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1  | INTRODUC TION

Beyond its physiological role in renal sodium reabsorption and 
potassium excretion, there is extensive experimental evidence 
implicating excessive aldosterone activation of mineralocorticoid 
receptors (MR) in nonclassical sites, including the endothelium, 
vascular smooth muscle cells (VSMCs), cardiomyocytes, inflam-
matory cells, renal podocytes and fibroblasts, in causing tissue 

injury. The beneficial effect of MR antagonists (MRAs) on reduc-
ing mortality in people with heart failure is well established (Pitt 
et al., 1999, 2013; Zannad et al., 2011), and their prescription is 
included in international guidelines of heart failure treatment 
(Ponikowski et al., 2016). Clinical studies have also demonstrated 
the benefit of MRAs in people with chronic kidney disease (CKD) 
(Bianchi, Bigazzi, & Campese, 2006; Currie et al., 2016; Sato, 
Hayashi, & Saruta, 2005). Indeed, rarely has preclinical experience 
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Abstract
There is a growing body of experimental and clinical evidence supporting mineralo-
corticoid receptor (MR) activation as a powerful mediator of renal damage in labo-
ratory animals and humans. Multiple pathophysiological mechanisms are proposed, 
with the strongest evidence supporting aldosterone-induced vasculopathy, exacer-
bation of oxidative stress and inflammation, and increased growth factor signalling 
promoting fibroblast proliferation and deranged extracellular matrix homeostasis. 
Further involvement of the MR is supported by extensive animal model experiments 
where MR antagonists (such as spironolactone and eplerenone) abrogate renal injury, 
including ischaemia-induced damage. Additionally, clinical trials have shown MR an-
tagonists to be beneficial in human chronic kidney disease (CKD) in terms of reduc-
ing proteinuria and cardiovascular events, though current studies have not evaluated 
primary end points which allow conclusions to made about whether MR antagonists 
reduce mortality or slow CKD progression. Although differences between human 
and feline CKD exist, feline CKD shares many characteristics with human disease 
including tubulointerstitial fibrosis. This review evaluates the evidence for the role of 
the MR in renal injury and summarizes the literature concerning aldosterone in feline 
CKD. MR antagonists may represent a promising therapeutic strategy in feline CKD.
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been translated into therapeutic use more quickly and effectively 
than the use of MRAs. Whilst it is true that MR activation con-
tributes to renal damage in the context of hypertension, a blood 
pressure-independent effect has been demonstrated in various 
models of kidney injury including subtotal nephrectomy (Ibrahim 
& Hostetter, 1998), ischaemia/reperfusion injury (Barrera-Chimal 
et al., 2015; Mejía-Villet et al., 2007; Ramírez et al., 2009), dia-
betic nephropathy (Bamberg et al., 2018), glomerulonephritis 
(Asai et al., 2005) and calcineurin inhibitor nephrotoxicity (Feria 
et al., 2003).

Chronic kidney disease is the most common cause of mortality 
in ageing cats (O’Neill et al., 2015) and may result in significant 
morbidity in affected individuals. Aetiology is usually unknown 
on an individual basis, but pathological characteristics, namely 
multifocal tubulointerstitial fibrosis and chronic mononuclear tu-
bulointerstitial inflammation, are consistent (Chakrabarti, Syme, 
Brown, & Elliott, 2013; McLeland, Cianciolo, Duncan, & Quimby, 
2015; Zini et al., 2014). Important differences exist between fe-
line and human CKD, as cats exhibit a lower frequency of protein-
uria and glomerulonephritis compared with humans, and different 
risk factors for disease development exist, with hypertension and 
diabetes mellitus being important in people (Jha et al., 2013), and 
frequent vaccination and dental disease identified in feline epi-
demiological studies (Finch, Syme, & Eliott, 2016; Greene et al., 
2014). Tubulointerstitial fibrosis is the lesion best correlated with 
disease severity in both cats (Chakrabarti et al., 2013; Sawashima 
et al., 2000; Yabuki et al., 2010) and people (Hruby et al., 1998; 
Nath, 1992), however, and occurs early in feline CKD (McLeland 
et al., 2015). Although several clinicopathological findings, in-
cluding proteinuria, anaemia and hyperphosphataemia, correlate 
with fibrosis severity and/or survival (Boyd, Langston, Thompson, 
Zivin, & Imanishi, 2008; Chakrabarti et al., 2013; Chakrabarti, 
Syme, & Elliott, 2012; Elliott, Rawlings, Markwell, & Barber, 2000; 
King, Tasker, Gunn-Moore, Gleadhill, & Strehlau, 2007; McLeland 
et al., 2015; Syme et al., 2006), causal and progression factors of 
feline CKD remain poorly understood. Recently, renal hypoxia/
ischaemia, perhaps episodic in nature, has been proposed to con-
tribute to the initiation and progression of feline CKD (Cowgill 
et al., 2016; Jepson, 2016). This is supported by experimental 
models where renal ischaemia results in morphological changes 
akin to those observed in naturally occurring disease (Brown et al., 
2019; Schmiedt et al., 2012, 2016). Aside from the feeding of a 
renal diet (Ross et al., 2006), currently no effective treatments 
exist which are proven to significantly slow feline CKD progres-
sion. One of the benefits of a renal diet is thought to be restriction 
of phosphate intake (Elliott et al., 2000; Ross, Finco, & Crowell, 
1982). As such, it is important to understand factors which may 
be associated with disease advancement so that novel therapeutic 
interventions may be established.

