1 Prospective evaluation of the utility of crossmatching prior to first AB matched 2 transfusion in cats: 101 cases 3 4 Objectives: To: 1) assess the frequency of crossmatch incompatibility in naïve feline blood 5 transfusion recipients using two crossmatching methods, 2) measure the effect of 6 crossmatch incompatibility on packed cell volume increase following transfusion, 3) 7 assess the frequency of acute transfusion reactions and errors in blood transfusions in cats 8 and 4) assess the impact of crossmatch incompatibility on the likelihood of transfusion 9 reactions. 10 Methods: Cats being administered a first AB-matched transfusion in a veterinary teaching 11 hospital were prospectively recruited for this observational study. Major and minor 12 crossmatching were performed using a slide agglutination method and a commercial test. 13 Packed cell volume increase at 12 hours post transfusion relative to the mass of red blood 14 cells given per recipient bodyweight (ΔPCV_{norm}) and occurrence of transfusion reactions 15 were recorded. 16 Results: 101 cats were recruited. Crossmatch incompatibility was common when using the

17 slide agglutination method (27% and 10% major and minor incompatibility, respectively),

18	but less common with the commercial test (major and minor incompatibility both 4%).
19	Crossmatch incompatibility (with any method) was not associated with decreased
20	ΔPCV_{norm} . Transfusion reactions occurred in 20 cats, most commonly febrile non-
21	haemolytic transfusion reactions (n=9) and haemolytic transfusion reactions (n=7). The
22	commercial test appeared to be most specific for predicting haemolytic transfusion
23	reactions.
24	
25	Conclusions and clinical relevance: Transfusion reactions were fairly common but were
26	not associated with increased mortality. Use of crossmatch compatible blood did not lead
27	to a greater increase in packed cell volume at 12 hours but the commercial test may
28	predict a haemolytic transfusion reaction.
29	
30	Key words: Blood type, Transfusion reaction, Mik, Packed red blood cells, whole blood,
31	blood types, blood incompatibilities, hemolytic transfusion reaction.
32	
33	
34	

35	Ir	۱t	r	0	d	u	C	ti	o	n
00	••	•••		-	~	~	-	٠.	~	•

36	It is well recognised that recipients of feline whole blood (WB) or packed red blood cells
37	(pRBCs) need to be administered AB type-matched products (Giger and Akol 1990,
38	Barfield and Adamantos 2011, Giger, 2014). There is also general consensus that
39	crossmatching should be performed prior to a subsequent transfusion of red blood cell
40	(RBC) containing products 3-5 days after the first transfusion of a blood product (Jagodich
41	and Holowaychuk 2016). However, there has been debate about the necessity to perform
42	crossmatching prior to first transfusion in cats being administered AB matched blood
43	(McClosky et al 2018; Sylvane et al 2018; Tasker et al 2014; Weltman et al 2014; Weinstein
44	et al 2007). Crossmatching prior to first transfusion allows detection of serological
45	incompatibility between the donor and recipient resulting from pre-formed antibodies
46	against non-AB erythrocyte antigens. A compatible crossmatch result should decrease the
47	likelihood of a haemolytic transfusion reaction (HTR). Although this was initially a
48	theoretical concern in cats, Weinstein et al (2007) reported a novel feline non-AB RBC
49	antigen, Mik, and described 3 cats which had crossmatch findings consistent with naturally
50	occurring anti-Mik antibodies. A retrospective study suggested that crossmatched feline
51	blood was more efficacious in raising recipient packed cell volume (PCV) than non-

52	crossmatched blood and this was postulated to be due to pre-existing recipient antibodies
53	to Mik and possibly other non-AB erythrocyte antigens (Weltman et al 2014). However, a
54	recent prospective randomised trial compared administration of non-crossmatched and
55	crossmatched pRBCs to cats (with 24 cats in each group) and found no difference in PCV
56	increase or the rate of transfusion reaction between the groups (Sylvane et al 2018). A
57	retrospective study of 300 cats also found no difference in PCV increase but noted an
58	increased rate of febrile non-haemolytic transfusion reactions (FNHTR) in the cats
59	administered non-crossmatched pRBCs (McClosky et al 2018).
60	
61	Complications and errors during blood product administration, alongside the frequency
62	and types of transfusion reaction, are recorded in human haemovigilance monitoring
63	schemes (Poles et al 2018). This allows repeated problems to be identified and possible
64	solutions devised. Clinical governance is a developing area in veterinary medicine, but a
65	prospective assessment of the frequency and type of transfusion reactions, complications
66	and errors in administration of blood products has not been reported before to the
67	authors' knowledge.

