preferential coupling to Gi/o proteins [65]. Studies investigating atherosclerosis development, 241 

angiogenesis or cancer progression have indicated that CXCL16 can activate components of the PI3K/Akt 242 



pathway and other signaling elements that might be of interest in the context of IR. A study by 243 

Chandrasekar et al. showed that CXCL16 acts through CXCR6 to induce NF-κB activation in aortic smooth 244 

muscle cells via G proteins, but also stimulates PI3K and Akt activation. Downstream of Akt, GSK3α/β 245 

phosphorylation was also increased by CXCL16 treatment [46]. CXCL16 promotes growth, migration and 246 

tube formation by human umbilical vein endothelial cells (HUVEC) through activation of Akt, but also p38 247 

MAPK and ERK1/2 [66]. ERK1/2 has also been implicated as a mediator of CXCL16-induced angiogenic 248 

effects in HUVEC [67]. Moreover, in liver carcinoma cells, CXCL16 treatment upregulated Akt and ERK1/2 249 

activities, which are associated with invasion and metastasis regulation [68].  250 

CXCR6 expression by myotubes (murine C2C12 cells) has previously been reported [69-71]. Since the 251 

secretion of soluble CXCl16 was downregulated by both palmitate and LPS treatment, it was intriguing to 252 

examine its potential role in obesity and IR.  As CXCL16 has been shown to act upstream of Akt and ERK1/2, 253 

it is possible that it could influence insulin signaling and sensitivity by modulating these intermediates. In 254 

C2C12 myotubes, acute and longer-term treatment with sCXCL16 were able to increase basal Akt 255 

phosphorylation in the absence of insulin. Although long-term treatment with sCXCL16 did not have an 256 

additional effect compared to control upon insulin stimulation, simultaneous treatment with palmitate 257 

was able to restore insulin-stimulated Akt phosphorylation and suppress ERK1/2 phosphorylation to 258 

control levels. In addition to regulating Akt, a major intermediate of the PI3K pathway, the suppression of 259 

ERK1/2 by sCXCL16 is also of interest as high levels of activation can impair insulin sensitivity in myocytes 260 

[72-74]. Importantly, dietary glucose is mainly stored in muscle cells in the form of glycogen rendering 261 

glycogen synthesis a major route for glucose disposal in skeletal muscle [75]. Thus, to assess effects on 262 

insulin-stimulated glucose utilization in C2C12 myotubes, measurements of glycogen synthesis were 263 

carried out. Co-administration of sCXCL16 opposed against the deleterious effects of palmitate on insulin-264 



stimulated glycogen synthesis. These results suggest that sCXCL16 could hold a protective role for 265 

myotube insulin sensitivity in an environment of high palmitate concentration.  266 

CXCL16 and CXCR6 mRNA expression was detected in C2C12 myotubes by qPCR (Supplementary Figure 267 

4). It would also be pertinent to examine in future studies if CXCL16 is produced by primary human 268 

myotubes and adipocytes under different conditions associated with IR. For example, the effects of CM 269 

derived from macrophages exposed to TNF-α, LPS and other inflammatory molecules, as well as FA on 270 

secretion of CXCL16 from resident cells could be investigated in future studies. In addition, since there is 271 

evidence that CXCL16 correlates with M2 macrophage polarization [76, 77] and infiltration [78], the 272 

effects of sCXCL16 on the polarization of resident macrophages isolated from skeletal muscle and AT of 273 

lean and obese human participants would be of particular relevance. Investigations such as these could 274 

shed light on the potential effects of CXCL16 on macrophage polarization in the context of obesity and IR 275 

in peripheral tissues.  276 

To the author’s knowledge, no other chemokine or cytokine has direct protective effects on insulin 277 

signaling and glycogen synthesis through Akt activation. IL-15 has been found to increase glucose uptake 278 

by muscle cells via STAT3 (Signal Transducer And Activator Of Transcription 3) [79], but there are varied 279 

results in the literature. Some studies have reported anti-inflammatory actions of IL-15 and beneficial 280 

metabolic effects through stimulation of weight loss and energy expenditure [80]. Additionally, treatment 281 

of cultured adipocytes with IL-15 led to inhibition of FA synthase and lipid accumulation [81] and genetic 282 

IL-15 deficiency promoted adaptive thermogenesis and reduced pro-inflammatory mediators in AT [82]. 283 