This review provides an overview of the evidence supporting the 
deleterious role of aldosterone/MR activation in renal injury in lab-
oratory animals and humans and discusses its potential relevance in 
the context of feline CKD.

2  | ALDOSTERONE AND THE MR

Aldosterone is a mineralocorticoid hormone produced primarily in 
the zona glomerulosa of the adrenal cortex whose major physiologi-
cal function is to maintain sodium and potassium homeostasis and 
blood pressure control. Upon binding to the MR in the epithelial cells 
of the renal cortical collecting tubules and collecting ducts, aldoster-
one stimulates a cascade of events resulting in sodium reabsorption, 
and thus the maintenance of intravascular volume, and potassium 
secretion (Ponda & Hostetter, 2006). The major secretagogues of 
aldosterone are increased serum potassium concentration and an-
giotensin II (via the angiotensin type 1 receptor) (Beuschlein, 2013). 
Components of the renin–angiotensin–aldosterone system (RAAS) 
are important on both a systemic and tissue-specific level (Nishiyama 
& Kobori, 2018; Siragy & Carey, 2010), and intrarenal aldosterone 
may act independently of circulating aldosterone levels. In fact, in 
humans and laboratory species, MR blockade has been shown to be 
beneficial in the absence of elevated plasma aldosterone levels (Du 
et al., 2009; Nagase, Matsui, Shibata, Gotoda, & Fujita, 2007; Nagase 
et al., 2006; Pitt, Remme, Zannad, & Neaton, 2003; Pitt et al., 1999) 
and renal MR expression is not correlated with serum aldosterone 
levels in people with CKD (Quinkler et al., 2005). CYP11B2, the gene 
which codes for aldosterone synthase, is expressed in the renal cor-
tex of normal rats and is upregulated by angiotensin II (Xue & Siragy, 
2005); other extra-adrenal sites of aldosterone synthesis include 
the brain, blood vessels and myocardium (MacKenzie et al., 2000; 
Takeda et al., 1995; White, 2003).

Aldosterone acts by genomic and nongenomic mechanisms, 
recently reviewed by Hermidorff, Assis, and Isoldi (2017). The rela-
tive physiological and clinical relevance of these pathways remains 
largely unestablished. After aldosterone binds to the cytoplasmic 
MR, the aldosterone-MR complex translocates to the nucleus and 
modulates target gene transcription (Gumz, Popp, Wingo, & Cain, 
2003; Poulsen, Limbutara, Fenton, Pisitkun, & Christensen, 2018). 
Serum glucocorticoid kinase-1 (Sgk-1) is the most important MR 
transcript, whose expression, amongst other effects, triggers a cas-
cade of events in the kidney that ultimately activates the epithelial 
sodium channel (ENaC) and causes potassium excretion (McCormick, 
Bhalla, Pao, & Pearce, 2005). The MR is expressed in numerous tis-
sues besides the kidney, including cardiomyocytes, vascular endo-
thelial and smooth muscle cells, colonocytes and inflammatory cells 
(Bauersachs, Jaisser, & Toto, 2015; Bertocchio, Warnock, & Jaisser, 
2011; Jaffe & Mendelsohn, 2005; Lombès et al., 1992; Nguyen Dahn 
Cat et al., 2010). In the rodent kidney, MRs have been detected in 
podocytes in vitro (Lee et al., 2009; Nagase et al., 2006; Shibata et al., 
2008), mesangial cells (Lai, Chen, Hao, Lin, & Gu, 2006; Nishiyama 
et al., 2005) and fibroblasts (Nagai et al., 2005) in addition to tubular 
epithelial cells. The MR has a high affinity for glucocorticoids and 
epithelial MR selectivity for aldosterone is thought to be protected 
by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which 
converts active glucocorticoids (e.g. cortisol) to MR-inactive 11-keto 
analogues (e.g. cortisone) (Odermatt & Kratschmar, 2012). Cortisol 
may act as an MR agonist in certain tissues or under pathological 
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conditions, however (Mihailidou et al., 2009; Ohtake et al., 2014). 
11β-HSD2 has been detected in feline kidneys, but its localization 
has not been described (Schipper et al., 2004).

The rapid, nongenomic actions of aldosterone are not fully char-
acterized but include effects on cellular calcium and sodium flux, 
intracellular pH, release of heat-shock proteins and protein kinase C 
activation (Michea et al., 2005; Tumlin et al., 1997; Uhrenholt et al., 
2004; Wehling et al., 1998). Not all rapid effects are MR-mediated; 
evidence suggests that aldosterone interacts with other receptors 
such as the G protein-coupled oestrogen receptor (Gros, Ding, Liu, 
Chorazyczewski, & Feldman, 2013) and an “unknown receptor” has 
also been proposed (Hermidorff et al., 2017).