69	The aims of this study were therefore to: 1) assess the frequency of crossmatch
70	incompatibility in a large cohort of naïve feline blood transfusion recipients, 2) compare
71	the results of a commercially available feline crossmatch kit with crossmatches performed
72	by a clinical laboratory, 3) assess the effect of crossmatch incompatibility on the change in
73	PCV seen post feline blood donation and 4) assess the frequency of acute transfusion
74	reactions, complications and errors in cats receiving crossmatch compatible and non-
75	crossmatch compatible blood transfusions.
76	
77	Materials and methods
78	This was a prospective observational study performed at a veterinary teaching hospital
79	aiming to recruit 100 cats receiving either a fresh WB or stored pRBC transfusion that had
80	not previously received a RBC product. Informed consent for participation in the study
81	was obtained from both recipient and donor owners and the study was approved by the
82	hospital Clinical Research Ethical Review Board. Cats were blood typed using ethylene
83	diamine tetraacetic acid (EDTA) anticoagulated blood and a commercially available kit ^A and
84	AB type-matched blood was administered. All donors were healthy and were checked
85	prior to each donation for feline leukaemia virus antigen and feline immunodeficiency

86	virus antibodies. Blood anticoagulated in EDTA was submitted for polymerase chain
87	reactions to detect DNA from Candidatus Mycoplasma hemominutium, Mycoplasma
88	hemofelis and Candidatus Mycoplasma turicensis annually. Blood was obtained prior to
89	transfusion from the recipient and also from the donor if fresh whole blood was
90	administered, or if stored pRBCs were used, then a crossmatch segment was obtained. A
91	major and a minor crossmatch (minorly modified versions of those described by Abrams-
92	Ogg, 2016) were performed by trained personnel (hereafter referred to as the laboratory
93	method) as follows. Recipient and donor blood samples were spun at 664 x G for 5
94	minutes and plasma and the erythrocyte pellet were then separated. The erythrocytes
95	were washed using an automated cell washing instrument ^B and a 2% erythrocyte
96	suspension was made using 980 μ L of sterile saline and 20 μ L of washed erythrocytes. Two
97	drops of recipient plasma and 2 drops of donor erythrocyte suspension were placed and
98	gently mixed in an Eppendorf tube ^c for the major crossmatch. Two drops of donor plasma
99	and 2 drops of recipient erythrocyte suspension were placed and gently mixed in an
100	Eppendorf tube for the minor crossmatch. Control tests (whereby donor plasma and
101	donor erythrocyte suspension and recipient plasma and recipient erythrocyte suspension
102	were mixed) were also performed. The solutions of plasma and RBC were incubated at

103	room temperature for 30 minutes. The solutions were then resuspended via tube
104	inversion and a small drop (~10 $\mu L)$ of the suspension was placed onto a slide and
105	immediately examined under the microscope at x10 and x20 objectives. Any sign of
106	agglutination was then recorded as a positive agglutination for that crossmatch. If the
107	recipient control was agglutinating then an agglutinating minor crossmatch was deemed
108	uninterpretable. If the donor control was agglutinating then an agglutinating major
109	crossmatch was deemed uninterpretable. A commercially available crossmatch kit ^D was
110	also used to assess major and minor crossmatch compatibility. A crossmatch was deemed
111	incompatible if a line of cells was present on the top of the serum gel. Crossmatches were
112	not routinely performed prior to first transfusion in this hospital, so these results were not
113	consulted prior to transfusion.
114	
115	Signalment, weight, blood type, whether WB or pRBCs were administered, age of pRBCs,
116	PCV prior to transfusion and as close to 12 hours after the end of the transfusion,
117	diagnosis, administration of additional RBC containing blood products and survival to

- 118 discharge were recorded for the recipients. Blood type, PCV and volume of donation were
- 119 recorded for the donors.