IL-6 has also been reported to acutely stimulate insulin sensitivity and enhance glucose uptake, while 284 

inhibiting inflammation. However, chronically it can induce IR and promote inflammation in peripheral 285 

tissues [83]. A recent paper attributed opposing roles regarding macrophage accumulation to IL-6 286 

secreted by myeloid cells versus resident cells (adipocytes and myocytes), adding to the complexity of 287 



cytokine-mediated inflammatory responses in metabolic disease [84].  Findeisen et al. provided a path to 288 

manipulate downstream responses with the use of a ‘designer cytokine’ [19], proving that such next-289 

generation pharmacological agents, preferentially harnessing beneficial effects of inflammatory 290 

components, could hold promise for T2D treatment.  291 

Although CXCL16 secretion has the potential to influence insulin signaling in tissue resident cells, the 292 

chemoattractant properties of sCXCL16 should not be overlooked. CXCL16 is a chemoattractant for 293 

natural killer (NK) [85] and natural killer T (NKT) cells [86-89]. Thus, CXCL16 might chemoattract NK and 294 

NKT cells that in turn could activate macrophages, as they secrete different cytokines, such as TNF-α and 295 

IFN-γ [90]. Wang et al. demonstrated the potential for another interesting interaction as trophoblast-296 

derived sCXCL16 induces M2 macrophage polarization that in turn inactivates NK cells at the maternal–297 

fetal interface [76]. CXCL16 secretion could also affect macrophage and neutrophil chemoattraction, 298 

adding to the milieu of potential roles CXCL16 could play in AT and skeletal muscle inflammation in 299 

obesity. 300 

Conclusions 301 

The effects of sCXCL16 on myotube insulin signaling and sensitivity have not previously been reported in 302 

the literature. In this study, a consistent stimulatory effect on Akt activation, a key component of the 303 

insulin signaling pathway, was evident in C2C12 myotubes, with both an acute and a longer-term effect in 304 

the basal state observed. sCXCL16 was able to reverse the detrimental effects of palmitate on insulin-305 

stimulated Akt activation and glycogen synthesis (Figure 5). These data propose a putative role of sCXCL16 306 

in regulating insulin signaling in myotubes that warrants further investigation in future in vitro and in vivo 307 

studies. 308 



 309 

Figure 5. CXCL16 preserves Akt activation and glycogen synthesis in palmitate-treated myotubes. Palmitate 310 

treatment compromises myotube insulin signaling and sensitivity. Simultaneous treatment with CXCL16 preserves 311 

insulin-stimulated glycogen synthesis by maintaining Akt activation and downregulating ERK1/2 phosphorylation. 312 

Akt: protein kinase B/Akt, ERK1/2: extracellular regulated kinases 1/2, Grb2: growth factor receptor-bound protein 313 

2, GDP: guanosine diphosphate, GTP: guanosine triphosphate, IRS: insulin receptor substrate, MEK: Mitogen-314 

activated protein kinase kinase, PI3K: phosphoinositide 3-kinase, Shc: Src homology 2 domain containing 315 

transforming protein, Sos1: son of sevenless homologue 1. SP: serine phosphorylation, YP: tyrosine phosphorylation. 316 



4. MATERIALS AND METHODS 317 

4.1. Maintenance of cell lines 318 

J774A.1 cells (referred to as J774) and C2C12 cells were purchased from the American Type Culture 319 

Collection and maintained in high glucose (25 mM) Dulbecco's Modified Eagle Medium (DMEM) with 320 

GlutaMAX supplement with added 10% v/v heat-inactivated fetal bovine serum (FBS) and 1% v/v 321 

antibiotic-antimycotic (ABAM) mixture. Cells were maintained at 37oC in 5% CO2 in a humidified tissue 322 

culture incubator. Cells were maintained in 20 mL growth medium in T175 cell culture flasks and passaged 323 

as required, in the case of C2C12, before cell confluence reached more than 70% (usually every 2-3 days) 324 

to avoid spontaneous differentiation. 325 

 326 

4.2. C2C12 differentiation into myotubes 327 

C2C12 myoblasts were detached from flasks using Trypsin-EDTA, counted and seeded into plates at a 328 

density of 2x105 cells/mL. When 100% confluence was reached (the next day), differentiation into 329 

myotubes was induced by changing to differentiation medium consisting of DMEM supplemented with 330 

2% v/v heat-inactivated HS and 1% v/v ABAM for 5 days before use. Media were replaced every 2 days 331 

during differentiation. Treatments were routinely added on the afternoon of day 5 of differentiation when 332 

fusion of myoblasts to form elongated myotubes had been achieved. 333 

 334 

4.3. Fatty acid treatments 335 

FAs, specifically the SFA palmitate and the UFAs palmitoleate and oleate, used for treatments were 336 

conjugated to FA-free fraction V BSA to mimic their presence in their blood in vivo, where they are bound 337 

to serum albumin [91]. 1-2% w/v BSA (depending on the final FA concentration, specifically 1% w/v for 338 