3  | MINER ALOCORTICOID RECEPTOR 
ANTAGONISTS

Spironolactone was the first MRA to be developed, initially regis-
tered for human use in 1960 as a potassium-sparing diuretic (Ponda 
& Hostetter, 2006). It also possesses significant affinity for androgen 
and progesterone receptors (with antagonistic and agonistic actions, 
respectively) (Kolkhof & Borden, 2012). The second-generation 
MRA, eplerenone, was developed as a more selective MRA but 
has reduced potency (Shavit et al., 2012; Sica, 2005). Finerenone 
is a third-generation nonsteroidal MRA with greater MR selectiv-
ity than spironolactone, greater potency than eplerenone and in-
creased renoprotective effects (Barrera-Chimal et al., 2016; Kolkhof, 
Nowack, & Eitner, 2015). Aldosterone synthase inhibitors may 
provide a novel method for aldosterone suppression in the future 
(Hargovan & Ferro, 2014). Spironolactone is the only veterinary-
licensed MRA, for the treatment of congestive heart failure caused 
by valvular regurgitation in dogs, either alone or as a combination 
product with benazepril.

4  | ALDOSTERONE IN CKD

In the early stages of CKD, RAAS activation occurs as a compensa-
tory response to maintain glomerular filtration rate (GFR); however, 
chronic activation is maladaptive and leads to progressive renal in-
jury. Angiotensin II has historically been regarded as the major me-
diator of RAAS-induced renal injury, not only through its glomerular 
effects but also by activating proinflammatory and profibrotic path-
ways (Ames, Atkins, & Pitt, 2019; Eddy, 1996; Nishiyama & Kobori, 
2018). Consequently, the current standard of care for CKD treat-
ment in human medicine involves angiotensin II inhibition with an-
giotensin-converting enzyme inhibitors (ACEIs) and/or angiotensin 
type 1 receptor blockers (ARBs). Substantial and ever-increasing evi-
dence in laboratory species and humans demonstrates that aldoster-
one also causes direct organ damage, particularly in the heart and 
kidneys. Aldosterone's pathophysiological actions are similar to and 
overlap with those of angiotensin II (Ames et al., 2019), and the in-
teractions between the two are complex, meaning it can be difficult 

to discern their individual effects (Luther et al., 2012; Virdis et al., 
2002).

Chronic kidney disease can be considered as a state of relative 
hyperaldosteronism. Increased plasma aldosterone levels are a risk 
factor for kidney injury in human clinical studies, and MRA treatment 
has been shown to be beneficial in numerous rodent models of renal 
disease and in human patients, for example by abrogating renal his-
topathological changes and reducing proteinuria and blood pressure. 
Aldosterone's detrimental effects on the kidney predominantly occur 
via nonepithelial MRs, and importantly, can arise independently of 
aldosterone's effect on blood pressure (Fujisawa et al., 2004; Rafiq, 
Hitomi, Nakano, & Nishiyama, 2010). The proposed mechanisms un-
derlying the detrimental effects of MR activation in the kidney are 
outlined in Figure 1. “Aldosterone breakthrough” is a phenomenon 
which further supports harmful effects of MR activation; this term 
applies to patients on ACEI/ARB therapy who experience plasma 
aldosterone concentrations that return to or exceed pretreatment 
levels following an initial reduction (Terata et al., 2012). Aldosterone 
breakthrough is associated with more severe proteinuria and a faster 
deterioration in renal function in people (Buglioni et al., 2015; Sato, 
Hayashi, Naruse, & Saruta, 2003; Schjoedt, Andersen, Rossing, & 
Tarnow, 2004). Aldosterone breakthrough is poorly characterized in 
veterinary species but has been documented in cats with hypertro-
phic cardiomyopathy treated with ACEIs (MacDonald & Kittleson, 
2008), and preliminary studies have demonstrated that aldosterone 
breakthrough may occur in up to 33% of dogs with proteinuric renal 
diseases that are receiving ACEIs/ARBs (Ames, unpublished data). 
Certainly, aldosterone breakthrough has been documented in dogs 
with cardiac disease treated with ACEIs (Ames, Atkins, Eriksson, & 

F I G U R E  1   Proposed mechanisms underlying the detrimental 
effects of aldosterone/mineralocorticoid receptor activation on the 
kidney
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Hess, 2017) and in healthy dogs receiving furosemide following ACEI 
or ARB treatment (Ames, Atkins, Lee, Lantis, & Zumbrunnen, 2015; 
Konta et al., 2018; Lantis, Ames, Atkins, et al., 2015; Lantis, Ames, 
Werre, & Atkins, 2015).

4.1 | Vascular effects of MR activation

The effects of MR activation on vascular function and structure is 
thought to be the major mechanism by which aldosterone causes 
renal injury (Duprez, 2007; Jaisser & Farman, 2016). MR activation 
in vascular endothelial cells and VSMCs results in endothelial dys-
function, increased oxidative stress (where the production of poten-
tially damaging reactive oxygen species [ROS] exceeds endogenous 
antioxidant capacity) and ultimately vascular injury and remodel-
ling, leading to reduced arterial compliance and vasoconstriction 
(Duprez, 2007; Gros et al., 2007; Jaffe & Mendelsohn, 2005; Nguyen 
Dahn Cat et al., 2010; Struthers, 2004).