- 121 The recipient increase in PCV at 12 hours post donation was normalised relative to
- 122 the amount of RBCs administered to the recipient cat and their bodyweight (ΔPCVnorm)
- 123 using a novel formula:
- 124 $\Delta PCV_{norm} = (PCV_{post} PCV_{pre}) / ((BDV \times PCV_{donor}) / Wt_{recip})$
- 125 Where:
- 126 PCV_{post}: The PCV of the recipient at 12 hours after the end of the transfusion in %
- 127 PCV_{pre}: The PCV of the recipient prior to transfusion in %
- 128 BDV : The blood donation volume in ml (without anticoagulant)
- 129 PCV_{donor} : The PCV of the donor in %
- 130 Wtrecip: The weight of the recipient in kg
- 131
- 132 The recipient transfusion monitoring sheets (involving a minimum of hourly temperature,
- 133 pulse and respiratory rate measurement) and kennel sheet medical records were
- 134 reviewed to assess for the presence of a transfusion reaction. As there are no current
- 135 veterinary definitions for transfusion reactions human guidelines were adapted for the
- 136 purposes of this study (NHSN, 2018). Acute development of urticaria or pruritis during the
- 137 transfusion was classified as an allergic reaction. If a recipient had an increase in rectal

138	temperature of greater than 1°C from baseline at the beginning of the transfusion, non-
139	pathological reasons for the increase e.g. external warming, recovery from general
140	anaesthesia were considered by the study authors on a case by case basis. If no such
141	reason was found a HTR was diagnosed if there was evidence of haemolysis in plasma
142	or urine or an otherwise unexplained increase in total bilirubin concentration post
143	transfusion alongside a rapid decrease of PCV post transfusion (a HTR was also
144	diagnosed if these factors were fulfilled without a pyrexia during the transfusion). If
145	there was no evidence of a HTR, cytological examination of the blood product was
146	performed to assess for the presence of bacteria and the blood product date and
147	appearance were checked. If abnormalities were noted, or if the pyrexia did not
148	spontaneously resolve after cessation of blood product administration, a suspected septic
149	transfusion was recorded and a culture of the blood product was performed. If neither a
150	septic nor a HTR were suspected then a FNHTR was recorded. Transfusion associated
151	circulatory overload (TACO) was recorded if a cat developed respiratory distress (defined
152	as increased effort and tachypnoea) or novel pleural fluid or radiographic changes
153	consistent within volume overload within 24 hours of the transfusion alongside
154	echocardiographic changes compatible with volume overload or if the patient was treated

155	with furosemide. Transfusion related acute lung injury (TRALI) was recorded if the
156	recipient developed acute respiratory distress within 24 hours of the transfusion, with
157	radiographic or computed tomography evidence of bilateral pulmonary infiltrates and no
158	evidence of congestive heart failure on echocardiography.
159	
160	Age, recipient PCV before and after transfusion, and ΔPCV_{norm} were assessed for
161	normality using a Shapiro–Wilk test. Descriptive statistics were produced for the study
162	population. Concurrence between crossmatching techniques was assessed using Cohen's
163	unweighted Kappa. The mean/median ΔPCV_{norm} was calculated for all cats and separately
164	for those cats which received pRBCs and WB and those with and without major
165	crossmatch incompatibility results. Results were then compared using a t-test or Mann-
166	Whitney U test as appropriate.
167	
168	The frequency and type of transfusion reactions in all cats and those in each crossmatch
169	incompatible group were also calculated. Rates of FNHTR and HTR for cats receiving
170	pRBCs and WB and survival rates for cats that had transfusion reactions were compared to
171	those that did not via Chi-squared tests.

173 Results

174 Recipient population

175 One hundred and one cats were recruited to the study between May 2016 and September

176 2018, with an extra cat being recruited before it was noted that a sufficient number had

been reached. There were 45 female neutered, 54 male neutered, and 2 female entire

178 cats. There were 56 domestic short hair cats, 10 domestic long hair cats, 5 Persians, 5

179 British short hairs, 4 Burmese, 4 Russian blues, 3 Bengals, 2 Siamese, 2 British blues and 1

180 each of Abyssinian, Burmese cross, domestic medium hair, exotic short hair, Havana,

181 Maine coon, Norwegian forest, ragdoll, Tonkinese and Turkish van breeds. There were 87

182 type A cats, 10 type B cats and 4 type AB cats. The median age was 81 months

183 (interquartile range (IQR) 44-113 months). The patient's underlying disease processes

184 were classified as anaemia due to lack of RBC production (23 cats), RBC destruction (45

185 cats) or loss of RBCs (33 cats). Sixty-five cats received pRBCs and 36 received fresh WB.

