
ABSTRACT

Improving nitrogen use efficiency (NUE) at both 
the individual cow and the herd level has become a 
key target in dairy production systems, for both en-
vironmental and economic reasons. Cost-effective and 
large-scale phenotyping methods are required to im-
prove NUE through genetic selection and by feeding 
and management strategies. The aim of this study was 
to evaluate the possibility of using mid-infrared (MIR) 
spectra of milk to predict individual dairy cow NUE 
during early lactation. Data were collected from 129 

Holstein cows, from calving until 50 d in milk, in 3 
research herds (Denmark, Ireland, and the UK). In 2 of 
the herds, diets were designed to challenge cows meta-
bolically, whereas a diet reflecting local management 
practices was offered in the third herd. Nitrogen intake 
(kg/d) and nitrogen excreted in milk (kg/d) were cal-
culated daily. Nitrogen use efficiency was calculated as 
the ratio between nitrogen in milk and nitrogen intake, 
and expressed as a percentage. Individual daily values 
for NUE ranged from 9.7 to 81.7%, with an average 
of 36.9% and standard deviation of 10.4%. Milk MIR 
spectra were recorded twice weekly and were standard-
ized into a common format to avoid bias between appa-
ratus or sampling periods. Regression models predicting 
NUE using milk MIR spectra were developed on 1,034 
observations using partial least squares or support 
vector machines regression methods. The models were 
then evaluated through (1) a cross-validation using 10 
subsets, (2) a cow validation excluding 25% of the cows 
to be used as a validation set, and (3) a diet valida-
tion excluding each of the diets one by one to be used 
as validation sets. The best statistical performances 
were obtained when using the support vector machines 
method. Inclusion of milk yield and lactation number 
as predictors, in combination with the spectra, also 
improved the calibration. In cross-validation, the best 
model predicted NUE with a coefficient of determina-
tion of cross-validation of 0.74 and a relative error of 
14%, which is suitable to discriminate between low- and 
high-NUE cows. When performing the cow validation, 
the relative error remained at 14%, and during the diet 
validation the relative error ranged from 12 to 34%. 
In the diet validation, the models showed a lack of ro-
bustness, demonstrating difficulties in predicting NUE 
for diets and for samples that were not represented in 
the calibration data set. Hence, a need exists to inte-
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grate more data in the models to cover a maximum 
of variability regarding breeds, diets, lactation stages, 
management practices, seasons, MIR instruments, and 
geographic regions. Although the model needs to be 
validated and improved for use in routine conditions, 
these preliminary results showed that it was possible to 
obtain information on NUE through milk MIR spectra. 
This could potentially allow large-scale predictions to 
aid both further genetic and genomic studies, and the 
development of farm management tools.
Key words: Fourier-transform mid-infrared 
spectrometry, nutrition, environment, modeling

INTRODUCTION

Improving nitrogen efficiency has become a key 
target in dairy production systems for several reasons. 
First, nitrogen losses from dairy systems have a direct 
effect on the environment and ecosystems (Adenuga 
et al., 2019). Volatilization of nitrogen from feces and 
urine as ammonia contributes to acidification of water 
and soils, and losses as oxides of nitrogen contribute 
to global climate change (Castillo et al., 2000; Ke-
breab et al., 2001). In addition, leaching of nitrates 
into water resources contributes to eutrophication of 
aquatic environments (Ledgard et al., 1998). Nitrogen 
efficiency can also affect the economic performance 
of dairy farms. Although ruminants, including dairy 
cows, have a unique capacity to transform fibers and 
pasture-based nitrogen sources into animal proteins, in 
systems involving high-yielding cows nitrogen from for-
ages are often complemented or replaced by additional 
feedstuffs to satisfy the nutritional demands of cows 
(White et al., 2019). In such systems, nitrogen is the 
most expensive component in the diet (de Freitas et al., 
2019), and poor nitrogen efficiency can reduce profit-
ability of dairy farms (Powell et al., 2010). Low nitrogen 
efficiency can also have a negative effect on reproduc-
tive performance (Butler, 2000) and milk processing 
quality (Hermansen et al., 1999; Castillo et al., 2000). 
The individual efficiency of dairy cows in transforming 
feed nitrogen into milk nitrogen is usually expressed 
as nitrogen use efficiency (NUE), which is defined as 
the ratio of grams of N in milk to grams of N intake 
(expressed as a percentage; Calsamiglia et al., 2010). 
The NUE can be highly variable, with values between 
8 and 42% reported in the literature (Castillo et al., 
2000). This suggests important differences at both the 
individual animal and the herd levels, and potential 
opportunities to improve NUE through optimization of 
diet and improved management, as well as through ge-
netic selection. To achieve this, measurement or predic-
tion of NUE values on a large scale is required. Indeed, 