200 μM, 1.5% w/v for 500 μM and 2% w/v for 750 μM) was added to pre-warmed growth medium and 339 

left to mix on a laboratory roller for 30 min. 75 mM palmitic acid, palmitoleic acid and oleic acid stock 340 

solutions were prepared in 100% ethanol. Palmitic acid solutions were always prepared fresh, while 341 

palmitoleic and oleic acid stocks were stored at -20oC. Appropriate volumes of stock solutions were added 342 

to growth medium containing BSA to give the final concentrations indicated, mixed and heated to 40oC in 343 

a water bath with occasional manual mixing for 30 min to allow conjugation of FAs with BSA. For control 344 

treatment, an equal amount of ethanol without FAs was added to growth medium containing BSA and 345 

incubated alongside the FA media. The media were filter-sterilised before addition to the cells. 346 

 347 

4.4. Generation of conditioned media 348 

Activated J774 cells were treated for 8 h with growth medium containing 1.5% w/v FA-free fraction V BSA 349 

conjugated with FAs, prepared as described in 2.1.5. Cells were also exposed to growth medium 350 

containing LPS 10 ng/mL (positive control) and to control treatments (1.5% w/v BSA + ethanol and growth 351 

medium without BSA). Treatments were removed, cells washed with PBS, and fresh medium added for 16 352 

h. CM were collected, centrifuged at 200 x g for 5 min at RT, and the supernatant was transferred to a 353 

fresh tube and subsequently, added to differentiated C2C12 myotubes for 16 h [31].  354 

 355 

4.5. Cytokine array 356 

J774 cells were seeded at 1.5x105 cells/mL in T175 flasks and activated using 200 ng/mL PMA. 3 days after, 357 

cells were treated with growth medium containing 1.5% FA-free fraction V BSA and 500 μM palmitate, 358 

500 μM palmitate + 500 μM palmitoleate, or control (1.5% w/v BSA + 0.66% v/v ethanol). After 8 h, cells 359 

were washed three times with PBS and fresh medium added for 16 h to generate CM. This was collected 360 

and used immediately for the mouse cytokine array. 361 



The RayBiotech mouse cytokine antibody array C3 (for cytokine array map, see Supplementary Figure 1) 362 

was used according to the supplier’s instructions to detect levels of 62 cytokines in J774 CM. The antibody 363 

array membranes and kit components were equilibrated to RT before 2mL of blocking buffer were added 364 

to the membrane and incubated for 30 min. Blocking buffer was aspirated and 2mL of CM was added per 365 

membrane and incubated for 3 h at RT.  The CM were aspirated and 3 x 5-min washes with 1X Wash Buffer 366 

I followed by 2 x 5-min washes with 1X Wash Buffer II were performed. 1 mL of the Biotinylated Antibody 367 

Cocktail was added to each membrane and incubated for 2 h at RT. The antibody cocktail was aspirated 368 

and 3 x 5-min washes with 1X Wash Buffer I followed by 2 x 5-min washes with 1X Wash Buffer II were 369 

performed. 2 mL of 1X HRP-Streptavidin were added to each membrane and incubated for 2 h at RT. After 370 

aspiration, 3 washes 5 min each with 1X Wash Buffer I followed by 2 washes 5 min each with 1X Wash 371 

Buffer II were performed. Membranes were placed onto a plastic sheet and 500 μl of the Detection Buffer 372 

mixture (equal volumes 1:1 of Detection Buffer C and Detection Buffer D) were added onto each 373 

membrane and incubated for 2 min at RT. Another plastic sheet was placed on top of the membranes so 374 

that the membrane was enclosed between the two sheets. 375 

Membranes were exposed to X-ray film and the Gilles Carpentier dot blot analyzer for Image J (Image J 376 

1.42q, National Institutes of Health, USA) was used to obtain mean signal density from scanned blots. The 377 

following equation was used to calculate signal intensity, which was normalized to the control treatment 378 

membrane to account for exposure variability: 379 

X(Ny) = X(y) * P1/P(y)  380 

where: X(Ny)= normalized signal intensity for spot "X" on Array "y", X(y) = mean signal density for spot "X" 381 

on Array for sample "y", P1 = mean signal density of Positive Control spots on reference array (control 382 

treatment), and P(y) = mean signal density of Positive Control spots on Array "y"  383 



