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Abstract 30 

Lungworms of the genera Parafilaroides and Otostrongylus are responsible for parasitic bronchopneumonia, the 31 

foremost disease of eastern Atlantic common seals (EACS, Phoca vitulina vitulina) in the Dutch North Sea. 32 

Recently, there have been increased  reports of lungworm cases and observations of unusually long 33 

Parafilaroides sp. adults in this location. The initial aim of this study was to confirm the identity of the 34 

Parafilaroides species infecting this population. Parafilaroides are usually small and delicate, making them 35 

difficult to extract from host tissue and there is often difficulty accessing fresh specimens for morphological 36 

study. The large size of the Dutch worms and the accessibility of specimens from numerous animals enabled the 37 

description and measurement of many intact specimens (N=64) from multiple host animals (N=20). Species 38 

identity was confirmed by targeted sequencing of ribosomal and mitochondrial DNA amplicons from a subset of 39 

worms.  Worm morphology was consistent with descriptions for P. gymnurus, but the mature females were 1.9-40 

fold and 3.4-fold longer than  those recovered from French EACS (P≤0.001) and  Canadian western Atlantic 41 

common seals (Phoca vitulina concolor; P≤0.0001). They were also significantly longer than mature female P. 42 

gymnurus described from other seal species,  with the exception of those from harp seals of Les Escoumins, 43 

Quebec. We speculate that intraspecific genetic differences in P. gymnurus and the environment within the host 44 

could contribute to the variation reported here.  This study is the first to describe P. gymnurus using 45 

morphological and molecular methods and should serve as a reference for identification of the species. 46 
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Introduction 49 

Parasitic bronchopneumonia is currently the primary cause of disease in eastern Atlantic common seals (harbour 50 

seals) (EACS, Phoca vitulina vitulina) of the Dutch North Sea (Osinga and ’t Hart 2010). Lungworms occur 51 

mainly in seals under 1 year old and they are most likely transmitted horizontally via the food chain, after 52 

weaning (Measures 2001). The Metastrongyloid genera Otostrongylus (Railliet 1899) and Parafilaroides 53 

(Railliet 1899) are the causative nematodes in this population (Borgsteede et al. 1991). Since the late 1990s, 54 

there has been a sharp increase in the number of young stranded EACS admitted to Seal Centre Pieterburen 55 

(Previously: Seal Rehabilitation and Research Centre), The Netherlands, with severe verminous pneumonia (Fig. 56 

1) (Osinga and ‘t Hart 2010). The proportion of admitted animals with this condition rose from 22% during 57 

stranding period 1971-1997 to 53% during 1997-2009 and to 70% during 2009-2013. Also, this was a common 58 

cause of death in EACS that stranded dead along the Dutch Wadden Sea coast after seal year 1997-1998 (Osinga 59 

and ‘t Hart 2010). Such high morbidity and mortality would be expected to impact recruitment of the EACS 60 

population, since about a third of the roughly 1,500 pups born annually in Dutch waters strand (TSEG 2013). 61 

However, partly because of rehabilitation efforts, the total Dutch EACS population rose from 680 in 1971-1972 62 

to 7,029 in 2012-2013, and there were 8,351 animals in 2015-2016 (Jensen et al. 2017; CBS, PBL, RIVM, WUR 63 

2017; Reijnders et al. 1996). 64 

North Sea EACS can be infected with either 1 or both lungworm genera (Claussen et al. 1991). Parafilaroides 65 

spp. are described as small nematodes embedded in the respiratory parenchyma (Measures 2001). Railliet (1899) 66 

first described P. gymnurus in an EACS from Baie de Somme, France, naming it Pseudalius gymnurus. 67 

Dougherty (1946) established the genus Parafilaroides, but Anderson (1978) made Parafilaroides a subgenus of 68 

Filaroides. He distinguished the 2 subgenera of Filaroides based on the smaller spicules and lack of caudal 69 

papillae in Parafilaroides. Dailey (2006) restored Parafilaroides to full generic status due to the identification of 70 

caudal papillae and the 28S/18S ribosomal DNA (rDNA) data of Carreno and Nadler (2003). Based on these 71 

findings, we follow Dailey (2006) in treating Parafilaroides as a genus. The Parafilaroides is composed of 7 72 

species (Dailey 2009): 2 parasitize the eared seals (Otariidae), P. decorus and P. normani, and 5 parasitize the 73 

true seals (Phocidae), P. measuresae, P. gullandae, P. hispidus, P. hydrurgae and P. gymnurus. Only P. 74 

gymnurus and P. gullandae occur in common seals: P. gymnurus infects both western (WACS, Phoca vitulina 75 

concolor) and eastern Atlantic common seals (Claussen et al. 1991; Gosselin and Measures 1997), whilst P. 76 

gullandae has been identified only from Pacific common seals (PCS, Phoca vitulina richardsi) (Dailey 2006).  77 
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Gosselin and Measures (1997) redescribed P. gymnurus from Canadian WACS, ringed (Pusa hipsida), harp 78 

(Pagophilus groenlandicus), and grey (Halichoerus grypus) seals. It is the only Parafilaroides species to have 79 

been reported from EACS (Railliet 1899; Borgsteede et al. 1991; Claussen et al. 1991; Lehnert et al. 2010). 80 

Thus, we hypothesized that the species in Dutch EACS would be P. gymnurus. However, Gosselin and Measures 81 

(1997) observed that the P. gymnurus described from EACS in France (Railliet 1899) were longer than those 82 

from WACS in Canada. This was also observed by staff at Seal Centre Pieterburen, but the morphology of the 83 

parasite from EACS had not been described since Railliet’s 1899 work.  84 

The sharp increase in lungworm-infected EACS admitted to Seal Centre Pieterburen in recent years, the 85 

observations of long Parafilaroides sp. and the lack of recent morphological work on Parafilaroides from 86 

Europe were the impetuses for this study. We examined a large number of specimens to investigate whether they 87 

were a variant of P. gymnurus or a new species. We provide a morphometric and molecular description of 88 

Parafilaroides sp. from EACS of the Dutch North Sea. We also compare it morphologically to P. gymnurus 89 

descriptions and molecularly to sequences of Parafilaroides sp. obtained from PCS and California sea lion 90 

(CSL, Zalophus californianus) and to the Parafilaroides species available on the GenBank database. Finally, we 91 

explore the possible reasons for the unusually long Parafilaroides sp. in EACS of the Dutch North Sea. 92 

Materials and methods 93 

Samples 94 

Parafilaroides sp. were retrieved from stranded EACS under 1 year of age during 2009-2012 at Seal Centre 95 

Pieterburen. Thirty-four entire and 4 partial mature males, 27 entire and 12 partial mature females, 3 complete 96 

and 1 incomplete immature adult females (no embryonated eggs visible) and 1 complete and 1 partial female L5 97 

were retrieved from 20 seals for morphology. Nematodes were retrieved post-mortem or from the floor if they 98 

were expectorated (Supplementary Table S1). Dead nematodes and those used for DNA extraction were stored 99 

in 70% ethanol. Live nematodes used for microscopy were killed in 0.15 M saline at 60 °C before fixation. 100 

Nematodes were fixed in glycerin-alcohol (9 parts 70% ethanol: 1 part glycerin), cleared by alcohol evaporation, 101 

and mounted in glycerine jelly (Cable 1977). Faeces from PCS were collected at The Marine Mammal Centre 102 