4.1.1 | Effects on endothelial function

Endothelial dysfunction, characterized by impaired vasodilation, in-
creased platelet and leucocyte adhesion, and decreased nitric oxide 
bioavailability, occurs secondary to MR activation in experimental 
rodent studies (Gromotowicz et al., 2011; Oberleithner et al., 2004). 
Aldosterone induces vascular and intercellular cell adhesion mole-
cule (VCAM/ICAM) expression, indicating inflammatory activation 
of the endothelium (Lai et al., 2006), an effect reduced by MRAs 
(Caprio et al., 2008; Kobayashi et al., 2005). The endothelial nitric 
oxide synthase (eNOS)–nitric oxide pathway is key in maintaining 
endothelial integrity and function (Goligorsky, Brodsky, & Noiri, 
2004). MR activation can reduce eNOS activity and cause eNOS 
uncoupling, resulting in impaired vasodilation (Arima et al., 2004; 
Bauersachs et al., 2015; Duprez, 2007; Gromotowicz et al., 2011; 
Liu, Schmuck, Chorazcyzewski, Gros, & Feldman, 2003). Oxidative 
stress, including enhanced ROS production, is another mechanism 
by which aldosterone reduces nitric oxide bioavailability and impairs 
vascular reactivity (Farquharson & Struthers, 2002; Leopold et al., 
2007; Sanz-Rosa et al., 2005; Virdis et al., 2002). In the kidney, im-
paired nitric oxide activity promotes proteinuria, accelerates innate 
immune system activation and causes progressive tubulointerstitial 
injury (Sogawa et al., 2018). eNOS uncoupling also increases hydro-
gen peroxide production and activates the nuclear factor-κB path-
way, leading to inflammation and fibrosis (Jaisser & Farman, 2016). 
Following MRA treatment, increased eNOS expression occurs and is 
associated with improved endothelial function and renal blood flow 
(Kobayashi et al., 2005; Sanz-Rosa et al., 2005).

Circulating aldosterone levels are associated with reduced endo-
thelial function (measured by flow-mediated dilation) in the general 
population (Hannemann et al., 2011) and patients with chronic heart 
failure (Duprez et al., 1998), hyperaldosteronism (Nishizaka, Zaman, 
Green, Renfroe, & Calhoun, 2004) and low-renin hypertension, with 

the latter shown to be due to impaired nitric oxide-mediated va-
sodilation (Duffy et al., 2005). Endothelial dysfunction is linked to 
cardiovascular risk in CKD patients (Malyszko, 2010) and with prog-
nosis in coronary heart disease (Heitzer, Schlinzig, Krohn, Meinertz, 
& Münzel, 2001) and hypertension (Perticone et al., 2001). People 
with aldosterone dysregulation show evidence of renal vascular 
dysfunction and have heightened cardiovascular risk (Brown et al., 
2014). Improved flow-mediated dilation with MRA treatment has 
been demonstrated in several conditions (Fujimura et al., 2012; 
Macdonald, Kennedy, & Struthers, 2004; Nishizaka et al., 2004). 
Plasma concentrations of asymmetric dimethylarginine (ADMA), an 
endogenous eNOS inhibitor, are increased in cats with CKD, sug-
gesting that endothelial dysfunction may also occur in this species 
(Jepson, Syme, Vallance, & Elliott, 2008) although no direct evidence 
for this has been established.

4.1.2 | Effects on VSMCs, vascular remodelling and 
calcification

Endothelium/VSMC crosstalk is integral to vascular function, par-
ticularly the regulation of vascular tone. Aldosterone leads to rapid 
changes in calcium and sodium flux in VSMCs (Gros et al., 2007; 
Wehling, 2005); this mechanism has been shown to induce renal af-
ferent and efferent arteriole vasoconstriction in rabbits, an effect 
not inhibited by MR blockade (Arima, Kohagura, Xu, & Sugawara, 
2003). MR activation in VSMCs also leads to angiotensin II receptor 
upregulation (Ullian, Schelling, & Linas, 1992), inhibited nitric oxide 
release following cytokine stimulation (Ikeda et al., 1995) and in-
creased expression of genes involved in vascular fibrosis, inflamma-
tion and calcification (Blasi et al., 2003; Jaffe & Mendelsohn, 2005; 
Virdis et al., 2002). Aldosterone is critical in renal vascular damage 
induced by angiotensin II and L-NAME (an eNOS inhibitor) (Rocha 
et al., 2000), and also affects the plasminogen activator system, re-
sulting in perivascular fibrosis (Aldigier, Kanjanbuch, Ma, Brown, & 
Fogo, 2005; Brown, Nakamura, et al., 2000), which in turn exacer-
bates ongoing tissue hypoxia.

