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Abstract 15 

Reason for study: Tungsten road nails are commonly used by farriers to increase grip between the 16 

hoof and the ground surface. There is limited evidence relating the use of road nails to the 17 

fundamental mechanics of movement. Grip is important for efficient deceleration on landing and 18 

subsequent propulsion, but this must be balanced against an amount of slip to divide the landing force 19 

into horizontal as well as vertical subcomponents. Objective: To quantify the effect of lateral heel 20 

road nail placement on weight bearing and propulsion in horses trotting on tarmac. Method: In this 21 

intervention study, wireless inertial measurement units measured vertical movement asymmetry in 10 22 

horses. Differences in head and pelvic movement asymmetry before/after subsequent application of 23 

laterally placed road nails to forelimb and hindlimb hooves in a randomised order were compared to 24 

zero value (no change) with a one-sample t-test, P<0.05. Results: Left-to-right tuber coxae movement 25 

amplitude difference was significantly more negative (-3.25 mm, P=0.03), suggesting more right than 26 

left tuber coxae movement amplitude, after application of a road nail to the left hindlimb. No 27 

movement asymmetries at the poll, withers or sacrum were detected following nail placement (all 28 

P>0.055). Conclusion: Pelvic movement indicates a very small increase in weight bearing and 29 

propulsion provided by the hindlimb with a laterally placed road nail compared to the contralateral 30 

hindlimb. Further work is needed to investigate slip and grip related parameters at the level of the 31 

hoof and to investigate the long-term consequences of very small changes in movement asymmetry. 32 
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1. Introduction 37 

Horseshoes operate at the interface between horses’ hooves and the surfaces they are moving over. 38 

Modulating fundamental characteristics of the hoof-surface interface, such as friction, traction, shock 39 

damping or the parameters of the propulsive effort [1] can be achieved in two ways: 1) adapting 40 

surface characteristics; or 2) modifying the shoeing regime. The first approach is efficient for 41 

managing sports and racehorses that regularly work on surfaces specifically dedicated to equestrian 42 

activities. Considerable research efforts have been implemented to this effect in recent years (e.g. [2–43 

7]) and it is important to relate the objectively measurable characteristics to the subjective assessment 44 

of expert riders [2]. In contrast, adapting multi-user surfaces, such as roads, to horse specific 45 

requirements is difficult to justify if this compromises the safety or efficiency of other users, such as 46 

motor vehicles. In this case, it may be more appropriate to alter a horse’s shoes to achieve the required 47 

shoe-surface interaction. Horseshoes serve the additional purpose of protecting the hooves against 48 

excessive wear on these surfaces [8]. 49 

  50 

It is apparent that hard surfaces have different characteristics to other equestrian footings: for 51 

example, Barstow et al. [9] identified higher hoof impact shock related frequencies and powers on 52 

road surfaces compared to grass and gravel. Reduced frequencies and amplitudes proximal to the 53 

fetlock joint indicate that the equine limb is efficient at damping impact shock waves [10]. The initial 54 

braking time, during which the hoof may experience some degree of horizontal slip, occurs at the 55 

beginning of the stance phase and has been identified as an important parameter in the damping 56 

process, with a shorter time associated with more rapid oscillations [10]. The association between slip 57 

time and distance can be manipulated by using different shoeing materials and/or traction devices that 58 

affect horizontal (braking) and vertical force production [11–13]. Tungsten road nails may be fixed to 59 

the shoes of horses exercising on roads to help reduce excessive slippage at foot contact [14]; a 60 

similar approach to the use of studs on grass surfaces [15]. It is also plausible that the use of road nails 61 

is related to changes in force production, similar to the changes seen as a function of different shoeing 62 

materials [12,13].  63 

 64 

Upper body movement asymmetries can be quantified using inertial measurement units (IMUs). In 65 

lame horses, these displacement asymmetries (mm-scale) have been associated with asymmetries in 66 

vertical and horizontal force production [16–18]. Hence, by quantifying upper body movement 67 

asymmetries, it is possible to identify whether an asymmetrical intervention, i.e. an intervention 68 

applied to one side (or one limb) of the horse only, will lead to an asymmetrical force production. 69 