186 Seventy-eight cats survived to discharge from the hospital, 17 were euthanased and 6 died

187 during their hospitalisation period.

189	The median PCV prior to transfusion was 12% (IQR 9-15%) and after transfusion was 19%
190	(IQR 15-21%). A post transfusion PCV was not obtained for one cat as it was unstable and
191	venepuncture was not possible prior to cardiopulmonary arrest which occurred 12.25
192	hours after the end of the transfusion. The median time the PCV was obtained after the
193	end of the transfusion was 12 hours (IQR 10.5-13 hours).
194	
195	Crossmatch compatibility and PCV increase
196	A high frequency (27%) of major crossmatch incompatibility was found with the
197	laboratory method with a lower frequency (10%) for the minor crossmatch laboratory
198	method. Both major and minor crossmatch incompatibility was less frequent (both 4%)
199	with the commercial test method (Table 1). Agreement between the laboratory and
200	commercial crossmatching methods is shown in Tables 2 and 3. Unweighted Kappa
201	agreement between the methods was found to be poor for the major crossmatch (Kappa
202	statistic 0.1351, 95% CI 0-0.5057, n=68) and fair for the minor crossmatch (Kappa statistic
203	0.3645, 95% CI 0-0.9254, n=43). The recipient control was reported to be agglutinating in
204	18/96 cats (19%), and in 9 of these cases, the minor crossmatch was also agglutinating and
205	was therefore deemed to be uninterpretable. The donor control was reported to be

- agglutinating and was therefore deemed to be uninterpretable.
- 208

209	The median ΔPCVnorm	1 was 0.01279kg/ml (IQR	0.00567-0.02100).	The ΔPCVnorm	did not
-----	---------------------	-------------------------	-------------------	--------------	---------

- differ significantly between cats receiving pRBCs (median 0.01207, IQR 0.00926-0.02248)
- 211 and WB (median 0.01413, IQR 0.00509-0.01972) (p=0.24). The ΔPCV_{norm} for major
- 212 crossmatch compatible and incompatible blood for each test is shown in Table 4. There
- 213 were no significant differences between ΔPCV_{norm} for crossmatch compatible and
- crossmatch incompatible blood for either crossmatching method (table 4).
- 215
- 216 Transfusion reactions and crossmatch compatibility
- 217 Transfusion reactions occurred in 20/101 cats. Nine cats had FNHTRs, 7 cats had HTRs, 3
- 218 cats had TACO, 2 developed hypothermia during their transfusion and 1 cat had a
- 219 transfusion transmitted infection (the cat was transfused with Mycoplasma
- 220 *haemominutium* positive blood and was found be PCR positive for the organism post
- transfusion). Although all feline donors are checked for feline *Mycoplasma spp*, the result
- was not available prior to transfusion as this was an emergency fresh WB transfusion to

224	approximately 10-15 mL of her transfusion subcutaneously due to intravenous cannula
225	displacement. One cat was initially typed as an AB cat and was administered type A pRBCs
226	due to a lack of immediate type AB blood availability. The cat had a HTR and on repeat
227	blood typing, it was found that the cat was actually blood type B. Both the laboratory and
228	commercial test major crossmatches were incompatible with both minor crossmatches
229	compatible for this cat as would be expected.
230	
231	Seven/65 ((11%) cats receiving pRBCs had a FNHTR compared to 2/36 (6%) cats receiving
232	WB. Five/65 (8%) cats receiving pRBCs had a HTR compared to 2/36 (6%) receiving WB.
233	These proportions were not significantly different.
234	
235	The laboratory crossmatch suggested incompatibility for 3/7 (43%) cats that had a HTR (2
236	cats had major crossmatch incompatibility and one had both major and minor
237	incompatibly); this compared to an incompatibility rate of 30/90 (33%) for cats that did
238	not have a HTR. The commercial test crossmatch suggested incompatibility in 2/4 (50%)

- 223 the recipient. Complications occurred in 2 transfusions. One cat was administered
- Cs

239 cats (one major crossmatch incompatibility and one minor crossmatch incompatibility)