previous studies have used milk urea as a biomarker to 
predict NUE, with Jonker et al. (1998) and Nousiainen 
et al. (2004) developing models with relative errors of 
approximately 10% and 7%, respectively. However, milk 
urea levels have to be measured using chemical meth-
ods, which are both time-consuming and expensive. 
Alternatively, milk urea can be predicted via infrared 
analysis of milk, but the models are not precise, with 
a relative error of approximately 20% (Nygaard, et al., 
1993), and this combines with the error of the model 
predicting NUE from milk urea. Low precision of milk 
urea prediction is due to its low concentration in milk 
(approximately 0.03%), compared with total nitrogen, 
which represents approximately 3% of milk (Mathieu, 
1998). Methods based on N isotopes have also been in-
vestigated. Although Cantalapiedra-Hijar et al. (2016) 
obtained a model predicting NUE with a coefficient of 
determination (R2) of 0.5, Cheng et al. (2011) were un-
able to validate the link between 15N isotopic fraction-
ation and NUE for the diets used in their experiments. 
According to Herremans et al. (2019), the 15N isotopic 
fractionation method would be more appropriate for 
estimating urinary nitrogen excretion than overall N 
use efficiency. Additionally, methods involving 15N are 
both expensive and complex, and are not appropriate 
for large-scale applications. Fourier-transform mid-
infrared (MIR) spectra of milk seems a promising 
proxy (i.e., indicator or indirect trait) to predict NUE, 
as it contains information on both N in milk and N 
intake, the 2 parts of the NUE ratio. Nitrogen in milk 
is routinely predicted using MIR with a high degree of 
accuracy, with the results used for payment purposes 
and milk recording. In addition, evidence suggests that 
diet composition affects milk composition and that, in 
return, milk MIR spectra can provide some information 
on diets offered as well (Klaffenböck et al., 2017). Ad-
ditionally, MIR analysis of milk is fast, cost-effective, 
and already performed in most of the main dairying 
countries. Thus the objective of this study is to evalu-
ate the potential of MIR analysis of milk to predict 
NUE of individual dairy cows.

MATERIALS AND METHODS

Animals and Sampling

The data in this study were collected in the Geno-
type Plus Environment (GplusE) FP7 Project (http: / 
/ www .gpluse .eu) between October 2014 and May 2015. 
Common sampling and registration protocols were fol-
lowed in 3 experimental herds with the goal to sample 
cows in early lactation. A total of 129 Holstein cows 
were sampled from 4 to 50 DIM, with parities ranging 
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from 1 to 7, with 58 cows from Agri-Food and Biosci-
ences Institute, UK (AFBI), 35 cows from Aarhus Uni-
versity, Denmark (AU), and 36 cows from University 
College Dublin, Ireland (UCD).

Diet Analysis

In the AFBI and AU herds, the cows were divided 
in 3 subgroups and offered different diets, which were 
designed to challenge the cows metabolically. The 
UCD cows were offered a diet reflecting local manage-
ment practices. Diets offered are described in Table 1. 
Daily feed intake of individual cows was recorded by 
automated recording systems, Insentec (Markneesse, 
the Netherlands) in AU and UCD, and using Calan 
gates linked to an automatic cow identification system 
(American Calan, Northwood, NH) in AFBI, which al-
lowed cows access to feed boxes mounted on a weigh 
scales (Griffith Elder, Bury St. Edmunds, UK). Indi-
vidual diet components were sampled weekly at AU 
and UCD and daily at AFBI, dried at 85°C for DM 
content determination, and analyzed for chemical 
composition at Cumberland Valley Analytical Services’ 
forage lab (Waynesboro, PA) using near-infrared spec-
troscopy. Daily DMI was calculated for each cow based 
on daily intake and DM content of diets. For all cows, a 
3-d (± 1 DIM) moving average of DMI was calculated 
to smooth biases due to measurements. Individual N 
intake was calculated based on diet CP content divided 
by 6.25 (FAO, 2003) and DMI. Additionally, cows were 
weighed weekly at AFBI and UCD and daily at AU. 
Energy balance (EB) was calculated daily according 
to the National Research Council (NRC, 2001), taking 
into account body weight changes as described by De 
Koster et al. (2019). Additional details of the experi-
ments, including diets offered, can be found in Little et 
al. (2019) and Krogh et al. (2019).