Chronic MR activation results in structural vascular changes. 
Hypertrophic remodelling of renal small arteries occurs in aldoste-
rone-infused rats, an effect inhibited not only by spironolactone but 
also by endothelin-1 type A (ETA) receptor antagonism, indicating the 
likely underlying mechanism (Pu, Neves, Virdis, Touyz, & Schiffrin, 
2003). MR blockade improves carotid intima–media remodelling 
in haemodialysis patients (Vukusich et al., 2010), decreases angio-
tensin II-mediated cardiac endothelial cell and VSMC hypertrophy 
(Hatakeyama et al., 1994), cerebral vascular remodelling in stroke-
prone rats (Rigsby, Pollock, & Dorrance, 2007) and arterioscle-
rosis in Dahl salt-sensitive rats (Kobayashi et al., 2005). Vascular 
calcification is another feature of MR-induced vasculopathy (Jaffe 
& Mendelsohn, 2005; Voelkl, Alesutan, Leibrock, Kuro-o, & Lang, 
2013); evidence suggests interplay between MR activation and the 
klotho fibroblast growth factor (FGF)-23 axis, which drives soft tis-
sue and vascular mineralization in CKD-mineral and bone disorder 
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(Voelkl et al., 2013; Zhang et al., 2016). Increased circulating FGF-
23 concentrations were the strongest independent predictor of fe-
line CKD progression and all-cause mortality in one study (Geddes, 
Elliott, & Syme, 2015). Although vascular calcification has not been 
demonstrated in cats with CKD, mineralization of other tissues oc-
curs and serum calcification propensity (an in vitro assay which pre-
dicts vascular calcification in humans) increases with declining renal 
function (van den Broek, Chang, Elliott, & Jepson, 2018b). As MR 
activation is likely to contribute to CKD-mineral and bone disorder in 
cats as in other species, further rationale exists for the use of MRAs 
in the management of feline CKD. MRA treatment in people with 
end-stage renal disease is associated with a reduced risk of cerebro- 
and cardiovascular events (Matsumoto et al., 2014) and a reduction 
in vascular mineralization and stiffness likely accounts for this.

4.1.3 | Effects on blood pressure

Traditionally, aldosterone was believed to increase systemic blood 
pressure solely by sodium and volume retention. However, it is now 
known to act directly on the vasculature, as discussed above, and 
also on the central nervous system (Duprez, 2007; Shavit et al., 
2012). Aldosterone potentiates vasopressor-induced vasoconstric-
tion in vitro (Michea et al., 2005; Nguyen Dahn Cat et al., 2010) but 
has little or no effect on blood pressure or systemic vascular resist-
ance in healthy people (Farquharson & Struthers, 2002; Wehling 
et al., 1998); it is proposed that counteractive vasodilatory nitric ox-
ide-dependent pathways lost in the presence of endothelial damage 
attenuate aldosterone's effect on vascular tone (Arima et al., 2004; 
Uhrenholt et al., 2004).

Sodium and volume retention caused by MR activation contrib-
utes to renal damage (including vascular and glomerular sclerosis, 
tubular damage and inflammation) in rodent experimental models 
of hypertension (Blasi et al., 2003; Nishiyama et al., 2004; Sun 
et al., 2006), and protection conferred by MRA blockade can occur 
partly due to decreases in systolic blood pressure (Du et al., 2009; 
Martín-Fernández et al., 2016; Zhou et al., 2011). Hypertension 
is observed in 19%–65% of cats with CKD (Acierno et al., 2018). 
Although hypertension has not been independently associated 
with CKD progression or survival (Chakrabarti et al., 2012; Jepson, 
Brodbelt, Vallance, Syme, & Elliott, 2009; Syme et al., 2006), it is 
likely that untreated hypertension results in more severe renal in-
jury and disease progression, as in people (Jamerson & Townsend, 
2011). The strong association between hypertension and protein-
uria also tends to “mask” significant associations between blood 
pressure and CKD progression in multivariate models. MRAs are 
effective in reducing blood pressure in people with CKD and 
end-stage renal disease (Bianchi et al., 2006; Bolignano, Palmer, 
Navaneethan, & Strippoli, 2014; Pisoni et al., 2012; Shavit et al., 
2012), although some studies have shown no effect, likely due to 
differences in treatment duration and patient inclusion criteria 
(Chrysostomou, Pedagogos, MacGregor, & Becker, 2006; Rachmani 
et al., 2004; Sato et al., 2003, 2005). Hypertensive human CKD 

patients have more severe renal injury, lower creatinine clearance 
and higher serum aldosterone concentrations than their normo-
tensive counterparts but interestingly no difference in renal MR 
or Sgk-1 expression (Quinkler et al., 2005). Plasma aldosterone lev-
els are also increased in hypertensive CKD cats when compared 
to normotensive cats (Jensen, Henik, & Brownfield, 1997; Jepson, 
Syme, & Elliott, 2014; Mishina et al., 1998). The first-line treatment 
for feline hypertension is the calcium channel blocker amlodip-
ine; although amlodipine can cause RAAS activation and aldoste-
rone breakthrough in dogs (Ames, Atkins, Lantis, & Zum Brunnen, 
2016), its effect on RAAS in cats is less clear with one study show-
ing increased plasma renin activity but not plasma aldosterone in 
hypertensive cats postamlodipine treatment compared with pre-
treatment (Jepson et al., 2014). MRAs may have additional benefits 
with regard to reducing proteinuria in this population, however, as 
in people (White et al., 2003). Hypomagnesaemia is associated with 
systemic hypertension in cats with CKD (van den Broek, Chang, 
Elliott, & Jepson, 2018a) and MR activation may provide the link 
between these factors, as urinary magnesium excretion is stimu-
lated by aldosterone (Barr et al., 1995) and aldosterone secretion 
is inhibited by increased circulating magnesium levels (Atarashi, 
Matsuoka, Takagi, & Sugimoto, 1989).

