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Simple Summary: Reproductive performance is an important factor, which determines productive
life and drives culling decisions in dairy herds. There are strong motives for including reproductive
performance in genetic selection programs of dairy cows; however, low heritability estimates reported
for reproductive performance measures limit the genetic selection e�ciency. More e↵ective genetic
selection could be achieved using genomic information. The aim of this study was to identify genomic
region(s) associated with the length of the calving interval in Holstein cows. The accuracies of
genomic estimated breeding values (GEBVs) with single-step genomic BLUP (ssGBLUP) and the
pedigree-based BLUP were compared as well. The results showed that the accuracies of GEBVs using
the single-step genomic BLUP were much higher than those estimated using the pedigree-based
BLUP. We identified three genomic regions (BTA3, BTA6, and BTA7) associated with the length of the
calving interval in Holstein dairy cows.

Abstract: The aim of the present study was to identify genomic region(s) associated with the length of
the calving interval in primiparous (n = 6866) and multiparous (n = 5071) Holstein cows. The single
nucleotide polymorphism (SNP) solutions were estimated using a weighted single-step genomic
best linear unbiased prediction (WssGBLUP) approach and imputed high-density panel (777 k)
genotypes. The e↵ects of markers and the genomic estimated breeding values (GEBV) of the animals
were obtained by five iterations of WssGBLUP. The results showed that the accuracies of GEBVs
with WssGBLUP improved by +5.4 to +5.7, (primiparous cows) and +9.4 to +9.7 (multiparous cows)
percent points over accuracies from the pedigree-based BLUP. The most accurate genomic evaluation
was provided at the second iteration of WssGBLUP, which was used to identify associated genomic
regions using a windows-based GWAS procedure. The proportion of additive genetic variance
explained by windows of 50 consecutive SNPs (with an average of 165 Kb) was calculated and the
region(s) that accounted for equal to or more than 0.20% of the total additive genetic variance were
used to search for candidate genes. Three windows of 50 consecutive SNPs (BTA3, BTA6, and BTA7)
were identified to be associated with the length of the calving interval in primi- and multiparous cows,
while the window with the highest percentage of explained genetic variance was located on BTA3
position 49.42 to 49.52 Mb. There were five genes including ARHGAP29, SEC24D, METTL14, SLC36A2,
and SLC36A3 inside the windows associated with the length of the calving interval. The biological
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process terms including alanine transport, L-alanine transport, proline transport, and glycine transport
were identified as the most important terms enriched by the genes inside the identified windows.

Keywords: genome-wide association study; Holstein; calving interval

1. Introduction

Milk yield and reproductive performance are two important factors which determine productive
life and culling decisions in dairy herds [1,2]. While improvements in management and nutrition, along
with intense genetic selection have increased milk yield in recent decades, reproductive e�ciency is
among the main causes of culling and replacement of Holstein cows worldwide [3–7]. Norman, et al. [8]
reported that despite the continued march of increasing production per cow per year, in the US, the trend
for at least some reproductive parameters dairy cows has been improved. It is well documented
that declining fertility cannot be improved through improving management alone, hence genetic
selection has attracted much attention [9]. Indicators including age at first calving, days from calving
to first breeding, days open, the length of the calving interval, pregnancy rates, and the number of
services per conception can be used to evaluate the reproductive performance in dairy cows [10–12].
Although studies have shown the existence of genetic variance for reproductive performance, the
additive genetic variance reported accounted for only a small fraction of the total variance [13–15].
There are strong motives for including reproductive performance in genetic selection programs of
dairy cows, but the very low heritability estimates reported for most of the considered reproductive
performance measures makes selection for reproductive performance not e↵ective enough [9,16].
However, low heritability estimates for reproductive performance does not indicate the unimportance
of genetic selection. More e↵ective genetic selection for female fertility could be achieved by using
information from the whole genome and incorporating the information of quantitative trait loci
(QTL) into selection decisions [9,16]. Genomic information can be used to improve the accuracy of
breeding values and to perform genome-wide association studies (GWAS) with the aim of identifying
genomic region(s) explaining genetic variance of traits. Although, genome-wide association studies
carried out within a variety of cattle breeds identified many single nucleotide polymorphisms (SNPs)
associated with the length of the calving interval (CI), as an indicator for reproductive performance,
they are mainly based on the polygenic estimated breeding value (EBV), daughter yield deviation
(DYD), or deregressed proof for CI [4,17–19]. The single-step genomic best linear unbiased prediction
(ssGBLUP) approach [20,21], a quite common procedure in GWAS, has the advantage of simultaneously
using the phenotypes of genotyped and nongenotyped animals, pedigrees, and genotypes; therefore,
there is no need to calculate pseudo-phenotypes. It has been reported that the use of ssGBLUP
procedure increased the accuracy of genetic evaluation in many contexts and species compared with
pedigree-based BLUP [22,23]. However, the ssGBLUP assumes that all SNPs explain the same amount
of genetic variance, which is unlikely in the case of traits whose major genes or QTL are segregating.
The weighted single-step genomic BLUP (WssGBLUP) approach [24] allows the use of di↵erent weights
for SNPs according to their trait-relevant importance and improves the accuracy of genetic evaluation
and the precision of estimates of SNP e↵ects .