240	compared to 2/68 (3%) that did not have a HTR. The 2 HTR cats that did not have
241	incompatibility noted by the commercial test did not have minor crossmatches performed
242	with this method.
243	
244	Of the 9 cats with FNHTRs, the laboratory major crossmatch suggested incompatibility for
245	2 cats and the laboratory minor crossmatch suggested incompatibility for no cats. The
246	commercial test was used in 7 of the FNHTR cats and all major and minor crossmatches
247	were compatible for these cats.
248	
249	Recipient outcome
250	Nineteen cats had at least one further WB or pRBC transfusion after their first transfusion.
251	Two of the 6 cats (33%) that had a HTR required a further transfusion compared to 15 of
252	the 92 (16%) cats that did not. This was not statistically significantly different. Survival to
253	discharge was 66% for cats that had a HTR compared to 78% in cats that did not and 89%
254	for cats that had a FNHTR compared to 76% in cats that did not (neither difference was
255	statistically significantly different).
256	

	— ·	•
257	Discu	ission
407		133101

258 The first and second aims of this study were to determine the frequency of crossmatch 259 incompatibility in cats which had not previously been administered a blood product and to 260 compare the results of two crossmatching methods. It was shown that the frequency 261 differed markedly between the two techniques studied, with a relatively high level of 262 crossmatch incompatibility reported using a laboratory method and a much lower level of 263 incompatibility reported using the commercial test. This finding concurs with an 264 investigation comparing a laboratory method with the same commercial test used in this 265 study in dogs (Guzman et al 2016). In that study it was concluded that the commercial 266 test was inaccurate, but in this study, the clinical follow up of the crossmatched cats 267 suggest that the laboratory method may actually be the less useful method as 268 incompatibility was not associated with a detectable HTR in most cases. Guzman et al 269 (2016) noted that interpretation of the commercial test could be difficult and it should be 270 noted that in this study a simplified approach to identification of an incompatible 271 crossmatch result was used which differs slightly from that recommended by the 272 manufacturers. Other studies looking at major crossmatching in cats prior to first 273 transfusion report report similar incompatibility rates between 14.9 and 17% (McCloskey

et al 2018, Sylvane et al 2018, Weltmand et al 2014) between the laboratory rate of 27%
and the commercial test rate of 4% reported here.

The Kappa agreement between the crossmatching methods was very poor, suggesting
they are not interchangeable. There are very wide confidence intervals for the Kappa
agreement due to the relatively low overall number of cases when both crossmatching
methods were used and the lower level of incompatibility reported by the commercial
test.

284	Our third aim was to assess the effect of crossmatch incompatibility on the change in PCV
285	seen post-blood donation. We found that administration of crossmatch incompatible
286	blood in transfusion naïve cats was not associated with a lower retention of RBCs at 12
287	hours when compared to administration of crossmatch compatible blood (for both
288	method of crossmatching). However, it could be argued that sampling PCV at 12 hours
289	may have been too early to detect the effects of a HTR, and the fall in PCV may occur
290	later. Weingart et al (2004), in a large retrospective study, described several cats that had

291	clinical signs consistent with HTRs when their total bilirubin concentrations increased 1-5
292	days after transfusion and their PCV rise was lower than expected at 16-24 hours post
293	transfusion. Similarly, a Mik-negative cat administered presumed Mik-positive blood was
294	described to have an increase in serum bilirubin and haemoglobinemia 24-48 hours post
295	transfusion (Weinstein et al, 2007). It was therefore important that this study monitored
296	the progression of the cats throughout their hospitalisation time and assessed them for a
297	HTR which may not have been noted by assessing PCV at the 12-hour mark.
298	
299	The commercial test found incompatibility in 2/4 HTR cases. Although not all HTRs were
300	detected by this method of crossmatching, this may at least in part have been because
301	minor crossmatches were not performed in the 2 cats where no incompatibility was
302	detected. This study suggests that as a minimum, the commercial test may be a useful
303	method for assessing compatibility. If this test suggests compatibility, then a HTR is
304	unlikely. The laboratory crossmatch method did not appear as useful in the detection of
305	HTR patients where 43% of the cats had either major or minor (or both) crossmatch
306	incompatibility reported, compared to 35% for those that did not have a HTR.
307	