(TMMC; Sausalito, California, USA) in 1997 and used in Baermanns to obtain nematode larvae. Parafilaroides 103 

sp. adults were collected post-mortem from CSL at TMMC in 1999 and they were separated from released 104 

larvae. All TMMC samples were stored in 0.15 M saline at -80 °C. Samples for molecular work were shipped 105 

overnight to The Royal Veterinary College (RVC), UK, by FedEx: on dry ice from the USA in 2006, and on ice 106 

from The Netherlands in 2011. They were stored at -80 °C, thawed and washed in either 0.15 M saline or 107 
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phosphate buffered saline prior to larval screening and/or DNA extraction. Parafilaroides sp. and O. circumlitus 108 

larvae were separated based on size using a stereomicroscope (Zoomaster 65, Prior, Cambridge, UK). They were 109 

placed in 100 µl fresh Millipore Direct-Q® 3 water (Millipore (UK) Limited, Watford, UK) and stored at -80 °C.  110 

Microscopy and statistical analysis 111 

Nematodes were examined and measured using bright field microscopy with a Leitz Laborlux 11 compound 112 

microscope (Leica Microsystems Ltd, Milton Keynes, Buckinghamshire, UK) equipped with an eyepiece 113 

graticule. If a character was unclear within a specimen that measurement was excluded. They were photographed 114 

with an Olympus CX41 compound microscope (Olympus, Southend on Sea, Essex, UK) equipped with an 115 

Olympus DP20-5 camera. Spicule measurements were made for samples in all orientations but the gubernaculum 116 

was measured only in specimens where it was orientated laterally.  117 

We first applied ANOVA to test for an individual host animal effect on the nematodes in our dataset. Several 118 

variables showed a significant host effect (see Results section). As we required independent samples and as some 119 

of the variables were not normally distributed, we applied the median of the measurements of the different 120 

worms gathered within a host as the sample estimate. T-tests were used to compare our estimates with previous 121 

descriptions of P. gymnurus. Railliet (1899) provided only means or ranges. For ranges, we assumed a non-122 

skewed distribution and calculated the average of the minimum and maximum value as the central estimate. To 123 

determine if the spicules were equal, a matched pair t-test compared the left and right spicule within each male. 124 

The sample size was 1 for male P. gymnurus from Les Escoumins grey seal and Salluit ringed seal (Gosselin and 125 

Measures, 1997). We therefore calculated the chance for these sample values to occur under the distribution as 126 

estimated by the mean and standard deviation of our own sample estimates. 127 

DNA Extraction, PCR and sequencing 128 

DNA was extracted from 9 adult North Sea EACS Parafilaroides sp. preparations; 5 using several worms per 129 

preparation (total tissue mass 6 to 11.9 mg) and 4 using 1 worm per preparation. Four host animals were 130 

represented, which stranded during 2010-2011, and all single worm preparations came from the same seal. One 131 

Baermann extract from 1 juvenile PCS was used to prepare 3 tubes containing 20 Parafilaroides sp. larvae each. 132 

From 1 CSL we made 1 adult (approximately 20 mg tissue) and 2 larval (89 and 100 released larvae) 133 

Parafilaroides sp. preparations. DNA was extracted from the Dutch nematodes using a DNeasy blood and tissue 134 

kit (QIAGEN, Crawley, UK), following a slightly modified protocol: the sample was homogenized using a 135 

stainless steel bead in a MM300 mixer mill (Retsch GmbH, Haan, Germany) at 30 oscillations per second for 2 136 

min before overnight incubation with proteinase K at 37 °C. DNA was extracted from CSL adult nematodes 137 
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using a Wizard®genomic DNA purification kit (Promega UK, Southampton, UK), following the manufacturer’s 138 

instructions. The quantity and quality of extracted DNA were assessed using a Nanodrop ND-1000 (Thermo 139 

Scientific, Wilmington, DE, USA). Larvae were thawed, then disrupted using a Soniprep 150 ultrasonic 140 

disintegrator (MSE, London, UK). Three 20 second pulses at 28 microns were used with 1 minute between 141 

pulses, when the sample was cooled on ice. This was used for PCR without a DNA extraction step. 142 

The rhabditid primers NC1 and NC2 amplified the entire second internal transcribed spacer (ITS-2) region of 143 

ribosomal DNA (rDNA) (Gasser et al. 1993) using a 55 °C annealing temperature. The D3 expansion region of 144 

28S rDNA was amplified using D3A and D3B (Al-Banna et al. 1997) at 60 °C. The cytochrome c oxidase 145 

subunit 1 (COI) gene of mitochondrial DNA (mtDNA) was amplified using CCOIF and CCOIR (Dailey 2009) at 146 

40 °C. All PCR reactions were performed in a G-Storm GS1 thermal cycler (GRI, Braintree, UK) in a 25 µl 147 

reaction volume prepared using either a KAPA2G Robust kit (Kapa Biosystems, Woburn, MA, USA) or a 148 

MyTaq HS DNA polymerase kit (Bioline, London, UK), according to the enzyme manufacturer’s instructions. In 149 

all experiments, positive (Parafilaroides sp. DNA from EACS) and negative (no DNA) controls were included. 150 

Products were visualized on 1.5% agarose gels stained with either SYBR® safe (Life Technologies, Paisley, 151 

UK) or GelRed™ (Biotium, Hayward, CA, USA). PCR products were purified using a QIAquick PCR 152 

purification kit (QIAGEN) and sequenced at either GATC-Biotech (London, UK) or Source BioScience 153 

(Cambridge, UK). Sequence analysis was performed using CLC Main Workbench 6 version 6.6.5, 7, and 8 154 

(CLC bio, Swansea, UK).  Sequences were compared to the NCBI database using BLASTn (Basic Local 155 

Alignment Tool for nucleotides). 156 

Results 157 

The EACS worm variables that showed a significant difference between individual host animals (host effect) 158 

were body length (P<0.05), maximum oesophagus width (P<0.01), distance from NR to SEP (P<0.01) and width 159 

at vulva level (P<0.01) for females and nucleus length in the short SE gland (P<0.05) for males. The worms 160 

corresponded qualitatively to P. gymnurus and morphometric comparisons to previous P. gymnurus descriptions 161 

are in Tables 1 and 2. The bipartite vaginal sphincter (Figs. 2a-c) was composed of a wide distal and narrow 162 

proximal muscle in lateral view. The vulva and anus were subterminal (Figs. 2a-d) and the female reproductive 163 

system was didelphic and prodelphic. The spicules were equal (total length, P = 0.206; capitulum length, P = 0.1; 164 

total width, P = 0.815) with the proximal ends wide apart and the distal ends close together in ventral view, 165 

forming a “V” shape (Fig. 2e). The capitula were bent ventrally and were followed by a narrow calomus before 166 

leading to the long arcuated lamina (Figs. 2f-g). The calomus was shorter on the ventral side than on the dorsal 167 
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side (Fig. 2g). A terminal papilla and gubernaculum were visible in some males (Fig. 2f) and the gubernaculum 168 

decreased in thickness from the distal to the proximal end (Fig. 2f).  169 

One SE gland was shorter than the other (Tables 3 and S2), with the nucleus of the shorter gland located anterior 170 

to the nucleus of the other gland. In mature females containing larvae, the distal vaginal sphincter muscle was 171 

often patent (Fig. 2b). There appears to be a supplementary valve at the proximal end of the vaginal sphincter, 172 

which was visible in many specimens (Figs. 2a and c). The uteri sometimes contained hatched larvae, which 173 

were usually interspersed with unhatched ova. Fig. 2d shows the vulva and anus in ventral view in a mature 174 

specimen. Vulva and vaginal sphincter measurements for this specimen and a ventrally orientated immature 175 

adult and a complete early stage L5 are in Supplementary Table S3. In the L5, the vaginal sphincter was starting 176 

to develop (21 µm length), and the body length was 11.2 mm (Tables S3 and S4). The shape of the posterior end 177 

in the mature females ranged from bluntly rounded (Fig. 2b) to attenuated (Fig. 2h; Table 3). 178 