Milk Analysis for N Content and MIR Spectra

Milk yield was measured daily. Twice weekly, a.m. 
and p.m. milk samples were collected from each cow, 
following ICAR procedures (https: / / www .icar .org/ 
Guidelines/ 02 -Overview -Cattle -Milk -Recording .pdf). 
The samples were preserved at 4°C with bronopol 
0.02%, and analyzed locally on FT2 and FT6000 spec-
trometers (Foss Analytics, Hillerød, Denmark) or at 
Walloon Agricultural Research Center (Gembloux, Bel-
gium) on a Standard Lactoscope FT-MIR automatic 
(Delta Instruments, Drachten, the Netherlands). To 
enable future use of the models in the context of milk 
recording, which uses a blend of a.m. and p.m. milk 
samples collected over a 24-h period, models need to be 
developed based on daily spectra. Hence, a.m. and p.m. 
milk MIR spectra were combined into a unique daily 
spectrum via a weighted average using a.m. and p.m. 
milk yields. The spectra of the different instruments 
were standardized to allow them to be merged into a 
common data set, following the procedure described in 
Grelet et al. (2015). Fat, lactose, urea, and total protein 
content of milk samples were also generated locally from 
the MIR analysis, and a weighted average for each day 
was determined using a.m. and p.m. milk yields. Total 
protein output in milk was calculated daily, based on 
daily milk yields and biweekly milk total protein con-
tent, using the closest composition measure to the milk 
yield. Daily N output in milk was calculated as daily 
total protein output in milk divided by 6.38 (WHO and 
FAO, 2011).

Data Editing and Development of MIR Models

Nitrogen use efficiency was calculated as the ratio 
of grams of N in milk to grams of N intake, expressed 
as a percentage. Daily nitrogen losses through feces 
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Table 1. Overview of diets used in the study

Herd1  Diet specifications  Diet2  
No. of 
cows

AFBI (UK) 3 isonitrogenous diets comprising mixtures of grass silage and concentrate in 
different ratios on a DM basis

Low C: 30% 18
Standard C: 50% 20
High C: 70% 20

AU (DK) 3 isonitrogenous and isocaloric diets comprising grass silage, maize silage, sugar 
beet pulp pellets, and concentrate including a high level of barley (27%) in the 
high-starch diet and a high level of dextrose (17%) in the high-sugar diet

High starch: 54% C 11
High sugar: 54% C 10
Standard: 49% C 14

UCD (IE) Standard diet comprising grass silage, maize silage, sugar beet pulp pellets, and 
concentrate; additionally, each cow was offered 8 kg of concentrate per day in the 
parlor at milking

Standard: 39% C 36

1AFBI (UK) = Agri-Food and Biosciences Institute, UK; AU (DK) = Aarhus University, Denmark; UCD (IE) = University College Dublin, 
Ireland.
2C = concentrate.
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and urine were estimated as grams of N intake minus 
grams of N in milk. Seven inconsistent records with 
daily DMI below 5 kg/d were discarded. The data set 
contained 4,824 daily records of NUE from 129 cows, 
with an average of 37.4 records per cow. In addition, 
the data set contained a total of 1,267 twice-weekly 
weighted spectra from the same cows, with an average 
of 9.8 records per cow. The spectra were merged with 
the NUE reference values from the same day, providing 
1,119 records from 129 cows, with an average of 8.7 
records per cow during the period from 4 to 50 d in 
milk. To prevent errors arising from analytical issues 
and incorrect associations between spectra and milk 
composition data, fat and protein models developed 
at Walloon Agricultural Research Center (unpublished 
data) were applied to the spectra, and the predictions 
generated were compared with predictions provided by 
the labs where the AFBI, AU, and UCD samples were 
originally analyzed. Records in which the difference be-
tween local predictions and lab predictions were greater 
than 0.2 g/100 mL were discarded, leading to a data 
set of 1,034 records. The MIR spectra were pretreated 
by a first derivative with a window of 5 wavenumbers. 
The spectral areas selected were constituted by 212 
wavenumbers, from 968.1 to 1,577.5 cm−1, 1,731.8 to 
1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, and 2,831.0 to 
2,966.0 cm−1 (Grelet et al., 2016). These areas were 
selected to exclude noisy parts of the spectrum induced 
by water and areas not repeatable among different in-
struments after analysis of common samples, to enable 
further transfer of the model to different instruments. 
Parity (1, 2, and 3 or more) and corresponding daily 
milk yield (MY; L/cow per d) were used as predictors 
as well. For that purpose, these additional variables 
and the spectral variables were concatenated and were 
all mean-centered to equally scale the distribution of 
spectral and additional data.