309	Several reasons can be postulated as to why the laboratory method was not reliable for
310	the prediction of HTRs in transfusion naive cats. Firstly, the method is subjective, and
311	although technicians were trained in assessment for agglutination, human error is possible
312	(Abrams-Ogg, 2016). Secondly a large proportion of the cats in the study had immune
313	mediated haemolytic anaemia and many had spontaneous agglutination. The laboratory
314	method included cell washing, but agglutination is still possible after this procedure.
315	Finally, it is possible that the laboratory method was detecting incompatibilities that were
316	present, but that were not clinically relevant and did not result in an appreciable HTR.
317	
318	Although crossmatch incompatibility would suggest a HTR was more likely rather than any
319	other transfusion reaction, FNHTR were also examined in this study as McClosky et al
320	(2018) found that FNHTR were more common in their non-crossmatched cats compared
321	to their group administered crossmatch compatible blood. This was not the case in this
322	study, with low levels of incompatibility with both crossmatching methods noted for cats
323	that had FNHTRs. It is possible that in the McClosky <i>et al</i> (2018) study, the patients
324	classified as having FNHTR may have actually been having HTRs and this was hard to

325	detect given the retrospective nature of the study. It is probably important to note that
326	primary clinicians caring for the patients in this study did not always recognise the
327	occurrence of a transfusion reaction as clinical signs were sometimes mild in nature.
328	
329	
330	The final aim of the study was to assess the frequency of transfusion reactions and
331	complications and errors. The frequency of transfusion reactions in this population was
332	high at approximately 1 in 5 cats. It is much higher than that reported in several previous
333	studies (Castellanos et al 2004; McClosky et al 2018; Weingart et al 2004). A study in dogs
334	reported a much higher transfusion reaction rate of 15% with reactions being more
335	common with pRBC transfusions compared to other blood products (Bruce et al 2015). In
336	people, transfusion reactions are well defined and rates of between 0.2 and 3.8% have
337	been reported, with variation between studies and blood products administered (Kato et
338	al 2013; Kato et al 2015; Negi et al 2015).
339	However veterinary studies reporting transfusion reactions are hampered by the lack of

clear guidelines of what constitutes an transfusion reaction. Also, this was a prospective 340

study where the cats were specifically being monitored for transfusion reactions and so it 341

342	is likely that cases were recorded which could otherwise have been missed. This is
343	especially true for HTRs, where close monitoring was required to detect the increase in
344	serum bilirubin as this was often not marked and often did not result in clinical icterus.
345	The transfusion reaction rate in this study is similar to that described in another
346	prospective study where a frequency of 23% transfusion reaction was noted, with the
347	majority being FNHTR, as with this study (Sylvane et al 2018).
348	
349	HTRs are classified as acute if they result from pre-formed antibodies and delayed if the
350	antibodies develop post transfusion (Strobel 2008). In this study it is suspected that the
351	HTRs noted were acute. Although only one of the cats developed pyrexia during the
352	transfusion, in all cases evidence of haemolysis occurred with 24 hours, when signs of a
353	delayed HTR are expected after 24 hours (National Healthcare Safety Network 2018). This
354	suggests that pre-formed non-AB antibodies, such as anti-Mik antibodies, were present in
355	several cats in this study. There was no difference in the need for further blood products
356	or survival to discharge noted in the cats with a HTR however. Although this does not
357	mean that the cats with a HTR had no difference in morbidity when compared to those
358	without, it does suggest that the effect was not marked.

360	Definitive proof that these were genuine transfusion reactions was not possible to obtain
361	given the clinical nature of the study. Even the transfusion-transmitted infection case
362	with the administration of blood from a Mycoplasma haemominutium infected donor was
363	not a definite transfusion reaction, as the recipient was not assessed for the presence of
364	the organism prior to transfusion. Ideally, to confirm a patient had a HTR, a direct
365	antiglobulin test should be performed both before and after the transfusion to assess for
366	the presence of anti-erythrocyte antibodies and whether there is an increased reaction
367	post transfusion as in human medicine (Strobel 2008). The diagnosis of FNHTR is made by
368	discounting all other possible causes of pyrexia, which was attempted during the study,
369	but it is possible that HTRs could have been misdiagnosed as FNHTR if they were mild
370	although most of the HTRs in this study were not associated with a pyrexia. It is difficult in
371	the clinical situation to state that development of hypothermia or respiratory distress is
372	definitely secondary to transfusion given the multitude of other treatments being
373	administered in these critical patients. However, the guidelines, based on human
374	guidelines for the diagnosis of transfusion reactions, described in the methods were used
375	to maximise the likelihood of genuine diagnosis.