Although our nematodes were clearly morphologically P. gymnurus, the size of several characters differed 179 

significantly from previous descriptions of P. gymnurus from common seals (Tables 1 and 2). The mature female 180 

body length (Fig. 3; Table 1) was significantly greater than that described from WACS of Canada (3.4-fold; 181 

P≤0.0001) (Gosselin and Measures, 1997) and EACS of France (1.9-fold; P≤0.001) (Railliet, 1899). Our mature 182 

males were significantly shorter than our mature females (P<0.0001). Our males were significantly longer than 183 

the males from WACS of Canada (P≤0.001), but they were comparable in length to those from EACS of France 184 

(Fig. 3; Table 2). The oesophagus length (P≤0.0001) and width (P≤0.001) of our mature females were 185 

significantly larger than those of the WACS females (Gosselin and Measures, 1997) (Table 1). Railliet’s (1899) 186 

EACS females were significantly wider (P≤0.001) and the vulva to anus distance (P≤0.0001) and the larvae 187 

(P≤0.01) were significantly longer than ours (Table 1). The oesophagus length (P≤0.01) and width (P≤0.0001) of 188 

our males were significantly greater than those of the WACS P. gymnurus (Table 2). However, our males had 189 

significantly smaller total spicule (P≤0.05) and capitulum lengths (left, P≤0.0001; right, P≤0.001). Both EACS 190 

male characters measured in addition to body length by Railliet (1899) were significantly larger than ours 191 

(maximum width, P≤0.01; spicule length, P≤0.001)) (Table 2).  192 

Our females were also significantly longer than female P. gymnurus described from other Canadian seal host 193 

species (Gosselin and Measures 1997), except those from harp seals collected in Les Escoumins (Table 1). This 194 

included our females being significantly longer than those from harp seals collected in St. Brides (P≤0.05). Our 195 

other female worm measurements were comparable to those of both harp seal populations, with the exception of 196 

the SEP and the vulva to anus distance, which were significantly longer in the females from harp seals. The 197 
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maximum width and the oesophagus length and width were significantly greater in our females than those from 198 

grey and Holman ringed seals. However, the female measured from a Salluit ringed seal was significantly wider 199 

and the vulva to anus distance significantly longer than ours. 200 

Our males were significantly longer than the male P. gymnurus from Canadian harp, grey, and ringed seals 201 

(Table 2) (Gosselin and Measures, 1997). With the exception of oesophagus length and width, all other 202 

measurements of the male P. gymnurus from Les Escoumins harp seals were however greater than ours. The 203 

spicules of the St. Brides harp seal P. gymnurus were larger than ours and the other significant differences were 204 

SEP distance (longer in harp seal) and oesophagus width (greater in ours). The spicule lengths of the P. 205 

gymnurus from grey and ringed seals were comparable to ours, although the capitula were mostly longer than 206 

ours. The other male measurements for these 2 host species varied, some smaller than ours, some larger. 207 

Our immature adult female body lengths did not overlap with those of mature females previously described from 208 

common seals (Railliet 1899; Gosselin and Measures 1997) (Table S2). They were on average 2.6 times as long 209 

as the mature females from Canada and 1.4 times as long as the mature females from France. 210 

We added to GenBank: ITS-2, D3, and COI sequences for Dutch EACS and PCS Parafilaroides sp., and ITS-2 211 

and COI sequences for CSL Parafilaroides sp. (Table 4). The ITS-2 region of our EACS nematodes was 520 bp 212 

(Table 4) and 3 genotypes were represented, all of which differed from the P. gymnurus ITS-2 sequence already 213 

on GenBank (FJ87304) (Tables 4 and 5). The single nucleotide polymorphisms for the 3 genotypes were at 214 

positions 210, 211, 330, and 385 of the ITS-2 region (Table 5). The ITS-2 sequence of 1 of our 5 pooled samples 215 

had heterozygous peaks of equal height at some of these polymorphic sites that were not possible to base call, so 216 

our findings are based on the other 8 samples. PGHOLITS2GEN1 (genotype 1) (LT984653) was seen in 5 of our 217 

samples and was represented in all 4 host animals. PGHOLITS2GEN2 (genotype 2) (LT984651) was seen in 2 218 

samples and PGHOLITS2GEN3 (genotype 3) (LT984652) was seen in 1 sample. All 3 genotypes were 219 

represented in the animal from which the single nematode preparations were prepared and that was the only seal 220 

hosting genotypes 2 and 3. All the pooled samples were genotype 1. Using BLASTn, genotypes 1 and 3 221 

compared to the ITS-2 region of P. gymnurus from German Wadden Sea EACS (FJ787304) revealed 99.6% 222 

identity (Table 4), differing by 2 nucleotides (Table 5). Genotype 2 compared to FJ787304 with 99.4% identity 223 

(Table 4), differing by 3 nucleotides (Table 5). A sequence of 453 bp was produced within the ITS-2 region of 224 

the PCS Parafilaroides sp. (Table 4). This had 99.6% identity to FJ787304 (Table 4), differing by 2 nucleotides 225 

(Table 5). It had a unique base (T) at position 373 of the Dutch Parafilaroides ITS-2 sequence (Table 5). The 226 

Dutch and German worms had an A at this position. The PCS Parafilaroides sp. had 0.4% to 1.1% differences 227 
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from the Dutch worms. A sequence of 421 bp was obtained within the ITS-2 region of the CSL Parafilaroides 228 

sp. (Table 4). Although this compared to FJ787304 with only 64% coverage and 75% identity (208/276 bases) 229 

(Table 4), it compared to an unknown species of Parafilaroides (KP402084) with 93% coverage and 93% 230 

identity (368/396 bases). The D3 sequences for the Parafilaroides sp. from PCS and Dutch EACS were 231 

identical. They were 310 bp and compared to the 28S rDNA of P. decorus (AM039757) with 97.1% identity 232 

(Table 4). A D3 sequence of 315 bp was produced for the CSL Parafilaroides sp., which compared to P. decorus 233 

(AM309757) with 100% identity (Table 4). A 645 bp sequence was produced with the COI primers for 234 

Parafilaroides sp. from both subspecies of common seal (Table 4). There were 2 allelic types for Dutch EACS 235 

Parafilaroides sp., but only 1 for PCS Parafilaroides sp.. One of the Dutch allelic types (LT591890) had a T at 236 

nucleotide 85, in common with the PCS Parafilaroides sp. (LT591893), and these sequences differed from each 237 

other by a total of 8 nucleotides (1.24%). The second allelic type for the Dutch worms (LT591891) had a C at 238 

nucleotide 85 and differed from the PCS Parafilaroides sp. by 9 nucleotides (1.4%). The Dutch allelic types 239 

compared to P. normani mtDNA (KJ801815) with identities of 89.8% (LT591890) and 89.6% (LT591891) and 240 