Here, we hypothesize that applying a road nail to the shoe of one limb will initiate upper body 70 

movement asymmetries indicative of increased vertical force production with that limb compared to 71 

the contralateral limb; by reducing slip through the use of a road nail, the horse would then be able to 72 

produce vertical force more efficiently.  73 



 74 

2. Materials and Methods 75 

Ethical approval for this intervention study was granted by the Ethics and Welfare committee at the 76 

authors’ institution (URN: M2017 0120). Informed consent was given by the owners of the horses 77 

participating in this study.   78 

 79 

2.1 Data collection 80 

Ten horses that ranged in height at the withers from 1.52 m to 1.70 m and that were in regular work 81 

and not considered lame by their owners were included in the study. Wireless MTw (Xsens, The 82 

Netherlands) IMUs were fitted to the poll, withers, sacrum and left and right tuber coxae of each 83 

horse. Data collection for each shoeing condition was conducted with the horses trotting in-hand in a 84 

straight line over tarmac surfaces for a minimum of 25 strides. The tarmac was dry and free from 85 

surface debris, and the ambient temperature fell between 18 and 20°C. Data were transmitted 86 

wirelessly at an update rate of 60 Hz to a nearby computer running dedicated data collection 87 

(MTManager 4.8, Xsens, The Netherlands) and data processing (MATLAB R2015b) software. Data 88 

from different horses were collected on different days at four equestrian locations across 89 

Hertfordshire. At the time of data collection, each horse was at the end of its shoeing cycle: between 90 

five and six weeks after the previous shoeing. All horses had their symmetry assessed before the 91 

insertion of any road nails to ensure that any subsequent differences after road nail emplacement 92 

could be attributable to the nail and not a consequence of inherent laterality or asymmetrical gait 93 

patterns. Road nails were fitted into the last nail hole of the lateral heel of the horses’ shoe(s) on one 94 

side; the effect of forelimb and hindlimbs nails were assessed both independently and collectively in a 95 

randomised order. For this asymmetrical intervention study, horses were randomly allocated to one of 96 

two groups: group 1 had road nails fitted to the left fore- and/or hindlimb; group 2 had road nails 97 

fitted to the right fore- and/or hindlimb. Movement asymmetry parameters for each horse and each 98 

condition were then calculated as median values over all stride cycles under each of the following 99 

conditions:  100 

1. Baseline condition without road nails. 101 

2. With road nail used in either one front or one hind shoe. 102 

3. With road nail used in both front and hind shoe in ipsilateral limbs. 103 

The time taken to insert nails and reset the gait analysis system (8–10 minutes) was used as the 104 

washout period between trials.  105 

 106 

2.2 Data Processing 107 

Continuous data streams were first integrated to vertical displacement based on each IMU’s 108 

orientation and tri-axial acceleration data [19] and then segmented into strides following published 109 

protocols [20]. The IMU based approach adopted here works by quantifying the differences in 110 



movement between two halves of a trot stride as a function of each intervention. Therefore, the 111 

interventions outlined (section 2.1) were deliberately ‘one-sided’, i.e. road nail applied to only the left 112 

or right leg, so any movement asymmetry resulting from small increases or decreases in force during 113 

both stance phases could be detected. Movement asymmetry would be unaffected if the force were to 114 

be changed equally in both limbs. 115 

 116 

For each stride cycle, 10 movement asymmetry parameters were calculated: three each for the head, 117 

withers and sacrum mounted IMUs, and one parameter for comparing vertical displacement between 118 

left to right tuber coxae [18]. The difference between the two minima, maxima or upward movement 119 

amplitudes measured in the two halves of each stride for the head (H), withers (W) and pelvis (P) 120 

were quantified as: HDmin, HDmax and HDup; WDmin, WDmax and WDup; and PDmin, PDmax 121 

and PDup, respectively. Hip hike difference (HHD) was calculated as the difference between the left 122 

tuber coxae amplitude during right hind stance and the right tuber coxae amplitude during left hind 123 

stance. To allow a straightforward combination of data from horses in group 1 (road nails applied to 124 

left limbs, N=6, Table 1) and group 2 (road nails applied to right limbs, N=4, Table 1), the movement 125 

asymmetry values of horses in group 2 were inverted (their data multiplied by -1) so we effectively 126 

measured the mirror image of these horses. 127 

 128 

2.3 Statistical testing 129 

Histograms were used to assess for normality. The resulting data from ‘before’ and ‘after’ the 1-sided 130 

interventions for the different horses were tested for significant differences using one-sample t-tests 131 