4.2 | Ischaemic kidney injury

Renin–angiotensin–aldosterone system activation is both a po-
tential cause and effect of renal hypoxia/ischaemia. RAAS-driven 
glomerulosclerosis, haemodynamic adaptive alterations and arte-
riolosclerosis reduce renal capillary oxygen delivery (Hollenberg, 
2004; Nangaku, 2006). Uninephrectomy plus ischaemia in rats leads 
to greater plasma aldosterone levels, hypertension, proteinuria and 
glomerulosclerosis compared with equivalent surgical reduction 
alone (Ibrahim & Hostetter, 1998). Sgk-1 expression, indicating MR 
activation, is upregulated in vitro in human embryonic kidney cells 
and in vivo in mice exposed to hypoxia (Rusai et al., 2009).

Mineralocorticoid receptor activation has been investigated ex-
perimentally in renal ischaemia/reperfusion injury in rodents and the 
potential therapeutic use of MRAs in this setting is relevant to the 
hypothesis that renal ischaemia contributes to feline CKD initiation 
and progression (Brown et al., 2019; Cowgill et al., 2016; Jepson, 
2016). Table 1 summarizes the studies investigating the effects of 
MR activation on renal hypoxia/ischaemia. Spironolactone prior to 
renal ischaemia/reperfusion protects against decreased GFR and 
tubular blood flow and results in reduced severity of histopatho-
logical lesions and proteinuria (Barrera-Chimal et al., 2013, 2015; 
Mejía-Villet et al., 2007; Sánchez-Pozos et al., 2012). Protection is at 
least partly mediated by augmented eNOS activation (important for 
re-establishing blood flow), indicated by increased urinary nitrite/ni-
trate ratio (Mejía-Villet et al., 2007). MR blockade around the time of 
renal ischaemia is protective against progression of acute kidney in-
jury (AKI) to CKD (Barrera-Chimal et al., 2013, 2015, 2018; Lattenist 
et al., 2017). Adrenalectomy is likewise protective in these models 
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TA B L E  1   Studies investigating the effects of aldosterone/MR activation on renal hypoxia/ischaemia

Reference Species Model/population Results

RI studies

Barrera-Chimal et 
al. (2013)

Rat 45 min of bilateral RI; spironolactone 
administered 3 days, 0, 1.5 or 3 hr 
subsequent to RI

Spironolactone at all time points prevented CKD development:
Inhibition of activation of fibrotic and inflammatory pathways 

(TGFß-1, TNF-α, MCP-1, IL-6)
Abrogated structural tubular and glomerular changes
Prevented progressive increase in proteinuria

Barrera-Chimal et 
al. (2015)

Rat 10, 20 or 45 min of bilateral RI; 
spironolactone administered at 0 or 
1.5 hr after RI

Spironolactone:
Prevented renal hypertrophy and tubulointerstitial fibrosis 

seen after 20 and 45 min of RI
Prevented activation of TGF-β signalling pathway and 

upregulation of ETA receptor, reduced α-SMA expression

Barrera-Chimal et 
al. (2016)

Rat 25 min of bilateral RI; nonsteroidal MR 
antagonist BR−4628 administered 48, 
24 and 1 hr before or 3 hr after RI

BR−4628 administration at all time points:
Protected against renal dysfunction, tubular injury and 

oxidative stress
Prevented ETB receptor downregulation and decreased eNOS 

activation

Lattenist et al. 
(2017)

Rat Acute: 25 min of bilateral RI; three doses 
of finerenone treatment 48, 24 and 1 hr 
before

Chronic: 45 min of bilateral RI; finerenone 
treatment 1 and 2 days and 1 hr before

Finerenone:
Acute model: prevented kidney dysfunction and tubular injury, 

decreased KIM−1 and NGAL expression
Chronic model: prevented AKI-to-CKD transition, including 

reduced TGF-β and collagen I expression, decreased 
proteinuria and renal vascular resistance

Mejía-Villet et al. 
(2007)

Rat 20 min of bilateral RI; spironolactone 
administered 1, 2 or 3 days before RI

Spironolactone:
Prevented decreased renal blood flow
Prevented acute renal failure
Prevented tubular apoptosis
Decreased oxidative stress
Upregulated eNOS expression, increased activating 

phosphorylation/decreased inactivating phosphorylation

Ramírez et al. 
(2009)

Rat 20 min of bilateral RI; adrenalectomy 
3 days prior

Adrenalectomized rats showed:
Prevention of decreased GFR
Prevention of increased markers of oxidative stress and tubular 

injury
Increased eNOS expression and activating phosphorylation
Normalization of Rho-kinase expression
Normalization of ETA receptor expression