PCS Parafilaroides sp. compared with 89.5% identity. The CSL Parafilaroides sp. produced a 595 bp sequence, 241 

which compared to KJ801815 with 91.4% identity and differed from Dutch EACS Parafilaroides sp. by 12.6% 242 

(LT591890) and 12.8% (LT591891) and PCS Parafilaroides sp. (LT591893) by 13.1%. 243 

Discussion 244 

The results of this study support the hypothesis that the Parafilaroides sp. found in EACS of the Dutch North 245 

Sea were P. gymnurus. There was however a significant difference in mature female P. gymnurus body length 246 

between individual host animals and over time (current compared to 1899) in EACS, between common seals 247 

from different geographic locations (western versus eastern Atlantic), and between different seal host species. 248 

The Parafilaroides have historically been described morphologically and thus few nucleotide sequences are 249 

available. This study is the first to describe P. gymnurus using both morphological and molecular methods. 250 

Morphological study of the Parafilaroides is difficult, the males are abursate and few morphological characters 251 

are available for species differentiation (Dougherty 1946; Gosselin and Measures 1997). They are small and 252 

delicate, difficult to extract, and since they parasitize wild animals, it can be tricky to access fresh specimens. 253 

Here, the long P. gymnurus and availability of specimens from numerous individual animals at Seal Centre 254 

Pieterburen have facilitated the description and measurement of many specimens. Also, we describe worms 255 

expectorated by living animals and obtained from fresh and frozen carcasses. Our description did not therefore 256 

suffer from a particular preservation method and should serve well as a reference for this species.  257 
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Despite the length of our specimens, their morphology was consistent with P. gymnurus (Railliet 1899; Gosselin 258 

and Measures 1997). We confirm the presence of the disputed caudal papillae in the males of this genus. We also 259 

describe additional features not previously recorded for P. gymnurus: the supplementary valve at the proximal 260 

end of the vaginal sphincter and the shorter calomus length on the ventral side of the spicules. However, 261 

although the latter was not mentioned in previous descriptions, the spicule illustration in Gosselin and Measures 262 

(1997) appears to show this feature. The SE glands have not previously been described in detail. As for O. 263 

circumlitus (Elson-Riggins 2002), they were different in size and offset with respect to one another. We do not 264 

consider the attenuation of the female posterior end to be a valid character for species differentiation within the 265 

Parafilaroides since our specimens ranged from bluntly rounded to attenuated. The attenuation ratio facilitated 266 

comparison of specimens. Sample preparation methods and/or a smaller number of host animals could have 267 

resulted in the degree of attenuation appearing to be a useful character in previous studies.  268 

The only Parafilaroides sequences previously available on the GenBank database were P. gymnurus for ITS-2, 269 

P. decorus for D3, and P. normani for COI. Thus, all  the Parafilaroides sp. we sequenced from different hosts 270 

most closely matched the Parafilaroides sequences available for each region sequenced, but with different 271 

percentage identities. Unfortunately, no sequences were available on Genbank for WACS P. gymnurus. The ITS-272 

2 results appear to agree with the morphology that the Dutch EACS Parafilaroides sp. were P. gymnurus. 273 

However, although these sequences exhibited high BLAST identity to P. gymnurus from Germany (Lehnert et 274 

al. 2010), these authors did not undertake a gold standard morphological study to prove the identity of their 275 

specimens. Interestingly, the ITS-2 data suggest that the PCS Parafilaroides sp. were also P. gymnurus. Despite 276 

efforts to obtain adult worms, we only had access to larvae from PCS and thus were not able to morphologically 277 

identify them. This is important because it is not clear in the literature whether PCS are infected by P. gullandae 278 

only or both P. gullandae and P. gymnurus. Thus, we suggest that morphological and molecular methods should 279 

be used in future studies to confirm which Parafilaroides species infect PCS. Our D3 results suggest that, as 280 

expected, the CSL Parafilaroides sp. were P. decorus. Although there was no D3 sequence available for P. 281 

gymnurus on GenBank, our nematodes from EACS and PCS presented with lower identity to the D3 expansion 282 

region of P. decorus than did the CSL nematodes. Since there were no COI sequence data available for P. 283 

gymnurus or P. decorus on GenBank, our results will be useful as references. The COI sequence differences 284 

(1.24 to 1.4%) between the Parafilaroides sp. from the 2 common seal subspecies supports the ITS-2 and D3 285 

results in that they were within the range considered likely for conspecifics (up to 2%) (Blouin 2002). As 286 

expected, the COI sequence difference between Parafilaroides sp. from common seals and CSL confirmed that 287 
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these were different species, and distinct from P. normani. Blaxter (2004) recommended that a nematode 288 

barcoding system should obtain data for at least 1 nuclear and 1 organellar gene. Here, we have data for 2 289 

nuclear regions and 1 organellar gene. In our hands we recommend D3 and COI to provide the most robust data 290 

if sample quality or resources are limiting.  291 

Generally, with the exception of body length, the morphological characters of the nematodes described by 292 

Railliet (1899) were larger than ours, but his sample size was limited and he only described 4 characters in 293 

addition to body length for females and 2 for males. Spicule length appears to be a variable measurement across 294 

host species. However, due to the curve of the structure, this can be difficult to measure. In the current study, 295 

each spicule was always measured more than once and our standard deviation was less for this character than for 296 

WACS P. gymnurus (Gosselin and Measures 1997). Within the spicules, the longer capitulum lengths of P. 297 

gymnurus from most other host species (including WACS) might be explained by the measurement method. We 298 

always measured our capitula on the dorsal side, where the calomus was longer and the capitulum was therefore 299 

shorter than on the ventral side.   300 

While it is difficult in a mixed infection to separate the effects of P. gymnurus from O. circumlitus, the 301 

differences between individual hosts could be indicative of differences in body condition and/or immune 302 

response to the parasite and they should be the subject of future studies. Such studies should involve measuring 303 

and genotyping the same individual worms from each host, something that was not possible in the current study 304 

due to the requirements for full morphological examination.  305 

It is not clear whether there is a relationship between P. gymnurus body length and pathogenicity. However, 306 

nematode fecundity can be positively associated with mature female length (Morand 1996) and the pathogenic 307 

effects of nematodes can depend on both their number and length (Mair et al. 2015). It is tricky to separate the 308 

effects of long worms from those of large numbers of worms and we suggest that future studies relating to P. 309 

gymnurus burden should account for both worm number and length.  310 

The reasons for the unusually long mature female P. gymnurus in EACS of the Dutch North Sea are unknown.  311 

Here, we present 4 hypotheses.  312 

There were limitations in earlier morphological studies: Sample sizes were limited in previous studies. Railliet 313 

(1899) described P. gymnurus using an unknown number of worms that were taken from 1 seal. Gosselin and 314 