4.6. ELISAs 384 

Enzyme-linked immunosorbent assay (ELISA) was used to verify the results of the cytokine array for 385 

selected cytokines (CXCL16, MCP-1, MIP-1 alpha, MIP-2, sTNFRI, and PF-4) and to test additional 386 

treatments. J774 cells were seeded at 1.5x105 cells/mL in T175 flasks and activated using 200 ng/mL PMA. 387 

3 days later, cells were treated with growth medium containing 1% w/v FA-free fraction V BSA and 200 388 

μM palmitate, 200 μM palmitoleate, 200 μM palmitate + 200 μM palmitoleate, 200 μM oleate, 200 μM 389 

palmitate + 200 μM oleate, 200 μM oleate + 200 μM palmitoleate, or control (1% w/v BSA+ 0.6% v/v 390 

ethanol). After 8 h, cells were washed three times with PBS and fresh medium added for 16 h to generate 391 

CM. CM was collected and stored at -80oC until 3 repeats were obtained. 392 

RayBio Mouse ELISA kits were used according to the manufacturer’s instructions. CM samples were 393 

thawed on ice on the day of the assay. 96-well plates coated with antibodies against the target cytokines 394 

were provided and 100 μL standards and samples were pipetted into wells. The plates were incubated for 395 

2.5 h at RT with gentle shaking to allow target cytokines present in the samples and standards to bind 396 

specifically to the immobilized antibody. Wells were washed 4 times with 300 μL 1X Wash Buffer and 100 397 

μL biotinylated antibody against the host species of the primary antibody was added for 1 h at RT with 398 

gentle shaking. Wells were washed 4 times with 300 μL 1X Wash Buffer and 100 μL HRP-conjugated 399 

streptavidin solution was added for 45 min at RT with gentle shaking. After 4 washes, 100 μl of 3,3,5,5'-400 

tetramethylbenzidine substrate reagent were added, the plates were covered with foil and incubated for 401 

30 min at RT with gentle shaking. Color development is proportional to bound cytokines. 50 μL of stop 402 

solution (0.2M sulfuric acid) were added to each well. The acidic conditions deactivate enzymatic activity 403 

and change the color from blue to yellow. Plates were read immediately at 450 nm using a Tecan Pro2000 404 

plate reader. 405 



The mean absorbance for each set of duplicated standards, controls and samples was calculated and the 406 

average optical density (OD) of the blank standard (0.0 pg/mL) was subtracted. The standard curve was 407 

generated using GraphPad Prism (Version 7.02, GraphPad Software, Inc.). Log(concentration) was plotted 408 

on the x axis and log(OD) on the y axis, and the best-fit straight line was drawn. Sample concentration was 409 

extrapolated via the resulting equation, results were copied to Excel (Microsoft Office 2016, Microsoft, 410 

US) and calculations were made using control treatment (BSA + ethanol) as a reference. 411 

 412 

4.7. Immunoblotting 413 

Myotubes were lysed in radioimmunoprecipitation assay (RIPA) buffer, homogenized using an Ultra-414 

Turrax (IKA; Staufen, Germany) and denatured in Laemmli buffer for 10 min at 65 °C. Proteins were 415 

resolved by SDS–PAGE, electro-transferred and immunoblotted as previously described (Patel et al., 416 

2012). After the completion of transfer, membranes were either stored at 4oC in Tris-buffered saline (TBS) 417 

(136.9 mM NaCl, 2.7 mM KCl, 12.4 mM Tris, pH 7.4), containing 0.1% v/v Tween-20 (TBST) until further 418 

use or briefly washed in TBST and incubated with block solution for 1 h at RT to eliminate non-specific 419 

binding of antibodies. Block solutions were either 5% w/v milk in TBST or 5% w/v BSA in TBST as indicated 420 

in Table 2.3. Subsequently, membranes were incubated with primary antibodies diluted in primary 421 

antibody dilution buffer (TBST containing 2% w/v BSA, 0.5% w/v phenol red and 0.02% w/v sodium azide). 422 

Incubation took place on a laboratory orbital shaker or roller mixer at 4oC for 16 h overnight, with the 423 

exception of the β-actin antibody that was incubated for 2 h at RT. Details for the antibodies used are 424 

provided at Τable 1. 425 

Following primary antibody incubation, membranes were washed in wash buffer (TBST containing 426 

additional 0.36 M NaCl to achieve thorough washing) three times for 5 min each. Horseradish peroxidase 427 

(HRP)-conjugated secondary antibody against the host species in which the primary antibody was raised 428 



was incubated for 1 h at RT. The secondary antibodies were diluted 1:10,000 in TBST containing 5% w/v 429 

milk. After 1 h, three washes in wash buffer for 5 min each and one wash in TBS followed. 430 