Models were developed using partial least squares 
(PLS) or support vector machine (SVM) regression 
methods. Number of PLS latent variables (LV) was 
selected visually through the point of break of root 
mean square error (RMSE) slope, where adding a new 
LV does not reduce substantially the RMSE, with a 
maximum of 16 LV. The SVM method selects a re-
duced number of samples, the support vectors, defining 
the best sparse deterministic regression relationship 
between the MIR data and the reference values. The 
SVM method was used after a PLS compression reduc-
ing the data set dimension to 14 latent variables, and 
the Library for Support Vector Machines (integrated 
software for support vector machines, https: / / www .csie 
.ntu .edu .tw/ ~cjlin/ libsvm/ ) algorithm was used in this 
study with a radial basis function as kernel. Internal 
cross-validation was performed on the calibration data 

set, with 10 subsets randomly constituted. In this cross-
validation scheme, records from the same cow with 
different DIM can be in both the calibration and the 
validation data sets. The models were also tested by 
performing a cow validation, randomly removing 25% 
of the cows to be used as a validation data set and 
calibrating with records of the remaining 75% of cows. 
Finally, the models were tested with a diet validation, 
removing each of the 7 diets one by one, as a validation 
set, and performing the calibration on the 6 remaining 
diets. The statistics of the models, in both calibration 
and validation steps, were expressed in terms of R2, 
RMSE, relative error calculated as RMSE/average of 
the global data set, and ratio of standard deviation of 
global data set to RMSE (RPD).

Computations and models were carried out with pro-
grams developed in Matlab 2017b (Mathworks, Natick, 
MA) and the PLS toolbox version 8.5.1 (Eigenvector 
Research Inc., Wenatchee, WA).

RESULTS AND DISCUSSION

Descriptive Statistics

Individual daily NUE ranged from 9.7 to 81.7%, 
with an average of 36.9% and a standard deviation of 
10.4%. Distribution of values is plotted in Figure 1. 
This range was very large compared with the literature. 
For example, previous studies reported ranges from 
25 to 37% (Olmos Colmenero and Broderick, 2006), 
from 18 to 40% (Nadeau et al., 2007), from 15 to 40% 
(Calsamiglia et al., 2010), and from 8 to 42% (Castillo 
et al., 2000). However, the range in the present study 
was for individual cows, whereas the ranges in these 
other studies related to averages from groups of cows, 
or across time periods, which can explain the absence 
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Figure 1. Distribution of daily individual nitrogen use efficiency 
(NUE) records (n = 1,034 records).
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of extreme values and the smaller variation. This large 
range was likely enhanced because of the different geo-
graphical areas, cow genotypes, and large variability of 
diets offered to the animals. Finally, the extremely high 
values may be explained by short-term declines in DMI 
(e.g., short-term illness or estrus) without a concomi-
tant decline in milk N. The average NUE observed in 
the present study was in the same order of magnitude 
as that observed in other studies conducted in early 
lactation. For example, Cowan et al. (1981) observed 
an average NUE of 35% between DIM 1 to 112, and 
Law et al. (2009) observed average NUE between 35 
and 42%, with diets differing in protein levels, during 
the period from DIM 1 to 151.

Measurements associated with the 7 different diets 
offered are reported in Table 2, with averaged NUE 
per diet ranging from 30 to 44%. The important differ-
ences observed between individual records and between 
groups of diets may suggest potential for improving 
NUE through nutrition and management practices, and 
possibly through genetics.

Pearson correlations between NUE, N losses, and 
other variables are reported in Table 3. As expected, 
NUE was highly correlated with both variables included 
in the NUE ratio, N intake (kg/d) and N production 
in milk (kg/d), and was also highly correlated with N 
losses. Nitrogen losses were more strongly influenced 
by N intake than by N production in milk. Regarding 
the 2 variables used to determine N intake, NUE was 
more closely linked with percentage of N in diet than 
with DMI. This suggests potential to improve NUE by 
modification of the N content of the diet, as reported by 
Castillo et al. (2001). A negative correlation of −0.67 
was observed between NUE and EB, with more efficient 
animals having a greater negative EB. This could be 
explained by an indirect link, with cows having a low 

DMI in early lactation, and consequently low N intake, 
making the NUE ratio high, and low energy intake as 
well, leading to negative EB. From this correlation, it 
is not possible to know whether cows actually are ef-
ficient or whether they mobilize their N body reserves. 
Castillo et al. (2001) found that 98% of N intake was 
recovered in urine, feces, and milk, and mentioned that 
BW changes were not expected to affect N balance 
studies. However, Castillo and colleagues only consid-
ered animals after the peak of lactation, which was not 
the case in the present study. Other studies have found 
cows to be in negative N balance in early lactation 
(Cowan et al., 1981; Sutter and Beever, 2000), whereas 
Komaragiri and Erdman (1997) measured a mobiliza-
tion of 21 kg of body protein between wk 2 and 5 after 
calving. The high mean NUE calculated in the present 
study suggests mobilization of body N reserves as well, 
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Table 2. Average production and nitrogen data associated with the 7 different diets

Diet1
MY2 

(kg/d)
N milk 

(%)
Weight 
(kg)