(P<0.05) performed using SPSS statistical software. These tests compared the differences in 132 

movement asymmetry parameters before/after application of road nails to a value of zero, i.e. a 133 

hypothesized value representing ‘no change’ between the condition before and the condition after the 134 

use of road nails. It is necessary to study differences in movement asymmetry between the ‘baseline’ 135 

and different interventions to remove the masking effect of horses that start from different ‘starting 136 

points’ along the movement asymmetry scale. Therefore, a horse’s ‘baseline’ asymmetry may be ‘left’ 137 

or ‘right’ sided, and hence create negative or positive values, but if it has a ‘before-after’ difference of 138 

zero then the output of a one-sample t-test test will indicate that the road nail intervention has had no 139 

effect on movement asymmetry, or the underlying force asymmetry.  140 

 141 

For forelimb related movement asymmetry parameters (HDmin, HDmax, HDup, WDmin, WDmax, 142 

WDup), differences between the condition before and after the application of the forelimb road nail 143 

were calculated. Differences between the baseline condition and each instance of applying a road nail 144 

to the front limb were also calculated. For hindlimb related movement asymmetry parameters 145 

(PDmin, PDmax, PDup, HHD), differences between the condition before and after each instance of 146 



applying a road nail to a hindlimb were calculated. Differences between the baseline condition and 147 

each instance of applying a road nail to the hindlimb were also calculated.  148 

 149 

In the one-sample t-test, all data for the hindlimb conditions (hindlimb nail only and forelimb and 150 

hindlimb nails) or forelimb conditions (forelimb nail only and forelimb and hindlimb nails) were 151 

considered together when evaluating the effect of a hindlimb or forelimb nail for two reasons. First, 152 

the repeated-limb measurements from the same horse originate from two different experimental 153 

scenarios. Second, previous studies have shown small ‘compensatory’ changes in movement 154 

asymmetry from the front to hind or vice versa [21]. 155 

 156 

3. Results 157 

3.1 Baseline Movement Asymmetry Values 158 

Movement asymmetry values for the head, withers and pelvis of all horses and descriptive statistics 159 

can be found in table 1 for the baseline condition, i.e. before application of any road nails. Average 160 

asymmetry values are generally small; ranging from -3.4 mm to +4.6 mm. Variation across horses is 161 

considerable with the most negative baseline asymmetry value found as -31 mm and the most positive 162 

baseline asymmetry value as +20 mm. This results in mean absolute values (meanabs, table 1), i.e. 163 

eliminating the direction of asymmetry before calculating a mean, that range between 5 mm and 12 164 

mm. 165 

 166 

Table 1: Movement asymmetry values for all horses for the head (H), withers (W), mid-pelvis (P) and 167 

tuber coxae (HHD) at trot in the baseline condition (before any application of road nails). 168 
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1 L 25 783 -5 3 -4 -7 -10 -14 2 5 7 12 