Washed membranes were incubated with 0.5-1 mL (enough to cover the surface of the membrane) of ECL 431 

reagent (Enhanced Luminol Reagent Plus: Oxidizing Reagent Plus, 1:1 ratio, PerkinElmer) for 1 min prior 432 

to visualization of the bands. Detection of proteins was achieved by exposing membranes to a light-433 

sensitive X-ray film (Super RX, FujiFilm, Bedford, UK) in a cassette for periods ranging from 1 s to 15 min.  434 

Films were scanned and quantified using the open-source software ImageJ (National Institutes of Health, 435 

Bethesda, Maryland, USA). β-actin was used as a loading control.  436 

 437 

 438 

4.8. Glycogen Synthesis assays 439 
Incorporation of glucose into glycogen in myotubes was measured by modifying a published protocol [92]. 440 

Following appropriate treatments as indicated in subsequent chapters, media were aspirated, C2C12 441 

myotubes were washed twice with PBS and then, treated with low glucose (5.55 mM) DMEM + 1% v/v 442 

Table 1. Primary antibodies (Ab) used for Western Blotting 

Primary Ab Supplier 
Catalogue 

number 

Molecular 

Weight  

(kDa) 

Host 

species 

Dilution in 

primary Ab Buffer 
Block Buffer 

Primary Ab 

Incubation 

        

Akt Cell Signaling 

Technology 

9272S 60 rabbit 1:1,000 5% w/v milk 

in TBST 

16 h, 4oC 

β-actin Merck (Sigma-

Aldrich) 

A2228 42 mouse 1:2,000 5% w/v milk 

in TBST 

2 h, RT 

ERK1 (K-23) Santa Cruz sc-94 44 rabbit 1:1,000 5% w/v milk 

in TBST 

16 h, 4oC 

p-Akt (D9E)-XP 

(Ser473) 

Cell Signaling 

Technology 

4060S 60 rabbit 1:1,000 5% w/v BSA 

in TBST 

16 h, 4oC 

p-ERK1/2  

(Thr202 /Tyr 204) 

Cell Signaling 

Technology 

9101S 44/42 rabbit 1:2,000 5% w/v BSA 

in TBST 

16 h, 4oC 

Akt: Protein Kinase B, ERK: extracellular regulated kinases. 



ABAM and no serum for 2 h. Following this, 2 μCi D-[U-14C]-glucose ± 100 nM insulin was added per well 443 

for 1 h at 37oC. The reaction was terminated by washing 3 times with ice-cold PBS. Myotubes were lysed 444 

in 450 μL/well Radio-Immuno-Precipitation Assay (RIPA) Buffer [65 mM Tris, 150 mM NaCl, 5 mM EDTA 445 

(pH 7.4), 1% v/v Igepal-CA630 detergent, 0.5% w/v sodium deoxycholate, 0.1% w/v sodium dodecyl sulfate 446 

(SDS), 10% v/v glycerol] and lysates heated at 100oC for 10 min. The lysates were homogenized using a 447 

19-gauge needle and syringe. 300 μL of lysate was added to a fresh tube with 600 μL 100% ice-cold ethanol 448 

and unlabeled glycogen powder (for glycogen pellet visualization purposes). The remaining lysate was 449 

stored at -20oC for measurement of total protein content using a bicinchoninic acid assay (BCA) according 450 

to the manufacturer’s protocol (described in 2.3.2). Glycogen was precipitated in ethanol at 4oC overnight, 451 

then at -20oC for 30 min, before centrifugation at 13,000 g for 20 min. The pellet was dissolved in 100 μL 452 

distilled water, heated at 60oC for 20 min to facilitate resuspension, mixed with 5 mL scintillant and 453 

counted using a Tricarb 2810TR Liquid Scintillation Analyzer running on QuantaSmart software (Perkin 454 

Elmer Life and Analytical Sciences). Results were calculated as pmol/(min*mg of protein). 455 

 456 

4.9. Statistical analysis 457 

Data were analyzed using GraphPad Prism (Version 7.02, GraphPad Software, US). Results from more than 458 

two unrelated groups were analyzed using analysis of variance (ANOVA). Statistical analysis involving 459 

paired treatments was performed using two-way ANOVA for three or more groups. Statistical tests used 460 

are indicated within the text and at figure legends. If significance was found using one-way or two-way 461 

ANOVA, the post-hoc Tukey’s multiple comparisons test was applied to detect statistically significant 462 

differences between groups. The number of biological repeats is indicated in the figure legends. A p-value 463 

below 0.05 was considered significant. 464 

 465 
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