377 This study has many limitations. Firstly, there was insufficient data in the literature when 378 the study was planned to perform a sample size calculation to determine the number of 379 cases. Moreover, this study was aimed at assessing the agreement in performance of 2 380 tests for the detection of a reaction, not to assess the frequency of a disease. In light of 381 these issues, a convenience sample of 100 cats was chosen to provide a sufficiently large 382 population that we hoped would detect a difference if one was present and that was also 383 achievable to allow recruitment over 2 years, but given the results obtained, it is likely the 384 study was under-powered. Secondly, as noted above, the timing of blood sampling post 385 transfusion may have been too early to detect the results of a HTR. However, given the 386 dynamic nature of many of these patients' disease processes, leaving sampling too long 387 may have meant it was difficult to assess the impact of the transfusion. This clinical aspect 388 of the trial is a strength, as it allows assessment of the impact of crossmatching and 389 transfusion reactions in the clinical situation. However, it also means the recipients were 390 very variable, transfusion administration was not standardised and the impact of general 391 anaesthesia, dehydration and volume status could all have affected the PCV alongside on-392 going haemorrhage and RBC lysis depending on the underlying disease process. Also,

393	some patients died during or shortly after transfusion administration, meaning that
394	possible transfusion reactions may have been missed. Thirdly, sufficient blood to run each
395	crossmatch was not available for each patient as they were often unstable prior to
396	transfusion. Therefore, a commercial test major crossmatch was only performed on
397	approximately 2/3 of the study population and a commercial test minor crossmatch on
398	approximately ½. Only 2 methods of crossmatching were tested and other commercial
399	and non-commercial methods are available which may have differing results. Finally,
400	although every effort was made to monitor for transfusion reactions, they may have been
401	missed as the clinical nature of the patients meant that treatment and blood sampling was
402	not standardised.
403	
404	In summary, this study showed no advantage in crossmatching patients prior to first
405	transfusion when assessing increase in PCV at 12 hours and survival to discharge which is
406	consistent with the findings of previous large studies (McClosky <i>et al</i> 2018; Sylvane <i>et al</i>

- 407 2018). Interestingly, these studies have differing conclusions with Sylvane *et al* (2018)
- 408 suggesting that their results do not support the use of crossmatching prior to first
- 409 transfusion in cats, whereas McCloskey *et al* (2018) state that the prevalence of naturally

410	occurring non-AB incompatibilities they detected is sufficiently high to justify the
411	recommendation to perform a crossmatch prior to first RBC transfusions in cats. Our
412	study has found that cats can have a HTR on first transfusion and that this is not
413	uncommon. Although the laboratory method seems less useful at predicting these, when
414	the commercial test suggests incompatibility, a HTR appears to be more likely. Although a
415	negative impact of HTR could not be demonstrated in this study, that could be due to low
416	case numbers and lack of sufficient monitoring. Ultimately, in the authors' opinion, a
417	pragmatic approach is probably best. It could be argued that if there are multiple donors
418	available, then crossmatching prior to first transfusion, and use of a compatible donor is
419	optimal, although if this is not feasible, this study suggests that transfusion without prior
420	crossmatching can be safe and effective.
421	
422	
423	
424	Footnotes
425	A: QuickTest Blood Typing, Alvedia, Limonest, France

426 B: Rotalavit, Hettich Lab Technology, Tuttlingen, Germany

427	C: 5ml Eppendorf tubes, VWR Inernational , LLC Radnor, Pennsylvania
428	D: RapidVet-H Crossmatch kits, DMS Laboratories, Flemington, New Jersey
429	
430	Conflicts of Interest: The cross matching kits assessed in this study were supplied by the
431	manufacturers but the company had no input into the content of this manuscript.
432	
433	Acknowledgements: With thanks to Charlotte Russo, Claire Marshall and Susie Hunt for
434	their help with sample collection, to David Arnfield and Paul Barber for their performance
435	of the crossmatch tests and to Geraint James for his statistical and mathematical help.
436	
437	Funding: This study was kindly sponsored by a grant provided by the PetPlan Charitable
438	Trust.
439	
440	References:
441	Abrams-Ogg ACG (2016) Feline Recipient Screening In: Manual of Veterinary Transfusion
442	Medicine and Blood Banking. Eds K Yagi and M Holowaychuk. Wiley Blackwell, Iowa USA.
443	Рр. 129-154

445 Journal of feline medicine and surgery 13, 11-23

447 Bruce JA, Kriese-Anderson L, Bruce AM *et al* (2015) Effect of premedication and other

factors on the occurrence of acute transfusion reactions in dogs. *Journal of Veterinary*