Measures (1997) studied 5 males and 4 females from an undisclosed number of common seals. Also, these 315 

authors suggested that differences in body length between studies could be attributed to specimen maturity not 316 

being clearly indicated. However, Railliet (1899) and Gosselin and Measures (1997) clearly described mature 317 
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worms, their female body lengths did not overlap with ours, and it is to their work that we made our 318 

comparisons. Therefore, we feel this is an unlikely explanation.  319 

There are intraspecific genetic differences within P. gymnurus: The P. gymnurus in our dataset may be 320 

genetically different on a population level from P. gymnurus in WACS. Despite a concerted effort, we were 321 

unable to obtain specimens from WACS to sequence them ourselves. Also, it is not clear whether our females 322 

were longer than previously described from the same host subspecies (Railliet 1899) because of a recent 323 

evolution to longer body lengths. We therefore suggest that future studies compare our results to P. gymnurus 324 

from WACS and to museum specimens collected from EACS of the Dutch North Sea prior to 2009. 325 

The host species affects nematode growth: Host-parasite compatibility is an important factor determining 326 

infection rates of parasites (Lagrue et al. 2011). While parasites infect a wide variety of host species, they often 327 

reach maturity in only a subset of hosts. However, all host species recorded here and in Gosselin and Measures 328 

(1997) and Railliet (1899) were infected with mature females. Interspecific host differences in infection levels 329 

can be related to morphological and/or physiological compatibility, affecting parasite growth and fecundity 330 

(Lagrue et al. 2011). Gosselin and Measures (1997) suggested that their differences in P. gymnurus body length 331 

between seal species could have been due to a host species effect. However, this hypothesis cannot explain the 332 

difference in P. gymnurus body length between WACS and EACS, since they are common seal subspecies, and 333 

it also cannot explain the difference between EACS P. gymnurus from The Netherlands and France. Also, 334 

although our females were not significantly longer than the females from the harp seals of Les Escoumins, they 335 

were significantly longer than those from the harp seals of St. Brides. We do not think therefore that this 336 

hypothesis is a likely explanation. 337 

The environment within the host affects nematode growth: Although the size of an organism is partially 338 

determined genetically, the environment can also affect body size (Tuck 2014). In nematodes, substantial growth 339 

in organismal volume can occur via cell size during the adult stage, after cytokinesis has ended (Nyström et al. 340 

2002). Dietary restriction in the eutelic free-living nematode, C. elegans, is associated with reduced DBL-1 341 

signalling, so that it will not grow to its expected size (Tuck 2014). Growth is also modulated by signals from 342 

chemosensory neurons and from the gonad that are DBL-1 independent. Thus, it is clear that in free-living 343 

nematodes, within a species, environmental cues can affect body length.  344 

In parasitic nematodes, the environment within the host can affect adult body length, particularly of the females. 345 

This has been well studied in Teladorsagia circumcincta and Haemonchus contortus from sheep. Immunity to 346 

both these species includes modulating adult worm length and hence fecundity by the interaction of eosinophils 347 
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and parasite-specific IgA (Henderson and Stear 2006; Hernández et al. 2016). Generally, these worms have more 348 

severe effects on growing lambs than mature sheep, and nematode mass rather than number determines the 349 

severity of the infection (Stear et al. 1999; Mair et al. 2015). It has been proposed that immunity to T. 350 

circumcincta develops in 2 stages; first by the control of nematode growth and thus fecundity in lambs and 351 

subsequently by control of nematode number in sheep (Stear et al. 1999). Genetic variation in individual lambs 352 

has been shown to account for most of the variation in T. circumcincta adult length, including genetic variation 353 

in the nematodes themselves. Thus, the heritability of worm length is strong and within an individual lamb most 354 

of the adult female worms are of similar length. Lambs with long females also have long males, but the males 355 

are generally shorter. Jacobs and Rose (1990) found that the occurrence of “giant” adult Teladorsagia spp. in 356 

Greenlandic compared to British sheep was due to environmental rather than nematode genetic factors. Hong 357 

and Timms (1986) found that overall body length of adult T. circumcincta in sheep varied inversely to the degree 358 

of host resistance to the infection.  359 

Since nematode growth generally stops or slows after maturity, a long prepatent period is usually correlated with 360 

large body size (Morand 1996). Maturity occurs at the age that maximizes reproductive success and thus when 361 

mortality rate is low, such as in an immunosuppressed host, a long maturation time is favoured. This has 362 

implications for the effects of drugs that select for changes in parasite life histories (Skorping 2007). Leignel and 363 

Cabaret (2001) showed that both susceptible and resistant T. circumcincta increased in size when exposed to 364 

selective pressure by anthelmintics. The rehabilitation treatment at Seal Centre Pieterburen involved a regime 365 

including anthelmintics. A worm response to these drugs could explain some, but not all, of the current results 366 

because 3 of our study animals coughed mature female worms within 1-2 days of admittance. A modelling study 367 

by Jensen et al. (2017) suggested that rehabilitation and release of common seals could negatively affect the 368 

genetic diversity of the recipient seal population. Rehabilitation treatment might select for the survival of seals 369 

that lack immunity to P. gymnurus, thus allowing the worms to reach long body lengths over generations of 370 

seals. This may only partially explain our results though because the number of lungworm cases admitted to Seal 371 

Centre Pieterburen increased sharply only in recent years (Fig. 1), which would not have allowed enough time to 372 

impact the entire Dutch EACS population, and none of our animals had mature female P. gymnurus of the 373 

expected size.  374 

Hoffman et al. (2014) showed that genome-wide heterozygosity was reduced in almost 50% of the lungworm 375 

infected young EACS (under 1 year of age) compared to uninfected young EACS they tested from the Dutch 376 

Wadden Sea. This may have implications regarding the immune response of the infected animals. Indeed, the 377 
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genetic diversity of Wadden Sea common seals is amongst the lowest for the species (Kappe et al. 1997). Also, 378 

severe disease, such as Parafilaroides spp. induced pneumonia may occur in hosts immunocompromised by co-379 

infection with other agents (Measures, 2001). Thus, simultaneous infections may favour parasite establishment. 380 

Furthermore, exposure to toxic chemicals can increase the risk of deleterious effects, such as 381 

immunosuppression, in aquatic organisms (Measures 2001; Grieg et al. 2011; Lehnert et al. 2016). Persistent 382 

exposure to heavy metals and organic pollutants is associated with modulation of both innate and adaptive 383 

immunity in marine mammals and the prevalence and severity of their infectious diseases has increased in recent 384 

decades (Desforges et al.  2016). The immunotoxic threat to organisms in the Dutch North Sea is well 385 

documented (Rijks 2008; Laane et al. 2013; Mattig 2017). Lehnert et al. (2016) reported a correlation between 386 

pollutant exposure and transcription patterns of immune-relevant biomarkers in EACS and thus 387 

immunosuppression could play a role in the length of adult female P. gymnurus in this seal population. As top 388 

predators, seals bioaccumulate contaminants up the food chain and nursing pups are at a high trophic level 389 

(Frouin et al. 2011). The highest concentrations of persistent organic pollutants (POPs) in PCS pups from central 390 

California were those that had nursed in the wild and then lost mass post-weaning, when POPs were mobilized 391 

from blubber into blood (Greig et al. 2011). Thus, they have the potential to cause deleterious effects precisely 392 

when the pups are learning to forage and are exposed to some of their first parasitic infections, such as 393 

lungworms. And, although no recent studies have examined contaminant concentrations in Dutch EACS blubber, 394 

little is known about the concentration and effects of emerging contaminants and the combined effects of 395 

contaminant mixtures on marine organisms (Laane et al.  2013). 396 

Measures (2001) stated that during times of stress, Parafilaroides spp. infections may predispose healthy 397 

animals to respiratory disease. Indeed, Siebert et al. (1999) found an association between high mercury levels 398 

and the prevalence of parasitic infections and pneumonia in harbour porpoises from the North and Baltic Seas. 399 