The objective of this study was to use the WssGBLUP procedure and imputed high-density panel
(777 k) genotypes to identify genomic region(s) associated with calving interval in Holstein dairy cows.
The accuracies of genomic estimated breeding values (GEBVs) with the WssGBLUP procedure and the
pedigree-based BLUP were compared as well.
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2. Materials and Methods

2.1. Phenotypic and Genotypic Data

Data in this study were collected as part of the Genotype plus Environment (GplusE) FP7-Project
(http://www.gpluse.eu). The data were records of 11,937 lactations on 6866 primiparous and 5071
multiparous Holstein cows calving between 2010 and 2018, distributed among 118 herds in four
countries (Belgium, the Netherlands, Great Britain, and Denmark). The calving interval was calculated
as the di↵erence between calving dates from successive parities and was restricted to the range of 270
to 700 d. Genotyping was performed using the Illumina Bovine 10 K low-density chip (n = 20,462),
Bovine SNP50K (n = 10,638) or BovineHD SNP panel (795 animals). Genotypes of animals were
imputed to high density (HD) with a reference population consisting of 46 HD males and 749 HD
females [25]. In total, 12,367 out of 31,895 genotyped individuals, had either phenotypic data or were in
the pedigree file which was used in the association analysis. (The number of animals with records was
6866, the number of animals with records and with genotypes was 5345, the number of animals with
records and no genotypes was 1521, and the number of animals with genotypes and no records was
7022). Only SNPs located on Bos taurus autosomes (BTA) were considered. SNP markers with minor
allele frequency less than 5% were excluded. Finally, 566,345 out of 730,539 SNPs were available for
the association analysis. Ethics approval and consent to participate were not applicable to this study.

2.2. Variance Components Estimation

The pedigree consisted of 43,181 individuals (12,367 and 6866 out of 43,181 animals had genotype
and phenotype data, respectively). The genetic analyses were carried out through the average
information restricted maximum likelihood (AIREML) via AIREMLf90 from the BLUPF90 software
package [26]. A linear single-trait animal model was used for the length of the CI in primiparous cows.
The linear model included fixed e↵ect of herd-year-season of calving (HYS), and country, covariate
e↵ects of age at first calving in both linear and quadratic forms, as well as animal and residual random
e↵ects. The complete model for primiparous cows can be represented as follows:

yijk = µ+ HYSi + conj + b1
⇣
agek

⌘
+ b2

⇣
agek

⌘2
+ ak + eijk (1)

where yijk represents the length of the CI for animal k, µ is the overall mean, HYSi is the fixed e↵ect
of ith herd-year-season of calving, conj is the fixed e↵ect of jth country, b1 and b2 are the linear and
quadratic regression coe�cients of the length of the CI on the age at first calving, agek is the age at first
calving of kth cows, ak is the additive genetic e↵ect, and eijk is the random residual error. The additive
genetic and residual variances were obtained as follows:
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where a is the vector of direct additive genetic e↵ects, e is a vector of residual e↵ects, �2
a and �2

e are,
respectively, total additive genetic and residual variances, and H is the genetic relationship matrix
combining SNP information and pedigree data (A) [20]:
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where A�1 is the inverse of the pedigree-based relationship matrix for all animals; A�1
22 is the inverse of

the numerator relationship matrix for the genotyped individuals; and G is the genomic relationship
matrix [27].