449 *Internal Medicine* 25, 620-30

450

451 Castellanos I, Couto CG and Gray TL. (2004) Clinical use of blood products in cats: a

retrospective study (1997--2000). *Journal of Veterinary Internal Medicine* 18, 529-32

453

454 Giger U and Akol KG. (1990) Acute hemolytic transfusion reaction in an Abyssinian cat

455 with blood type B. *Journal of Veterinary Internal Medicine* 4, 315-6

456

457 Giger (2014) Blood Typing and Crossmatching to Ensure Blood compatibility In: Kirk's

458 Current Veterinary Therapy XV. Eds J D Bonagura and D C Twedt. Elsevier Saunders,

459 Missouri USA e143

461	Goy-Thollot I, Giger U, Boisvineau C <i>et al</i> (2017) Pre- and Post
462	Transfusion Alloimmunization in Dogs Characterized by 2 Antiglobulin-Enhanced Cross-
463	match Tests. Journal of Veterinary Internal Medicine 31, 1420-1429
464	
465	Guzman LR, Streeter E and Malandra A. (2016) Comparison of a commercial blood cross-
466	matching kit to the standard laboratory method for establishing blood transfusion
467	compatibility in dogs. Journal of Veterinary Emergency and Critical Care 26, 262-268
468	
469	Jagodich TA and Holowaychuk MK. (2016) Transfusion practice in dogs and cats: an
470	Internet-based survey. Journal of Veterinary Emergency and Critical Care 26, 360-72
471	
472	Kato H, Uruma M, Okuyama Y et al (2013) Incidence of transfusion-related adverse
473	reactions per patient reflects the potential risk of transfusion therapy in Japan. American
474	Journal of Clinical Pathology 140, 219-24

- 476 Kato H, Nakayama T, Uruma M et al (2015) A retrospective observational study to assess
- 477 adverse transfusion reactions of patients with and without prior transfusion history. Vox
- 478 Sang.108, 243-50
- 479 McClosky ME, Cimino Brown D, Weinstein NM et al (2018) Prevalence of naturally
- 480 occurring non-AB blood type incompatibilities in cats and influence of crossmatch on
- 481 transfusion outcomes. *Journal of Veterinary Internal Medicine* 32, 1934-1942
- 482 National Healthcare Safety Network (2018) National Healthcare Safety Network
- 483 Biovigilance Component Hemovigilance Module Surveillance Protocol.
- 484 [https://www.cdc.gov/nhsn/pdfs/biovigilance/bv-hv-protocol-current.pdf] Accessed 17th
- 485 September 2019
- 486 Negi G, Singh Gaur D et al (2015) Blood transfusion safety: A study of adverse reactions at
- 487 the blood bank of a tertiary care center. Advances in Biomedical Research 4, 237
- 488
- 489 PHB Bolton-Maggs (Ed) D Poles et al. (2018) on behalf of the Serious Hazards of
- 490 Transfusion (SHOT) Steering Group. The 2017 Annual SHOT Report

- 492 Strobel E. (2008) Hemolytic transfusion reactions. *Transfusion Medicine and Hemotherapy*
- 493 35, 346-353
- 494
- 495 Sylvane B, Prittie J, Hohenhaus AE *et al* Effect of cross-match on packed cell volume after
- 496 transfusion of packed red blood cells in transfusion-naïve anemic cats. *Journal of*
- 497 *Veterinary Internal Medicine* 32, 1077-1083
- 498
- Tasker S, Barker EN, Day MJ et al. (2014) Feline blood genotyping versus phenotyping, and
- 500 detection of non-AB blood type incompatibilities in UK cats. *Journal of Small Animal*
- 501 *Practice* 55, 185-9
- 502
- 503 Weingart C, Giger G and Kohn B. (2004) Whole blood transfusions in 91 cats: a clinical
- 504 evaluation. *Journal of Feline Medicine and Surgery* 6, 139-48

506	Weinstein NM, Blais MC, Harris K, et al (2007) A newly recognized blood group in domestic
507	shorthair cats: the Mik red cell antigen. Journal of Veterinary Internal Medicine 21, 287-92
508	
509	Weltman JG, Fletcher DJ and Rogers C. (2014) Influence of cross-match on posttransfusion

- 510 packed cell volume in feline packed red blood cell transfusion. *Journal of Veterinary*
- 511 *Emergency and Critical Care* 24, 429-36