Stress could be multifactorial and may also include climate change, hunting pressure, changes in prey 400 

abundance, habitat disturbance and noise. In this regard, it is interesting to compare the long female P. gymnurus 401 

of harp seals from Les Escoumins (Gosselin and Measures 1997), a region known to be polluted (Frouin et al. 402 

2011). However, at least at the time of sampling by Gosselin and Measures (1997), the common and grey seals 403 

from Les Escoumins were not infected by unusually long female P. gymnurus and they had a lower P. gymnurus 404 

prevalence than the harp seals from this location (Gosselin et al. 1998). The authors attributed this to the Arctic 405 

part of the harp seal life cycle. The harp seal was a new host record for P. gymnurus. But infected harp seals 406 

were in better body condition than uninfected harp seals, which the authors suggested could be due to more 407 
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intensive or earlier feeding post-weaning. Canadian Northwest Atlantic harp seals are subject to hunting 408 

pressure, averaging approximately 52,000 animals per year taken between 1982 and 1995 (Stenson 2014). Also, 409 

Gosselin and Measures (1997) sampled P. gymnurus between 1990 and 1994, which coincided with the collapse 410 

of groundfish species in the Gulf of St Lawrence and thus the diets of harp and grey seals changed (Morissette et 411 

al. 2009). We cannot pin down one exact reason for the long female P. gymnurus in Les Escoumins harp seals, 412 

but we can conclude that they were sampled at a time of flux for the St. Lawrence marine ecosystem, when the 413 

seals were under multiple stresses, which could have affected their ability to suppress lungworm growth. The 414 

EACS of the Dutch North Sea have also been exposed to multiple stresses and ecosystem change in recent years. 415 

The water temperature of the western Wadden Sea, which is an important nursery area for many fish species, 416 

rose by 1.5 °C over 25 years (van Aken 2008). Corresponding changes in fish phenology have occurred, 417 

including a general trend for fish to delay their annual immigration to and advance their emigration from the 418 

Wadden Sea (van Walraven et al. 2017; Tulp et al. 2017). There have been changes in fish habitat, coastal sand 419 

nourishments and nutrient dynamics, and fisheries have partially been responsible for declines in both large and 420 

small fish (Tulp et al. 2017). Also, rehabilitation has occurred at high levels in recent years (Jensen et al. 2017) 421 

and it has been suggested that this EACS population may be approaching or have reached the current capacity of 422 

the trilateral Wadden Sea (Brasseur et al. 2018). Population estimates for the Dutch Wadden Sea were however 423 

16,000 animals in 1900, after centuries of hunting (Dankers et al. 1990). We suggest that multiple anthropogenic 424 

stresses in Dutch EACS may provide an optimal environment for P. gymnurus and enable them to reach 425 

unusually long body lengths.  426 

The hypotheses proposed here should be tested with further studies. These should include a comparison of the 427 

current P. gymnurus measurements with museum specimens collected from Dutch EACS. It should be 428 

determined whether mature female O. circumlitus from Dutch EACS also differ in length from those in the 429 

literature. Studies examining potential associations between lungworm length and number and host stress 430 

markers, tissue contaminant concentration, body condition, heterozygosity and markers of immune function 431 

should be performed. Finally, clues to the dynamics of P. gymnurus infection in Dutch EACS may be revealed 432 

by comparing the diet and other important parameters, such as immunity in grey seals of the Dutch North Sea, 433 

since despite the presence of P. gymnurus in Canadian grey seals (Gosselin and Measures 1997), grey seals of 434 

the Dutch coast have parasitic pneumonia that is caused solely by O. circumlitus (Seal Centre Pieterburen, 435 

unpublished data). Parasites link different ecosystem trophic levels and in addition to affecting host fitness, they 436 

can be responsible for indirect effects on species interactions and ecosystem functioning (Philippart et al. 2017). 437 
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Our knowledge regarding how anthropogenic changes affect the impact of parasites on coastal ecosystems is 438 

however limited. The presence of unusually long lungworms in a top predator that is under multiple 439 

anthropogenic stressors could therefore be a useful indicator of ecosystem change for future studies. 440 

Conclusions 441 

We found no apparent morphological differences, except body length, between Dutch North Sea EACS 442 

Parafilaroides sp. and earlier descriptions of P. gymnurus, leading us to conclude that they were P. gymnurus. 443 

On a molecular level, the P. gymnurus from Dutch EACS were the same species as those recorded from German 444 

EACS, but since Lehnert et al. (2010) did not morphologically confirm the identity of their Parafilaroides, this 445 

does not verify the identity of our worms. The P. gymnurus in Dutch EACS were conspecific with those we 446 

sequenced from PCS. There was a significant difference in body length of mature female P. gymnurus between 447 

seal host species, geographic location (western versus eastern Atlantic) and over time in EACS. There was also 448 

an individual host effect on mature female P. gymnurus length in Dutch EACS and, with the exception of the 449 

harp seals of Les Escoumins (Gosselin and Measures 1997), this host had the longest female body lengths that 450 

have been described to date. Intraspecific genetic differences in P. gymnurus and environmental conditions 451 

within the host may provide an optimal environment for P. gymnurus and thus enable them to reach 452 

unexpectedly long body lengths.  453 
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Tables 606 

Table 1 Morphometric characteristics of mature (uteri contained embryonated ova) female Parafilaroides 607 

gymnurus in eastern Atlantic common seals (EACS) from the Dutch North Sea compared to female P. gymnurus 608 

from western Atlantic common seals of Canada, EACS of France, and harp, grey and ringed seals of Canada 609 

Character Host and Geographic Location 

Common Seals Harp Sealsb Grey Sealsb Ringed Sealsb 

Dutch 
North 
Seaa 

Les 
Escoumin
sb 

Baie de 
Sommesc 

Les 
Escoumin
s 

St. Bride’s Les 
Escoumin
s 

Port Hood Holman Salluitd 

Body Length 
(mm) 

43.72 ± 
10.77 
(13), 
25.43 - 
69.73 (27)  
 

12.55 ± 
4.30 (4) 
**** 

22.5 *** 35.18 ± 
17.27 (5) 

29.58 ± 
8.32 (5) * 

20.12 ± 
1.85 (3) ** 

20.99 ± 
4.47 (4) ** 

13.32 ± 
3.24 (5) 
**** 

17.46 (1) 
*** 

Maximum 
Widthe 

149 ± 13 
(13), 100 
- 202 (28) 

128 ± 53 
(5) 

170 *** 173 ± 55 
(5) 

152 ± 44 
(5) 

106 ± 20 
(3) *** 

109 ± 16 
(4) **** 

96 ± 37 
(5) *** 

171 (1) 
*** 

Oesophagus 
Length 

165 ± 8 
(12), 140 
- 200 (26) 

139 ± 7 
(5) **** 

N/M 170 ± 20 
(5) 

164 ± 4 
(5) 

144 ± 5 
(3) *** 

151 ± 15 
(4) * 

141 ± 6 
(5) **** 

N/M 

Oesophagus 
Width 

19 ± 1 
(11), 17 - 
22 (22) 