G =
ZDZ0

PM
i=1 2pi(1� pi)

(4)
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where Z is the matrix of gene content adjusted for allele frequencies (0, 1, or 2 for aa, Aa, and AA,
respectively); D is a diagonal matrix of weights for SNP variances; M is the number of SNPs, and pi
is the estimated minor allele frequency at ith locus. The genetic analyses for the length of the CI in
multiparous cows were carried out using a linear single-trait repeatability animal model, which was
the same as the model used for primiparous cows but here, the fixed e↵ect of parity was included
into the model. In addition, a third random e↵ect representing the environmental permanent e↵ect
associated with animals having repeated records was included into the model. This e↵ect, assumed to
be uncorrelated with additive genetic e↵ects, allowed for the partitioning of the environmental variance
into permanent and temporary components. The complete model for multiparous cows can be
represented as follows:

yijkl = µ+ HYSi + conj + pk + b1
⇣
agel

⌘
+ b2
⇣
agel

⌘2
+ al + pel + eijkl (5)

Most of the terms in this model were defined as for the linear single-trait animal model except for
pk, the e↵ect of lactation number, and pel, is the permanent environmental e↵ect of cow l.

Pedigree-based (co)variance components and breeding values were estimated considering the
same linear animal model used to estimate the (co)variance components mentioned before. In the
pedigree-based BLUP the genomic information was excluded, and the direct additive genetic e↵ects
were estimated using the pedigree-based relationship matrix.

2.3. Weighted Single-Step Genome-Wide Association Study

The analyses were performed using the weighted single-step genome-wide association study
(WssGWAS) methodology [24], considering the same linear animal model used to estimate the
(co)variance components mentioned before. The animal e↵ects were decomposed into those for
genotyped (ag) and ungenotyped animals (an). The animal e↵ects of genotyped animals are a function
of the SNP e↵ects, ag = Zu, where Z is a matrix relating genotypes of each locus and u is a vector of
the SNP marker e↵ect. The variance of animal e↵ects was assumed as follows:

Var
⇣
ag
⌘
= Var (Zu) = ZDZ0�2

u = G⇤�2
a (6)

where D is a diagonal matrix of weights for variances of markers (at iteration 1, SNP weights in the D
matrix are equal to 1) and �2

u is the genetic additive variance captured by each SNP marker when the
weighted relationship matrix (G*) was built with no weight.

The SNP e↵ects were obtained using following equation:

û = �DZ0G⇤�1âg = DZ0[ZDZ0]�1âg (7)

where � was defined by VanRaden [27] as a normalizing constant, as described below:

� =
�2

u

�2
a
=

1
PM

i=1 2pi(1� pi)
(8)

The following iterative process [24] was used to estimate the SNP e↵ects. Step 1. D = I in the first
step. Step 2. Calculate the G matrix. Step 3. Calculate GEBVs for the entire data set using ssGBLUP.
Step 4. Estimate SNP e↵ects from solutions of genomic breeding values in the previous step: (û):
û = �DZ0G⇤�1âg. Step 5. Estimate of the e↵ect of each SNP: di = û2

i 2pi(1� pi), where i is the ith SNP.
Step 6. Normalize the vector of variances of SNP e↵ects to get the SNP weights (this normalization
process ensures that the sum of the variances remain constant and equal to the number of SNP). Step 7.
Use SNP weights to construct the D matrix; exit or loop to step 2. The e↵ects of markers were obtained
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by five iterations from Steps 2 to 7. The accuracies of genomic estimated breeding values (GEBVs) with
ssGBLUP and the pedigree-based BLUP were estimated using following formula.

acc =

s
1� PEV

�2
g

(9)

where PEV is the prediction error variance, and �2
g is the additive genetic variance of the trait.

The percentage of genetic variance explained by ith genomic region was estimated using the
following formula.