DMI 
(kg/d)

EB3 
(Mcal/d)

N intake 
(kg/d)

N diet 
(%)

N losses 
(kg/d)

NUE4 
(%)

AFBI (UK)          
 High C 37.4 3.33 633 23.5 0.73 0.629 2.7 0.434 31
 Low C 27.1 2.94 596 15.4 −5.72 0.408 2.6 0.282 32
 Standard 32.6 3.09 604 19.8 −2.22 0.523 2.6 0.367 30
AU (DK)          
 High starch 37.9 3.29 600 20.3 −1.21 0.448 2.2 0.256 44
 High sugar 35.5 3.21 607 20.2 −3.00 0.462 2.3 0.284 39
 Standard 39.5 3.27 594 20.6 −2.94 0.456 2.2 0.255 44
UCD (IE)          
 Standard 33.8 2.99 655 18.5 −6.87 0.380 2.0 0.223 42
1AFBI (UK) = Agri-Food and Biosciences Institute, UK; AU (DK) = Aarhus University, Denmark; UCD (IE) 
= University College Dublin, Ireland; C = concentrate.
2MY = daily milk yield.
3EB = energy balance.
4NUE = N use efficiency.

Table 3. Pearson correlation between individual nitrogen use efficiency 
(NUE), N losses, and production variables

Item
NUE  
(%) P-value

N losses 
(kg/d) P-value

DIM −0.26 <0.001 0.31 <0.001
Parity 0.26 <0.001 0.08 <0.001
Weight (kg) 0.32 <0.001 0.12 <0.001
DMI (kg/d) −0.20 <0.001 0.77 <0.001
N intake (kg/d) −0.43 <0.001 0.93 <0.001
Diet N (%) −0.67 <0.001 0.63 <0.001
EB1 (Mcal/d) −0.67 <0.001 0.63 <0.001
Milk yield (kg/d) 0.47 <0.001 0.17 <0.001
Milk fat (%) −0.06 0.042 −0.01 0.759
Milk lactose (%) −0.33 <0.001 0.32 <0.001
Milk N (%) 0.19 <0.001 0.03 0.417
Milk N production (kg/d) 0.51 <0.001 0.18 <0.001
Urea (mg/kg) −0.30 <0.001 0.11 <0.001
N losses (kg/d) −0.71 <0.001   
1EB = energy balance.
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leading to an artificially high short-term NUE that may 
decrease after peak lactation, when reconstitution of 
body reserves takes place. However, the present data 
set does not allow an estimation of true efficiency and 
losses, due to the absence of data on the N content in 
urine and feces. Such data would be necessary to avoid 
bias arising from potential negative N balance in early 
lactation. Indeed, if NUE or N losses are biased by N 
balance, improvement of those traits through manage-
ment or genetic selection could lead to increased body 
tissue mobilization and health problems induced by se-
vere negative EB. Additionally, it would be interesting 
to consider NUE and N balance after peak of lactation, 
to observe true efficiency over long periods and free 
from bias due to N balance.

MIR Models

The performance of PLS and SVM models in cross-
validation with 10 subsets are reported in Table 4. The 
3 PLS models were developed with 11, 9, and 14 LV, re-
spectively. For both methods, use of parity and MY in 
addition to the MIR spectra improved the performance 
of the models in terms of R2 of cross-validation, RMSE 
of cross-validation, relative error, and RPD. Addition 
of parity to the model may improve the predictions 
due to differences in growth between parities, which is 
hinted by the positive correlation between NUE and 
parity (Table 3). Addition of MY logically brought 
additional information to the NUE ratio. The SVM 
models provided better performance than did PLS. The 
best model is plotted in Figure 2 and was obtained by 
using SVM regression with MIR spectra, with parity 
and MY as predictors, resulting in relative error of 14% 
and RPD of 1.97. Based on those statistics, the model 
seems suitable to compare groups of cows and to dis-
criminate among cows with low and high NUE values.

In the first cross-validation scheme, different records 
from the same cow can be used in the calibration and 
in the validation data set, potentially leading to overfit-