15 ± 1 (5) 
*** 

N/M 18 ± 3 (5) 17 ± 1 (5) 16 ± 1 (3) 
* 

14 ± 2 (4) 
*** 

12 ± 2 (5) 
**** 

N/M 

Nerve Ringf 59 ± 12 
(12), 30 - 
91 (25) 

48 ± 8 (5) N/M 70 ± 5 (5) 70 ± 9 (5) 59 ± 9 (2) 61 ± 7 (4) 53 ± 2 (5) N/M 

Secretory-
Excretory 
Poref 

38 ± 7 
(12), 22 - 
56 (23) 

39 ± 11 
(5) 

N/M 54 ± 5 (4) 
** 

57 ± 8 (5) 
*** 

49 (1) *** 46 ± 22 
(4) 

42 ± 7 (5) N/M 

Tail Length 31 ± 6 
(12), 17 - 
54 (26) 

27 ± 2 (5) 30 31 ± 4 (5) 29 ± 3 (5) 28 ± 1 (3) 32 ± 7 (3) 26 ± 6 (5) 24 (1) ** 

Vulva to 
Anus 

30 ± 7 
(12), 17 - 
90 (25) 

25 ± 7 (5) 48 *** 51 ± 17 
(5) ** 

42 ± 6 (5) 
** 

32 ± 13 
(2) 

34 ± 10 
(3) 

26 ± 14 
(5) 

42 (1) *** 

Length of 
Larvaeg (L1)  

223 ± 14  
(3), 207 - 
234  
 

N/A 290 ** 254 

Measurements in µm unless otherwise stated. aUnless otherwise stated, measurements given as per host mean ± SD followed 610 

by host sample size (parentheses), range for all worms measured followed by total sample size (parentheses). bGosselin and 611 

Measures (1997): mean ± SD, followed by sample size (parentheses) for all individuals measured. cRailliet (1899): mean for 612 

all individuals measured. dN=1, data was compared by calculating chance for this data given the estimates of the distribution 613 

given by the mean and SD of our own data. eIncludes cuticle. fMeasured from anterior end. gNorth Sea larval measurements 614 

given as mean ± SD followed by sample size (parentheses) and range for all individuals measured, Gosselin and Measures 615 

(1997) reported an average value for all host species. N/M = not measured. *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. 616 
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 Table 2 Morphometric characteristics of male Parafilaroides gymnurus in eastern Atlantic common seals 617 

(EACS) from the Dutch North Sea compared to P. gymnurus from western Atlantic common seals of Canada, 618 

EACS of France, and harp, grey and ringed seals of Canada 619 

Measurements in µm unless otherwise stated. aUnless otherwise stated, measurements given as per host mean ± SD followed 620 

by host sample size (parentheses), range for all worms measured followed by total sample size (parentheses). bGosselin and 621 

Measures (1997): mean ± SD, followed by sample size (parentheses) for all individuals measured. cRailliet (1899): mean for 622 

all individuals measured. dN=1. Data was compared by calculating chance for this data given the estimates of the distribution 623 

Character Host and Geographic Location 

Common Seals Harp Sealsb Grey Sealsb Ringed Sealsb 

Dutch North 
Seaa 

Les 
Escoumi
nsb 

Baie de 
Sommesc 

Les 
Escoumi
ns 

St. 
Bride’s 

Les 
Escoumi
nsd 

Port 
Hood 

Holman Salluit 

Body Length 
(mm) 

15.87 ± 3.00 
(11), 10.32 - 
22.22 (34) 

 
 

9.37 ± 
1.77 (5) 

*** 

16.5 11.95 ± 
2.55 (5) * 

9.41 ± 
3.97 (5) 
** 

8.84 (1) 
*** 

9.94 ± 
1.54 (4) 
** 

8.87 ± 
1.28 (7) 
**** 

10.57 ± 
1.9 (5) ** 

Maximum 
Widthe 

108 ± 10 
(12), 80 - 
135 (35) 

 
 

112 ± 30 
(5) 

120 ** 133 ± 24 
(5) ** 

110 ± 21 
(5) 

100 (1) * 100 ± 12 
(9) 

96 ± 27 
(7) 

103 ± 11 
(5) 

Oesophagus 
Length 

151 ± 7 (10), 
129 - 189 

(30) 
 
 

136 ± 7 
(5) ** 

N/M 152 ± 15 
(5) 

144 ± 13 
(5) 

152 (1) 137 ± 7 
(6) ** 

138 ± 19 
(7) 

137 ± 6 
(5) ** 

Oesophagus 
Width 

17 ± 1 (11), 
14 - 20 (27) 

 
 

13 ± 2 (5) 
**** 

N/M 18 ± 2 (5) 15 ± 0 (5) 
**** 

18 (1) * 14 ± 3 (6) 
** 

15 ± 3 (7) 
* 

16 ± 2 (5) 

Nerve Ringf 56 ± 14 (11), 
30 - 86 (33) 

 
 

46 ± 8 (5) N/M 71 ± 9 (5) 
* 

66 ± 7 (5) 63 (1) 55 ± 8 (5) 58 ± 7 (7) 62 ± 6 (5) 

Secretory-
Excretory 
Poref 

33 ± 9 (8), 
21 - 58 (26) 

 
 

32 ± 15 
(5) 

N/M 47 ± 5 (3) 
* 

54 ± 6 (5) 
*** 

48 (1) ** 41 ± 5 (5) 44 ± 5 (6) 
* 

44 ± 6 (5) 
* 

Tail Length 12 ± 3 (11), 
5 - 17 (21) 

 
 

13 ± 3 (5) N/M 17 ± 3 (5) 
** 

15 ± 3 (4) 14 (1) 15 ± 2 (7) 
* 

15 ± 6 (8) 13 ± 2 (5) 

Left Spicule 
Lengthg 

42 ± 3 (8), 
37 - 52 (17) 

 
 

51 ± 8 (4) 
*  

44.5 *** 

46 ± 2 (5) 
* 

46 ± 2 (4) 
* 

40 (1) 41 ± 5 (6) 42 ± 5 (8) 45 ± 4 (5) 

Right Spicule 
Lengthg 

41 ± 3 (11), 
37 - 45 (23) 

 
 

46 ± 4 (5) 
* 

46 ± 3 (5) 
** 

47 ± 4 (4) 
** 

43 (1) 40 ± 5 (6) 43 ± 5 (8) 44 ± 4 (5) 

Left Capitulum 
Lengthh 

6 ± 1 (9), 5 - 
7 (19) 

12 ± 2 (5) 
**** 

N/M 10 ± 1 (5) 
**** 

9 ± 1 (5) 
**** 

10 (1) *** 9 ± 1 (7) 
**** 

9 ± 4 (8) 9 ± 2 (5) 
** 

Right 
Capitulum 
Lengthh 

6 ± 1 (11), 5 
- 8 (22) 

 
 

9 ± 1 (4) 
*** 

N/M 9 ± 1 (5) 
**** 

9 ± 2 (5) 
** 

9 (1) *** 8 ± 1 (6) 
** 

9 ± 3 (7) 
* 

9 ± 1 (5) 
**** 

Gubernaculum 
Length 

15 ± 2 (11), 
11 - 18 (15) 

 
 