2 L 25 749 7 7 13 9 2 11 -6 6 -1 -1 

3 R 28 670 10 7 17 9 9 17 -9 -8 -17 -22 

4 L 25 723 -7 0 -8 -1 3 1 -8 -1 -9 -7 

5 L 33 650 17 -9 10 -3 1 -2 8 -1 6 10 

6 R 25 734 6 -10 -5 -4 -1 -3 -1 5 4 12 

7 R 25 792 15 4 20 4 -7 -5 -12 8 -6 -13 

8 L 27 727 5 -6 1 -1 -3 -5 2 13 17 18 

9 R 29 693 -31 11 -16 -11 -9 -21 4 8 14 12 

10 L 32 670 -18 -2 -17 -7 -6 -13 -5 11 8 7 



Mean 27 719 -0.1 0.5 1.1 -1.2 -2.1 -3.4 -2.5 4.6 2.3 2.8 

Std 3 48 15.2 7.2 13.3 6.7 6.0 11.4 6.5 6.3 10.6 13.0 

Min 25 650 -31 -10 -17 -11 -10 -21 -12 -8 -17 -22 

Max 33 792 17 11 20 9 9 17 8 13 17 18 

Meanabs NA NA 12.1 5.9 11.1 5.6 5.1 9.2 5.7 6.6 8.9 11.4 

Stdabs NA NA 8.3 3.6 6.5 3.5 3.5 6.9 3.6 3.9 5.4 5.9 

 169 

3.2 Effect of Road Nails 170 

None of the forelimb related asymmetry variables (HDmin, HDmax, HDup, WDmin, WDmax, 171 

WDup) showed a significant difference before/after the application of a road nail in the forelimb. 172 

Mean absolute differences before/after road nail application ranged from -0.3 mm for WDmin to 4.1 173 

mm for HDup with standard deviations between 3.4 mm (WDmin) and 8.8 mm (HDup); see Table 2 174 

for details. 175 

 176 

Table 2: Sample size, descriptive statistics and p-values for a one-sample t-test for difference 177 

before/after the application of a forelimb road nail. Listed are forelimb asymmetry related parameters 178 

describing head (HDmin, HDmax, HDup) and withers (WDmin, WDmax, WDup) movement 179 

asymmetries. 180 

Variable N Mean (mm) Std (mm) Stderr (mm) Sig. 

HDmin 20 3.4 7.6 1.7 0.061 

HDmax 20 0.9 4.0 0.9 0.353 

HDup 20 4.1 8.8 2.0 0.055 

WDmin 20 -0.3 3.4 0.8 0.694 

WDmax 20 1.5 4.1 0.9 0.132 

WDup 20 0.2 4.1 0.9 0.872 

 181 

After application of a road nail to the left hindlimb, HHD showed a significant difference of -3.3 mm 182 

(P=0.031) (Figure 1). The negative sign indicates a type of pelvic movement asymmetry pattern 183 

typically seen in right hindlimb lame horses, i.e. horses showing reduced force production with the 184 

right hindlimb; in this case, the limb without the road nail. Mean differences before/after road nail 185 

application had the largest absolute value of -3.3 mm for HHD and the smallest absolute value of -0.7 186 

mm for PDmax. Standard deviations of before/after differences ranged from 2.9 mm for PDmin to 6.2 187 

mm for HHD; see Table 3 for details. PDmin, PDmax and PDup showed no significant differences 188 

before/after the application of road nails. 189 

 190 



Table 3: Sample size, descriptive statistics and p-values of a one-sample t-test for difference 191 

before/after application of hindlimb road nail. Hindlimb asymmetry related parameters describing 192 

mid-pelvic (PDmin, PDmax, PDup) and tuber coxae (HHD) related asymmetry are listed. 193 

Variable N Mean (mm) Std (mm) Stderr (mm) Sig. 

PDmin 20 -1.2 2.9 0.7 0.093 

PDmax 20 -0.7 3.6 0.8 0.392 

PDup 20 -1.6 5.6 1.3 0.219 

HHD 20 -3.3 6.2 1.4 0.031 

 194 

195 
Figure 1: Boxplot showing the before/after difference for hindlimb related asymmetry parameters 196 

(PDmin, PDmax, PDup, HHD) for application of a hindlimb road nail. Each box contains 2 samples 197 

from each of the ten horses, i.e. N=20 samples for each box. Boxes are the 25th and 75th percentile, 198 

line within box is the median, T-bars extend to minimum and maximum values. 199 

 200 

4. Discussion 201 

This study set out to investigate the effect of laterally placed road nails on upper body movement 202 

asymmetry of horses trotting in-hand on tarmac surfaces. It has long been considered a necessity to 203 

use traction devices within the shoe to reduce excessive slip and establish grip on hard surfaces [12], 204 

such as tarmac roads, and their use is intended to promote stability of the foot whilst in contact with 205 

the ground. Small but significant changes in pelvic movement asymmetry could be identified in our 206 

study in relation to the use of a road nail in a hindlimb shoe. This supports the hypothesis that road 207 

nails can alter upper body movement by influencing vertical force production during trot on tarmac. 208 