ting of the results. Table 5 shows the results of both 
PLS and SVM models, randomly removing 25% of the 
cows to be used as a validation data set, and calibrating 
with records of the remaining 75% of cows. The PLS 
model was developed with 12 LV. In this step, the PLS 
and SVM methods provided equivalent performances. 
The R2 decreased compared with 10-subset cross-vali-
dation, but this can be explained by the smaller range 
in the validation data set, with NUE values ranging 
from 17 to 68% instead of 9.7 to 81.7% in the initial 
data set. Indeed, as shown by Davies and Fearn (2006), 
R2 is highly dependent on the distribution, especially 
the range of data; knowing this, it is more relevant to 
focus on RMSE and related variables (relative error 
and RPD) to evaluate performance of models. Relative 
error and RPD were in the same order of magnitude as 
that in the cross-validation step, resulting in 14% and 
2.08, respectively, from the SVM model. This shows 
a good potential of the models to predict other cows 
offered similar diets to those in the calibration data set. 
From the NUE ratio, the information regarding daily N 
output in milk was already fully contained within the 
predictors, as the N content of milk was predicted from 
MIR, and milk yield was used as a predictor. However, 
it is of interest to estimate how effectively MIR can 
predict the second part of the ratio, the daily N intake. 
Table 6 reports the performance of predictions of DMI, 
N intake, and N losses in cow validation, using the same 
methodology as described, and using SVM regression. 
Intake of N and DMI are predicted with relative errors 
of 14 and 15%, respectively, which explains the error in 
the same order of magnitude obtained for NUE. Pre-
diction of diet N percentage was not reported, as the 
percentage was identical for each cow having the same 
diet and cannot be considered a quantitative variable. 
The model predicted N losses with a relative error of 
23%, which is larger than the relative error of NUE, 
even though it was calculated from the same variables.

When predicting NUE from milk urea, Jonker et al. 
(1998) obtained relative errors from 11 to 14%, and 
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Table 4. Performance of PLS and SVM models1 to predict individual N use efficiency (NUE) in cross-validation with 10 subsets (n = 1,034)

Predictor2

PLS

 

SVM

R2cv3
Error 

(RMSEcv4)
Relative error 

(%; RMSEcv/mean) RPD5 R2cv
Error 

(RMSEcv)
Relative error 

(%; RMSEcv/mean) RPD

MIR 0.59 6.6 18 1.58  0.63 6.3 17 1.65
MIR+Parity 0.62 6.4 17 1.64  0.65 6.1 17 1.70
MIR+Parity+MY 0.72 5.5 15 1.89  0.74 5.3 14 1.97
1PLS = partial least square regression; SVM = support vector machines regression.
2MIR = mid-infrared spectra; MY = milk yield.
3R2cv = coefficient of determination of cross-validation.
4RMSEcv = root mean square error of cross-validation.
5RPD = ratio of SD to RMSEcv.
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Nousiainen et al. (2004) reported a relative error of 
approximately 8%. Thus, their models provide results 
similar to or better than the models developed in this 
study. However, as mentioned previously, milk urea lev-
els have to be measured via chemical methods, which 
are both time-consuming and expensive. Alternatively, 
they can be predicted by MIR with a relative error 

of approximately 20%, which adds to the error of the 
model predicting NUE from MIR milk urea. Addition-
ally, in the present data set, the correlation between 
predicted milk urea and NUE was only −0.3. Other 
works have predicted NUE from 15N fractions in tissues 
(Cheng et al., 2011; Cantalapiedra-Hijar et al., 2016) 
but either resulted in models with low R2 or concluded 
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Figure 2. Plot of measured individual nitrogen use efficiency (NUE) of dairy cows compared with NUE values predicted by the support vec-
tor machines regression (SVM) model using mid-infrared (MIR) spectra, parity, and milk yield as predictors, in cross-validation with 10 subsets 
(n = 1,034). RMSEc = root mean square error of calibration; RMSEcv = root mean square error of cross-validation with 10 subsets; R2c = 
coefficient of determination of calibration; R2cv = coefficient of determination of cross-validation with 10 subsets.

Table 5. Cow validation: performance of PLS and SVM models1 to predict individual nitrogen use efficiency (NUE) when 25% of cows are 
randomly removed to be used as a validation data set (n = 255), and calibrating with records of the 75% of cows remaining (n = 779)

Predictor2

PLS

 

SVM

R2v3
Error 

(RMSEv4)
Relative error 

(%; RMSEv/mean) RPD5 R2v
Error 

(RMSEv)
Relative error 

(%; RMSEv/mean) RPD

MIR+Parity+MY 0.68 5.04 14 2.07  0.68 5.01 14 2.08
1PLS = partial least square regression; SVM = support vector machines regression.
2MIR = mid-infrared spectra; MY = milk yield.
3R2v = coefficient of determination of cow validation.
4RMSEv = root mean square error of cow validation.
5RPD = ratio of SD to RMSEv.
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that difficulties existed in predicting NUE using this 
method. As a consequence, the models obtained in the 
present study appear better suited to large-scale ap-
plications, especially due to the low cost and high speed 
of MIR analysis.