16 ± 2 (5) N/M 19 ± 2 (5) 
** 

14 ± 1 (4) 13 (1) * 13 ± 3 (6) 14 ± 2 (7) 13 ± 1 (5) 
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given by the mean and SD of our own data. eIncludes cuticle. fMeasured from anterior end. gFollowing curve of the structure. 624 

hMeasured on the dorsal side. N/M = not measured. *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. 625 

 Table 3 Morphometric characteristics of mature female (uteri contained embryonated ova) and male 626 

Parafilaroides gymnurus obtained from eastern Atlantic common seals of the Dutch North Sea 627 

Measurements in µm unless otherwise stated and given as per host mean ± SD followed by host sample size (parentheses), 628 

range for all worms measured followed by total sample size (parentheses). aIncludes cuticle. bMeasured from anterior end. 629 

cOrientated in lateral view.  dTail length/width (at anus). N/A = not applicable. 630 

  631 

Character Female Male 

Widtha at Intestine 74 ± 11 (12), 49 - 111 (26) 52 ± 9 (10), 36 - 83 (30) 

Secretory-Excretory (SE) Pore to Nerve 
Ring 
 
 

23 ± 10 (11), 7 - 41 (20) 15 ± 9 (8), 2 - 41 (26) 

Long SE Gland Length 691 ± 163 (9), 457 - 978 (14) 541 ± 60 (12), 436 - 715 (23) 

Short SE Gland Length 608 ± 163 (10), 357 - 911 (14) 464 ± 55 (10), 322 - 642 (21) 

Long SE Gland Nucleus Length 
 
 

24 ± 3 (4), 17 - 31 (7) 21 ± 7 (8), 12 - 35 (15) 

Short SE Gland Nucleus Length 24 ± 3 (5), 17 - 30 (9) 18 ± 8 (7), 7 - 30 (17) 

Long SE Gland Nucleus Width 
 
 

18 ± 1 (4), 16 - 20 (7) 13 ± 3 (8), 6 - 17 (15) 

Short SE Gland Nucleus Width 
 
 

20 ± 5 (5), 12 - 27 (9) 13 ± 3 (7), 9 - 20 (17) 

Vulva Positionb (mm) 45.46 ± 10.01 (12), 29.29 -69.66 (24) N/A 

Vulva, % Body Length 99.85 ± 0.04 (12), 99.66 - 99.90 (24) N/A 

Vulva to Posterior 
 
 

61 ± 10 (12), 37 - 123 (26) N/A 

Vaginal Sphincter Lengthc 

 

 

49 ± 7 (12), 35 - 62 (23) N/A 

Widtha at vulva 
 
 

79 ± 12 (12), 52 - 104 (24) N/A 

Widtha at anus 
 
 

54 ± 14 (12), 30 - 89 (23) N/A 

Attenuation Ratiod 0.59 ± 0.13 (12), 0.39 - 0.88 (23) N/A 

Left Spicule Maximum Width 
 
 

N/A 8 ± 1 (7), 5 - 11 (19) 

Right Spicule Maximum Width N/A 8 ± 1 (9), 5 - 11 (22) 
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Table 4 GenBank BLASTn results for the ITS-2 region of rDNA, D3 expansion loop (28S rDNA) and COI 632 

region of Parafilaroides sp. from eastern Atlantic common seal (EACS) of the Dutch North Sea and Pacific 633 

common seal (PCS) and California sea lion (CSL) from the California coast  634 

Region of DNA Host Accession 
Sequence 
Length 

Identity to P. gymnurus (FJ787304) 

% Cover % ID E value 

ITS-2  EACS 
 
 
PCS 
CSL 

LT984653 
LT984651 
LT984652 
LT984654 
LT984655 

520 
520 
520 
453 
421 

100 
100 
100 
100 
64 

99.6 
99.4 
99.6 
99.6 
75.4 

0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
7.00E-45 

D3 Expansion Loop 
(28S) Host Accession 

Sequence 
Length 

Identity to P. decorus (AM039757) 

% Cover % ID E value 

EACS 
PCS 
CSL 

LT98456 
LT984657 
N/A 

310 
310 
315 

100 
100 
100 

97.1 
97.1 
100 

6.00E-146 
6.00E-146 
2.00E-158 

COI 

Host Accession 
Sequence 
Length 

Identity to P. normani (KJ801815) 

% Cover % ID E value 

EACS 
 
PCS 
CSL 

LT591890 
LT591891 
LT591893 
LT591892 

645 
645 
645 
595 

100 
100 
100 
99 

89.8 
89.6 
89.5 
91.4 

0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

 635 
Table 5 Polymorphic sites in the ITS-2 region of rDNA in Parafilaroides sp. from eastern Atlantic common seal 636 

(Phoca vitulina vitulina) of the Dutch North Sea (PGHOLITS2GEN1-3) (LT984653, LT984651, LT984652) 637 

compared to the German P. gymnurus reference sequence (FJ787304) and Parafilaroides sp. from Pacific 638 

common seal (Phoca vitulina richardsi) of California, USA (PSPPVUSAITS2) (LT984654). 639 

aSequence begins from base 1 of the Dutch Parafilaroides sp. sequences 640 

Figure Legends 641 

Fig. 1 Number of live-stranded eastern Atlantic common seals admitted to Seal Centre Pieterburen (1971-2013). 642 

Each year starts with the stranding of the first orphaned pup, which is usually in May  643 

Fig. 2 Morphology of female (a-d, h) and male (e-g) Parafilaroides gymnurus from eastern Atlantic common 644 

seals of the Dutch North Sea. Bar is 50 µm unless otherwise stated. A = anus; Ca = capitulum; Co = calomus; 645 

DM = distal vaginal sphincter muscle; G = gubernaculum; L = lamina; P = papilla; PM = proximal vaginal 646 

sphincter muscle; S = spicule; SV = supplementary valve, V= vulva; VS = vaginal sphincter, labelled at 647 

indentation between distal and proximal sphincters. a Bipartite sphincter in an immature female (no embryonated 648 

Genotype 
SNP Positiona 

210 211 330 373 385 

FJ787304 T T A A G 
LT984653 T A A A A 
LT984651 C T G A A 
LT984652 C T A A A 
LT984654 T A A T G 
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ova visible), lateral view, attenuation ratio 0.57; b Bipartite vaginal sphincter of a mature female (containing 649 

larvae), lateral view, with patent distal muscle and bluntly rounded tail (ratio 0.39); c Mature female showing 650 

supplementary valve at proximal end of vaginal sphincter, lateral view, attenuation ratio 0.63; d Ventral view of 651 

mature female, showing vulva and anus; e Ventral view of mature male showing spicules: proximal ends are 652 

wide apart and distal ends are close together, forming a ‘V’ shape; f Lateral view of mature male showing both 653 

spicules, gubernaculum, and terminal caudal papilla; g Lateral view of right spicule showing capitulum, 654 

calomus, and lamina. h Attenuated tail (ratio 0.88) of mature female, lateral view 655 

Fig. 3 Histogram showing the total body length of mature adult Parafilaroides gymnurus from eastern Atlantic 656 

common seals (EACS, Phoca vitulina vitulina) of the Dutch North Sea compared to P. gymnurus from western 657 

Atlantic common seals (Phoca vitulina concolor) of Canada (Gosselin and Measures 1997) and EACS of France 658 

(Railliet 1899). **** P<0.0001, *** P<0.001 659 

 660 

All figures were created using Adobe Illustrator. 661 