However, no significant changes to head or withers movement were found as a function of road nail 209 

placement in one of the forelimb shoes. 210 

 211 

It is worth noting that the changes in average pelvic movement asymmetry patterns observed when 212 

adding a road nail to a hindlimb (Table 3) generated before/after difference values that were negative 213 

across all four parameters, although the only negative value that was statistically significantly 214 

different from zero was measured for HHD. The HHD parameter describes the movement of the 215 

pelvis by comparing left and right tuber coxae movement amplitudes. The identified difference in 216 

HHD indicates that the movement amplitude of the right tuber coxae (the side without the road nail) is 217 

mildly higher than the movement amplitude of the left tuber coxae (the side with the added road nail). 218 

This pattern is consistent with that observed in horses with mild right hindlimb lameness [22]. 219 

Although alterations to the movement of the hindquarters can be reflected in compensatory 220 

movements at the withers and poll [23,24], the small displacement amplitudes recorded at the pelvis 221 

here, combined with high head movement variability, mean that any such effect, if present, falls 222 

below our detection limits.   223 

 224 

It has been shown that horses with hindlimb lameness produce less force and impulse with the 225 

affected (lame) limb [17,25]. The typical midline pelvic movement patterns, i.e. movement of the 226 

sacrum, here PDmin, PDmax and PDup, in hindlimb lame horses show associations between reduced 227 

peak force at mid stance and PDmin, and associations between the transfer of vertical to horizontal 228 

ground reaction force impulse in the second half of stance (reduced “pushoff”) and PDmax [17]. 229 

Pushoff reflects the amount of upward pushing in the second half of stance and can be quantified as 230 

the difference between the minimum vertical position at mid stance and the maximum vertical 231 

position after the stance phase. The negative value for PDmin here is consistent with a non-232 

significantly reduced peak force with the right hindlimb, i.e. higher peak force with the limb with the 233 

road nail compared to the contralateral limb. The negative values for PDmax and PDup on the other 234 

hand would be indicative of a non-significantly reduced pushoff with the limb with the road nail. 235 

However, the small values (<2 mm, Table 3) and non-significant changes (P≥0.093 for PDmin, 236 

PDmax, PDup) indicate that at the level of the midline of the pelvis, the horses’ movement remains 237 

unaffected by the placement of the road nail.  238 

This movement pattern is different to what is typically measured in lame horses.  239 

 240 

Although there is no previous work that directly relates HHD to force asymmetries, it follows 241 

logically from Newtonian mechanics that any changes in upward movement amplitudes that are used 242 

to calculate HHD must be related to both the peak forces produced (the starting position of the 243 

amplitudes during mid stance) and the amount of pushoff. Thus, an increased amplitude of the right 244 

tuber coxae relates to decreased force production of the right limb (i.e. the mechanism seen in right 245 



hind limb lameness). In contrast, the road nail on the left hindlimb provides the horse with the ability 246 

to make more efficient use of the left hindlimb, presumably due to increased grip. Increased grip 247 

means the left hindlimb has more time to provide weight bearing and propulsive forces during stance, 248 

and it supports farriers’ reasoning behind the insertion of road nails.   249 

 250 

Future work may seek to use force plate based methods to directly study the amount of force 251 

produced during each stance phase. Furthermore, the observed change in HHD (of >3 mm) is in the 252 

order of magnitude of pelvic asymmetry changes considered to be significant in the context of equine 253 

clinical lameness examinations, and changes of this magnitude can be blocked by diagnostic 254 

analgesia. It is hence interesting to see that a small change in shoeing protocol (road nail) is related to 255 

consistent but very small changes in the mechanics of movement. Nevertheless, the level of 256 