Finally, models were evaluated by performing a diet 
validation, by removing diets one by one, to be used 
as a validation data set, and calibrating using the re-
cords from the 6 remaining diets. We undertook this to 
simulate the application of the model to samples from 
a diet that differed from diets in the calibration data 
set. The 7 PLS models were developed based on 12 LV. 
Results are shown in Table 7. The resulting R2of cow 
validation ranged from 0.06 to 0.68, but as mentioned 
earlier, due to reduced data set size and range, focusing 
on RMSE and relative error to evaluate the models 
was more reliable. Relative errors ranged from 12 to 
34%, and SVM provided better results in most cases, 
except for the AU and UCD standard diets. For both 
AU and AFBI data, standard diets were predicted with 
a relative error in the same order of magnitude as in the 
10-subset cross-validation and in the cow validation, 
with values from 12 to 16%. The low relative errors 
and the associated RPD, from 1.75 to 2.38, suggested 
that models can allow comparisons of groups of cows, 
discriminating among low and high NUE values when 
applied to those diets. Otherwise, the extreme diets in 
those 2 herds were predicted with relative errors rang-
ing from 18 to 23%, with associated RPD from 1.25 to 
1.56. Such results are expected, because extrapolation 
(predicting extreme diets not included in the calibra-
tion data set) is very dangerous in infrared analysis 
(Dardenne, 2010). It highlights the fact that samples 
from specific diets cannot be well predicted if those di-
ets are not represented in the calibration data set. This 
element can be objectified by looking to the global H 
(GH), which is the standardized Mahalanobis distance 
between the validation records and the calibration data 
set. High GH means that the sample to be predicted 

is not covered by the calibration data set (Dardenne, 
2010). In Table 7, the averaged GH per validation data 
set and the percentage of GH that are higher than 3 
are reported. Both AFBI and AU standard diets show 
the lowest GH averages, 0.95 and 0.92, respectively, 
whereas AFBI and AU extreme diets show GH aver-
ages ranging from 1.04 to 1.35, indicating that those 
data sets were less well covered by the calibration data 
sets. Additionally, the UCD standard diet records were 
predicted with a relative error of 34% and an RPD be-
low 1, even though the diet contained only “standard” 
feed components, and it might have been expected that 
this diet would be similar to, and largely covered by, 
the calibration data sets. However, the UCD records 
showed a GH average of 1.71 and 12% of records with 
a GH above 3, which highlights spectral differences 
between this data set and the other data sets and helps 
explain the poor quality of predictions. Those spectral 
differences could originate from factors affecting milk 
composition and MIR spectra such as genetics, diet, 
management, or season. Globally, in the present data 
set the correlation coefficient is 0.94 between relative 
error of models in diet validation and GH mean, as 
shown in Figure 3, displaying a strong link between the 
quality of predictions and the ability of a calibration 
data set to cover the variability of a new sample to be 
predicted. This is an argument in favor of quality assur-
ance systems to avoid extrapolation when using MIR 
models, to ensure that any sample for prediction is suf-
ficiently covered by the calibration data set to avoid in-
consistent and incorrect predictions. It also implies the 
need to develop robust models to generate phenotypes 
for routine use. Robustness can be considered as the 
capacity of models to be useful in all scenarios and to 
provide good predictions in various conditions (Grelet 
et al., 2017). For this, more data must be integrated in 
the models to cover a maximum of variability regard-
ing breeds, diets, DIM, management practices, seasons, 
MIR instruments, and geographic regions.
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Table 6. Predictions of DMI, N intake, and N losses by SVM1 when 25% of the cows are randomly removed to be used as a validation data set 
(n = 255), and calibrating with records of the 75% cows remaining (n = 779)

Item Predictor2 Minimum Maximum Mean SD R2v3
Error 

(RMSEv4)
Relative error 

(%; RMSEv/mean) RPD5

DMI (kg/d) MIR+Parity+MY 8.8 36.2 19.9 4.53 0.66 2.71 14 1.67
N intake (kg/d) MIR+Parity+MY 0.171 1.024 0.486 0.129 0.71 0.072 15 1.79
N losses (kg/d) MIR+Parity+MY 0.044 0.809 0.311 0.11 0.59 0.070 23 1.57
1SVM = support vector machines regression.
2MIR = mid-infrared spectra; MY = milk yield.
3R2v = coefficient of determination of cow validation.
4RMSEv = root mean square error of cow validation.
5RPD = ratio of SD to RMSEv.
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Perspectives and Limitations

The results showed an interesting potential of MIR 
analysis of milk to predict individual NUE of dairy cows 
from 0 to 50 DIM. The methodology allowed predic-
tion of NUE with a relative error of 14%, which seems 
reasonable to discriminate between low and high NUE, 
and might potentially be used to improve nutrition 
and herd management and to perform genetic studies. 
Indeed, in a further step in this work, the equation 
will be applied to the GplusE population of genotyped 

cows to check the genetic background of MIR-predicted 
NUE. This should allow an estimation of the heritabil-
ity of NUE, its genetic correlations with other traits 
of interest and, finally, its use in genome-wide associa-
tion studies. Regarding practical implementation, SVM 
provided better performance than PLS, but SVM is 
a complex method demanding high computing power, 
whereas PLS models are easy to transfer in routine ap-
plication protocols. Consequently, the slight differences 
between the performance of the 2 methods justifies the 
implementation of PLS in the context of routine milk 
recording.