Sánchez-Pozos et 
al. (2012)

Rat 20 min of bilateral RI; spironolactone 
administered 0, 3, 6 and 9 hr 
subsequently

Spironolactone at 0 and 3 hr after RI:
Prevented decreases in RBF and GFR
Prevented tubular injury and increase in KIM−1, heat-shock 

protein 72 and proteinuria
Inhibited ETA receptor increase and ETB receptor decrease

CIN studies

Amador et al. 
(2016)

Mouse CsA treatment; targeted deletion of MR 
in endothelial cells or VSMCs

MR deletion in VSMCs abrogated:
Increased renal vascular resistance
Phosphorylation of contractile proteins
Increase in serum creatinine
NGAL overexpression

Feria et al. (2003) Rat 21 days of CsA 
treatment ± spironolactone; low sodium 
diet

Spironolactone:
Decreased arteriolopathy
Decreased tubulointerstitial fibrosis, TGF-β, collagen I and 

fibronectin expression
Prevented reduced creatinine clearance

(Continues)
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(Ramírez et al., 2009). As well as enhanced eNOS activation, down-
regulation of the ETA receptor (which mediates vasoconstriction) and 
upregulation of the endothelin type B (ETB) receptor (vasodilatory 
effect) are critical effects of MRA treatment (Barrera-Chimal et al., 
2016, 2018; Ramírez et al., 2009). Activation of the Rho/Rho-kinase 
pathway, resulting in calcium-sensitization and smooth muscle con-
traction, also plays a role in aldosterone's vasoconstrictive and pro-
fibrotic effects following renal ischaemia (Kobayashi et al., 2005; 
Ramírez et al., 2009; Sun et al., 2006). MRAs likewise provide pro-
tection against ischaemic injury in other tissues (Fujita et al., 2005; 

Oyamada et al., 2008; Ozacmak, Ozacmak, Barut, Arasli, & Ucan, 
2014).

Further evidence that aldosterone modulates renal ischaemia is 
provided by rodent experiments investigating transplant nephrop-
athy and cyclosporine-induced nephropathy. Vasoconstriction and 
altered renal haemodynamics occur in acute cyclosporine-induced 
nephropathy (Amador et al., 2016; Bobadilla & Gamba, 2007) and 
are prevented by MR blockade (Bobadilla & Gamba, 2007; Nielsen, 
Jensen, Hansen, Marcussen, & Bie, 2013; Pérez-Rojas et al., 2005), 
seemingly through VSMC MR inactivation (Amador et al., 2016). 

Reference Species Model/population Results

Pérez-Rojas et al. 
(2005)

Rat Acute CIN: 7 days of CsA treatment, 
causing 50% reduction in RBF

Chronic CIN: 21 days of CsA treatment

Spironolactone:
Acute model: prevented decreased RBF and GFR
Chronic model: prevented pro-renin upregulation, 

angiotensin−2 receptor increase and ETB receptor 
downregulation

Other studies

Arima et al. 
(2003)

Rabbit (in 
vitro)

Aldosterone added to microperfused 
renal afferent and efferent arterioles

Aldosterone caused dose-dependent constriction in afferent 
and efferent arterioles, with a higher sensitivity in the latter. 
Pretreatment with neomycin (phospholipase C inhibitor) 
abolished vasoconstriction

No effect of spironolactone (suspected nongenomic effects)

Arima et al. 
(2004)

Rabbit (in 
vitro)

Aldosterone added to microperfused 
renal afferent and efferent arterioles

Aldosterone caused dose-dependent constriction in afferent 
and efferent arterioles. NO-mediated in the afferent arteriole, 
via IP3 and PKC pathways

Uhrenholt et al. 
(2004)

Rabbit (in 
vitro)

Aldosterone added to renal afferent 
arterioles

Aldosterone inhibits depolarization-induced vasoconstriction; 
effect abolished by eNOS blockade, spironolactone and PI3-
kinase inhibition

Du et al. (2009) Rat (DS) High-salt diet; eplerenone, amlodipine or 
both administered

Amlodipine but not eplerenone ameliorated renal hypoxia, 
estimated by pimonidazole, VEGF expression and peritubular 
endothelial cell density

Eplerenone attenuated glomerulosclerosis and development of 
proteinuria; minimal effect on interstitial fibrosis

Waanders et al. 
(2009)

Rat Renal transplant model; spironolactone 
administered from 2 days prior

Spironolactone:
Ameliorated transplant vasculopathy
Reduced glomerular macrophage influx
Trend towards reduced proteinuria and glomerulosclerosis
No effect on interstitial fibrosis

Laursen et al. 
(2018)

Mouse Nr3c2 knockout (deletion of endothelial 
cell MR)

No effect on renal artery and afferent arteriole contraction 
or dilation at baseline or after AngII infusion. No effect on 
proteinuria or renal histology

Ojeda-Cervantes 
et al. (2013)

Human Adult renal transplant recipients; 
double-blind, randomized, placebo-
controlled pilot study. Spironolactone 
administered 1 day before and 3 days 
post-transplantation