Var(ai)

�2
a
⇥ 100% =

Var(
Pn

j=1 Zjûj)

�2
a

⇥ 100 (10)

where ai is the genetic value of the ith region that consists of n consecutive SNP (n = 1, 5, 10, 20, and 50),
�2

a is the total genetic variance, Zj is the vector of SNP content of the jth SNP for all individuals, and û j
is the marker e↵ect of the jth SNP within the ith genomic region. The results were presented by the
proportion of additive genetic variance explained by each genomic region of n consecutive SNP.

2.4. Gene Prospection

The chromosome segments associated with the length of the calving interval were selected to
explore and determine potential quantitative trait loci (QTL). The database (version UMD3.1) including
gene locations, start positions and end sites for all bovine genes (http://www.ensembl.org/index.html)
was used for identification of genes. The list of genes inside the genomic region(s) associated with the
length of the calving interval, considered as positional candidate genes, was uploaded to Enrichr for
gene ontology (GO) enrichment analysis [28,29]. Significantly enriched biological process terms with
at least two genes from the input gene list were identified based on the retrieved adjusted P value.

3. Results and Discussion

Variance Components and Accuracy of Genomic Predictions

The mean (SD) of the length of the CI in primi- and multiparous cows were 395.1 (69.1) and
396.7 (62.9) d, respectively. The median of the length of the CI in primi- and multiparous cows were 375
and 381 d, respectively. The additive and residual variances estimated using the AIREML method for
the length of the CI in primiparous cows were 201.3 (SE = 57.60) and 3728.7 (SE = 85.76), respectively.
The estimated additive, permanent environmental e↵ect, and residual variances in multiparous cows
were 198.3 (67.8), 71.4 (100.4), and 2953.7 (103.15), respectively. The heritability estimates for the length
of the CI in primi- and multiparous cows were 0.05 (0.01) and 0.06 (0.01), respectively, which are
consistent with findings from other studies on dairy cattle [17,30–33]. Generally, the large unexplained
residual variation observed for the length of the CI is attributable not only to the large e↵ect of the
environmental factors on this trait but also to the low quality of the data [34].