However, the current models are not yet robust 
enough to be used at a large scale, especially in routine 
performance recording outside of the framework of the 
GplusE project. Models were developed with a limited 
number of cows and diets, and because MIR models can 
only be applied to spectra that are similar to informa-
tion contained in the calibration data set, the current 
model is only valid for Holstein cows in early lactation 
with specific types of diets. This lack of robustness was 
highlighted by the heterogeneous results in the diet 
validation. The model developed is currently limited to 
a restricted set of conditions, as extrapolation to other 
circumstances may lead to biased predictions. However, 
to avoid the development of overly specific and multiple 
models (as for specific breeds, diets, etc.), MIR calibra-
tions should be as general as possible. To reach this 
goal and enable use in routine milk recording and on a 
large scale, additional variability must be entered into 
the calibration data set by merging records from other 
breeds, diets, and countries to derive a universal model. 
This would be possible through international collabora-
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Table 7. Diet validation: performance of PLS and SVM models1 to predict individual nitrogen use efficiency (NUE) using mid-infrared spectra, 
parity, and milk yield as predictors when diets are removed one by one to be used as a validation data set, and calibrating with the records of 
the 6 remaining diets

Validation 
diet2

GH  
mean3

% GH 
>34

PLS

 

SVM

R2v5
Error 

(RMSEv6)
Relative error 

(%; RMSEv/mean) RPD7 R2v
Error 

(RMSEv)
Relative error 

(%; RMSEv/mean) RPD

AFBI high C 1.04 2 0.63 8.03 22 1.30 0.59 6.67 18 1.56
AFBI low C 1.33 7 0.54 8.31 23 1.25 0.43 8.13 22 1.28
AFBI standard 0.95 3 0.56 5.08 14 2.05 0.68 4.38 12 2.38
AU high starch 1.14 1 0.19 7.14 19 1.46 0.30 6.95 19 1.50
AU high sugar 1.35 6 0.50 7.93 22 1.31 0.57 7.51 20 1.39
AU standard 0.92 1 0.53 5.42 15 1.92 0.58 5.96 16 1.75
UCD standard 1.71 12 0.06 12.23 33 0.85 0.14 12.58 34 0.83
1PLS = partial least square regression; SVM = support vector machines regression.
2AFBI = Agri-Food and Biosciences Institute, UK; AU = Aarhus University, Denmark; UCD = University College Dublin, Ireland. C = con-
centrate.
3GH mean = mean of standardized Mahalanobis distances between the validation records and the calibration data set. 
4% GH >3 = percentage of standardized Mahalanobis distances above 3.
5R2v = coefficient of determination of diet validation.
6RMSEv = root mean square error of diet validation.
7RPD = ratio of SD to RMSEv.

Figure 3. Plot of relative error (ratio of root mean square error of 
diet validation to mean) for each validation data set in diet validation, 
versus the averaged global H (standardized Mahalanobis distance, 
GH) between the validation records and the calibration data set.
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tion, as NUE and spectral data are routinely recorded 
in numerous research farms. Additionally, NUE may be 
highly influenced by lactation stage, due to mobiliza-
tion and storage of body reserves at different stages of 
lactation. Consequently, cows should be followed over 
the whole lactation to assess a global value of NUE. 
Further work is needed to validate the possibility of 
predicting NUE from MIR in late lactation as well. 
Finally, the absence of information on the N content 
in feces and urine in this study makes it impossible to 
calculate the N balance. Because data were recorded 
in early lactation, there is a risk of confusing negative 
N balance with artificially high NUE and increasing 
the difficulty induced by severe mobilization of body 
reserves by trying to improve NUE. Additional data on 
N content in urine and feces in the same stage of lacta-
tion are needed, to further study this potential bias.

CONCLUSIONS

The objective of this study was to evaluate the 
potential of MIR analysis of milk to predict NUE of 
individual dairy cows. The results obtained from the 
present data set indicate that the methodology can al-
low prediction of NUE with a relative error of 14%, 
which seems reasonable to discriminate between low 
and high NUE, to improve nutrition and management 
of herds and to perform genetic studies. However, the 
developed models are not robust enough at present to 
be routinely used, and collaborations are needed to 
increase data set variability to improve robustness and 
practical applicability.
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