asymmetry measured here is small compared to the amount of asymmetry in most lame horses and 257 

also small compared to variability of gait parameters measured [26]. It is hence very important to 258 

establish the biological long-term relevance of very small changes in movement asymmetry, such as 259 

those reported in the current study. 260 

 261 

In this study, tungsten carbide road nails were placed in partly worn horseshoes towards the end of a 262 

shoeing cycle; between 5 and 6 weeks after the previous shoeing the nails are considered to be most 263 

effective. The function of the tungsten (specifically tungsten carbide) road nail as a provider of grip is 264 

related to its greater hardness relative to steel. Tungsten carbide has a hardness value of 9 on the 265 

Mohs scale, which is equivalent to 1500 kg mm-2, whereas mild steel has a value of 4–5, equivalent to 266 

150 kg mm-2 [27]. Consequently, a steel shoe will wear at a faster rate than the nail over a shoeing 267 

cycle, and the road nail will gain increasing prominence towards the end of the cycle, presumably 268 

further enhancing its anti-slip characteristics. Investigating this effect, however, was not part of the 269 

present study and requires further investigation. 270 

The prominence of the road nail on the underside of the shoe effectively creates a very small 271 

lengthening of the limb with the nail compared to the contralateral limb. The effect of artificially 272 

lengthening one hindlimb – termed ‘orthotic lift’ – has been investigated previously using the same 273 

approach as used here: upper body movement symmetry based on IMU measurements [28]. 274 

Interestingly, midline pelvic (sacrum) movement asymmetry was shown to be affected by 275 

lengthening, while tuber coxae movement asymmetry (HHD) was not [28]. This is opposite to the 276 

findings of the present study, where HHD was affected by the presence of a road nail but midline 277 

pelvic movement asymmetry parameters (PDmin, PDmax, PDup) were not. This may be explained by 278 

the fact that the orthotic lift used by Vertz et al. [28] was between 15 mm and 23 mm more 279 

exacerbated than the small prominence of the road nail (~2 mm) or it simply means that the effect of 280 



the road nail is not due to limb lengthening and that horses are reacting differently to increased grip 281 

than to an orthotic lift. 282 

Finally, our study implemented an asymmetrical intervention, i.e. road nails were only used in one 283 

limb of a pair of limbs. This contrasts to the normal use of road nails, which are applied to both limbs 284 

of a pair. The reason for the asymmetrical intervention was that our assessment with IMUs is based on 285 

the principle of assessing upper body movement asymmetry. Hence a symmetrical intervention, i.e. 286 

road nails on both limbs of a pair, would not be detectable by this approach. It remains to be 287 

investigated whether specific changes in vertical force production can be linked to upper body 288 

movement asymmetries in horses without obvious lameness. This would build upon previous work 289 

relating lame horses’ upper body movement asymmetries to force production [16,17].  290 

 291 

5. Conclusion 292 

In this intervention study, it was shown that tungsten carbide road nails placed laterally in one shoe of 293 

a hindlimb in horses trotting on tarmac create a small movement asymmetry of the pelvis. This was 294 

measured by comparing left and right tuber coxae movement. The data were consistent with a small 295 

increase in vertical force production being generated by the limb with the nail compared to the 296 

contralateral limb. Road nails are hypothesised to reduce hoof slip, which may allow horses to make 297 

more efficient use of their hindlimb when trotting on a tarmac. Further studies should investigate how 298 

the number and placement of nails, both on the straight as well as on circles, may affect changes in 299 

hoof motion, such as slip time and distance and should also concentrate on establishing the biological 300 

long-term relevance of very small changes in movement symmetry such as those reported here. 301 
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Highlights 

Pelvic movement symmetry in horses trotting on tarmac can be altered by application of a tungsten 

road nail to the lateral heel of a hind limb shoe. 

Subtle variability in pelvic movement symmetry can be quantified as the difference in displacement 

amplitude between left and right tuber coxae (hip hike difference). 

Changes in pelvic movement symmetry can be explained by increased weight bearing and propulsion 

in the hindlimb with the road nail. 
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