The single-step genomic BLUP (ssGBLUP) method assumes equal variance for all single nucleotide
polymorphisms, which is unlikely in the case for traits whose major genes or QTL are segregating.
To overcome the limitation of ssGBLUP, unequal variance or weights for all SNP are applied in
an approach called weighted single-step genomic BLUP (WssGBLUP), in which SNP e↵ects are
weighted according to their importance for the trait of interest [24]. Accuracies of GEBVs estimated for
primiparous cows were 0.32, 0.33, 0.32, 0.32, and 0.32 for iterations one to five of WssGBLUP, respectively.
The corresponding values for multiparous cows were 0.37, 0.38, 0.37, 0.37, and 0.37. The accuracies of
genomic estimated breeding value (GEBV) provided at the second iteration of WssGBLUP improved
by +5.4 to +5.7, (primiparous cows) and +9.4 to +9.7 (multiparous cows) percent points over accuracies
from the pedigree-based BLUP. In this study, the influence of the number of iterations (1–5) on the
accuracy of genomic predictions for the length of the calving interval was investigated. The most
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accurate genomic evaluation was provided at the second iteration of WssGBLUP, which was used
to identify associated genomic regions using a windows-based GWAS procedure. Wang, Misztal,
Aguilar, Legarra, and Muir [24] investigated the influence of the number of iterations (1–8) on the
accuracy of genomic predictions and showed that the highest accuracies were obtained at the second
iteration and then decreased slightly. Previous studies on dairy goats [35,36] and broiler chickens [37]
have also reported that the accuracy of GEBVs estimated using WssGBLUP was maximized by the
second iteration and then decreased slightly. The decline in accuracy with iteration may be a result
of the continuous addition of weights to the SNP with large e↵ects while shrinking the SNP with
small influence [38]. In the window-based GWAS procedure, di↵erent window types (distinct or
sliding windows) and variable window sizes (defined as the number of SNPs or the number of base
pairs) can be used. The common form for declaring importance is to use a threshold on the additive
genetic variance explained by individual windows [39]. However, it is unclear what window size is
optimal and there is no standard to define the threshold on explained genetic variance [39]. Therefore,
determining the proper window size is usually subjective and researchers often have not justified
their choices or sometimes have acknowledged that their choices are arbitrary [40,41]. In the present
study, sliding windows of 1, 5, 10, 20, and 50 consecutive SNPs were used to identify genomic region(s)
associated with the length of the calving interval in primi- and multiparous cows and to determine if
the region(s) identified may change depending on the window size. General information about the
results of ssGWAS for primi- and multiparous cows are described in Tables S1–S5 and Tables S6–S10,
respectively. The results of di↵erent sliding window sizes in primi- and multiparous cows showed that
the identified peaks changed depending on the window size where smaller window sizes (windows of
1, 5, and 10 consecutive SNP) being accompanied with large noises (Figures 1 and 2). Fragomeni, et
al. [42] also reported that small window sizes are accompanied with large noises. Furthermore, it has
been shown that single-SNP GWAS cannot be e↵ective enough, because single-SNPs provide limited
information about the content of flanking genomic regions [43–45]. In the present study, 50-adjacent
SNP windows (with an average of 165 Kb widow size) that explained equal to or more than 0.20%
of the genetic variance was considered as the threshold for significance. Han and Peñagaricano [46]
considered 1.5 Mb SNP windows that explained more than 0.50% of the genetic variance as the threshold
to declare significance. Suwannasing, et al. [47] using the Porcine SNP60k BeadChip, considered
5-adjacent SNP windows that explained more than 1% of total genetic variance as the threshold to
declare significance. de Oliveira Silva, et al. [48] using the BovineHD SNP panel, considered 50-adjacent
SNP windows (with average of 280 kb) that explained more than 0.50% of additive genetic variance
as the threshold to declare significance. The results identified three windows (on BTA3, BTA6, and
BTA7) associated with calving interval in primi- and multiparous cows (Figures 1 and 2). These three
regions combined explained 0.51% and 0.68 % of the total genetic variances of the length of the calving
interval, respectively, in primi- and multiparous cows (Table 1). The length of the calving interval
generally has a low heritability and probably that is the reason why in neither primi- nor multiparous
cows windows highly associated with this trait were identified.
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Table 1. Identification of genes based on the additive genetic variance explained by 50-adjacent SNP
windows for the length of the calving interval in primi- and multiparous Holstein cows.

Chromosome Position Genes 1 The Proportion of Genetic Variance
Explained in Primi- and Multiparous Cows

BTA3 49426411–49528260 ARHGAP29 0.20 and 0.23
BTA6 7734092–7861603 SEC24D, METTL14 0.14 and 0.23
BTA7 64522263–64602968 SLC36A2, SLC36A3 0.17 and 0.22

1 O�cial gene symbol (assembly UMD_3.1, annotation release 103).

Although, genome-wide association studies carried out within a variety of cattle breeds identified
many single nucleotide polymorphisms (SNPs) associated with the length of the calving interval
(CI), the results are inconsistent [17,18,49]. Zhou, Li, Cai, Liu, Yin, Shi, and Zhang and Zhang [49]
using a single SNP regression mixed linear model, identified two SNPs (BTA19 and BAT25) associated
with the length of the calving interval in Xinjiang Brown cattle. Minozzi, Nicolazzi, Stella, Bi↵ani,
Negrini, Lazzari, Ajmone-Marsan, Williams [17] using a single SNP regression mixed linear model,
identified five SNPs (BTA2. BTA5, BTA8, BTA24, and BTA28) associated with the length of the calving
interval in Italian Holstein Cattle. Nayeri, Sargolzaei, Abo-Ismail, May, Miller, Schenkel, Moore,
and Stothard [18] using a single SNP regression mixed linear model, identified a total of eight highly
significant SNPs on BTA21 associated with days open in Canadian dairy Holstein cattle.

In this study, the genomic region with the highest percentage of explained genetic variance
was located on the BTA3 position 49.42 to 49.52 Mb, which overlaps among window sizes of
20 and 50 consecutive SNPs in primi- and multiparous cows. This region also overlaps with
QTLs for dystocia [50,51], milk fat yield [52], and residual feed intake [53] in dairy cows. Genes
including ARHGAP29, SEC24D, METTL14, SLC36A2, and SLC36A3 were identified inside the windows
associated with CI (Table 1). SLC36A2 was reported to be associated with milk beta-casein percentage,
milk kappa-casein percentage, and milk protein yield in Chinese Holstein cows [49].

Significantly-enriched biological processes with two genes from the input gene list are shown in
Table 2. The biological process including alanine transport, L-alanine transport, and proline transport
and glycine transport were identified as the most important term enriched by the identified genes
inside the identified windows. Amino acid transport is defined as the directed movement of amino
acids, organic acids containing one or more amino substituents, into, out of, or within a cell, or between
cells, by means of some agent such as a transporter. An amino acid transporter is a membrane transport
protein that transports amino acids. The amino acid transport systems in early embryos likely are
regulated at the genetic level by various conditions in the female reproductive tract; however, the precise
mechanisms of regulation and their physiological consequences are yet to be fully described [54].
Embryo amino acid content is determined, at least in part, by regulation of amino acid transport [55–57].
Lane and Gardner [58] reported that amino acids improve mouse embryo development primarily
during cleavage, and support development of more viable embryos. Moore and Bondioli [59] analyzed
the bovine oviductal fluid for free amino acid content and reported that glycine and alanine were the
two most predominant amino acids. Elhassan, et al. [60] reported that alanine, glutamate, glycine,
and taurine, are present in strikingly high concentrations in both bovine oviductal and uterine fluids,
suggesting that they might play important roles in early embryo development. Moore and Bondioli [59]
reported that glycine and alanine supplementation of culture medium enhances development of
in vitro matured and fertilized cattle embryos and concluded that glycine and alanine have a role in
early embryonic development. It has been reported that embryo growth and development rates are
important indicators of embryo viability and reproductive e�ciency [61].
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Table 2. Gene ontology (GO) terms enriched by the genes inside the chromosomal region of associated
milk production and lactation curve parameters.

GO Term Description Genes

L-alanine transport (GO:0015808) SLC36A2, SLC36A3
alanine transport (GO:0032328) SLC36A2, SLC36A3
proline transport (GO:0015824) SLC36A2, SLC36A3
glycine transport (GO:0015816) SLC36A2, SLC36A3

4. Conclusions

The objective of this study was to identify genomic regions associated with the length of the
calving interval in Holstein cows. In this study, the length of the calving interval, a commonly used
measure of reproductive performance in dairy cow breeding goals, was used as an indicator for female
reproductive performance. We compared pedigree-based BLUP with the WssGBLUP for the length
of the calving interval and confirmed that the WssGBLUP method improved the accuracy of GEBV
particularly at the second iteration. In the present study, di↵erent sliding window sizes were evaluated
to identify genomic region(s) associated with the length of the calving interval and the results showed
that the identified peaks changed depending on the window size with smaller window sizes being
accompanied with large noises. We identified three windows of 50 consecutive SNPs associated with
the length of the calving interval. The findings of this study can be used to search for causative
mutations, and for breeding through marker-assisted selection to improve the length of the calving
interval in Holstein dairy cows.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/3/500/s1.
Table S1: Results of 1-adjacent SNP windows in primiparous cows (Primiparous1.xlsx). Table S2: Results of
5-adjacent SNP windows in primiparous cows (Primiparous5.xlsx). Table S3: Results of 10-adjacent SNP windows
in primiparous cows (Primiparous10.xlsx). Table S4: Results of 20-adjacent SNP windows in primiparous cows
(Primiparous20.xlsx). Table S5: Results of 50-adjacent SNP windows in primiparous cows (Primiparous50.xlsx).
Table S6: Results of 1-adjacent SNP windows in multiparous cows (Multiparous1.xlsx). Table S7: Results of
5-adjacent SNP windows in multiparous cows (Multiparous5.xlsx). Table S8: Results of 10-adjacent SNP windows
in multiparous cows (Multiparous10.xlsx). Table S9: Results of 20-adjacent SNP windows in multiparous cows
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