Spironolactone:
Reduced oxidative stress, as assessed by urinary H2O2 

excretion
No difference in renal function or tubular injury biomarkers

Schmidt et al. 
(2006)

Human Aldosterone infusion ± l-NMMA (eNOS 
inhibitor); randomized, double-blinded 
fourfold crossover design in healthy men

Aldosterone alone did not affect RBF or GFR
Aldosterone with l-NMMA increased renal vascular resistance 

more than l-NMMA alone, indicating aldosterone's effects are 
dependent on the presence of endothelial dysfunction

Abbreviations: CIN, cyclosporine-induced nephropathy; CsA, cyclosporine-A; eNOS, endothelial nitric oxide synthase; ET, endothelin; GFR, 
glomerular filtration rate; H2O2, hydrogen peroxide; IL-6, interleukin-6; IP3, Inositol trisphosphate; KIM-1, kidney injury molecule-1; l-NMMA, N(G) 
monomethyl-l-arginine; MCP-1, macrophage chemoattractant protein-1; NGAL, neutrophil gelatinase-associated lipocalin; NO, nitric oxide; PKC, 
protein kinase C; RBF, renal blood flow; RI, renal ischaemia/reperfusion injury; TGF-ß, transforming growth factor-ß; TNF-α, tissue necrosis factor-α; 
VSMCs, vascular smooth muscle cells; α-SMA, α-smooth muscle actin.

TA B L E  1   (Continued)
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MRAs improve transplant-associated vasculopathy and glomerular 
macrophage influx (Waanders et al., 2009), protect against chronic 
changes induced by cyclosporine including vasoconstriction, arteri-
olopathy and tubulointerstitial fibrosis (Feria et al., 2003; Nielsen, 
Jensen, Marcussen, Skøtt, & Bie, 2008), and slow kidney damage pro-
gression in established injury (Pérez-Rojas et al., 2007). Experimental 
evidence is supported by clinical data; spironolactone reduced pro-
teinuria post-transplantation in human patients already receiving an 
ACEI and ARB (Gonzales Monte et al., 2010) and reduced markers 
of oxidative stress (Ojeda-Cervantes et al., 2013). Clinical trials are 
ongoing to further characterize the effects of MRAs in renal trans-
plantation (NCT01602861, NCT02490904).

Aldosterone can also contribute to renal ischaemia by promot-
ing microthrombi in injured or dysfunctional vessels (Brown, Kim, 
et al., 2000; Gromotowicz et al., 2011; Rocha et al., 2000), a pro-
cess mediated by oxidative stress (Stier, 2000). MRA treatment can 
reduce thrombosis (Rigsby et al., 2007). Lastly, MR activation may 
have a deleterious effect on angiogenesis (Kobayashi, Fukushima, 
Takeshima, Koguchi, et al., 2010; Zheng et al., 2019), although not all 
studies have demonstrated benefit of MRA treatment in this context 
(Du et al., 2009).

4.3 | Proteinuria/glomerular damage

An enhanced MR effector mechanism is closely related to pro-
teinuria, a strong risk factor for CKD progression in people 
(Heerspink, Kröpelin, Hoekman, & de Zeeuw, 2015) and progno-
sis in cats (Chakrabarti et al., 2012; King et al., 2007; Kuwahara, 
Ohba, & Kitoh, 2006; Syme et al., 2006). MR-related proteinuria 
was historically considered to occur secondary to hypertension, 
but blood pressure-independent effects have been demonstrated 
in various rodent models (Aldigier et al., 2005; Blasi et al., 2003; 
Brown, Nakamura, et al., 2000; Kobayashi, Fukushima, Takeshima, 
& Ishimitsu, 2010; Nishiyama et al., 2004; Zhou et al., 2011) and in 
human renal disease (Bertocchio et al., 2011; Bianchi et al., 2006; 
Chrysostomou et al., 2006; Sato et al., 2003, 2005; White et al., 
2003). For example, eplerenone prevented renal failure, proteinu-
ria and histological lesions in rats despite persistence of severe 
hypertension (Kobayashi et al., 2005). MR activation induces po-
docyte apoptosis and injury (Lee et al., 2009), mesangial matrix 
expansion (Nishiyama et al., 2005), and increases mesangial cell 
production of ROS, transforming growth factor (TGF)-β1, ICAM-1 
and fibronectin (Kitada et al., 2012; Lai et al., 2006; Nagase et al., 
2007; Terada et al., 2012). MRAs attenuate these effects in vari-
ous rodent models of renal injury, resulting in decreased glomeru-
losclerosis and proteinuria (Du et al., 2009; Kobayashi et al., 2005; 
Luther et al., 2012; Nagase et al., 2006; Rocha et al., 2000). In the 
renal mass reduction model, spironolactone even led to regression 
of sclerotic lesions in one-third of rats, although other groups have 
not corroborated this result (Aldigier et al., 2005).

In humans, plasma aldosterone levels are positively correlated 
with proteinuria severity in primary hyperaldosteronism (Catena 

et al., 2007), CKD (Bianchi et al., 2006; Bomback, Kshirsagar, 
Amamoo, & Klemmer, 2008) and diabetic nephropathy (Schjoedt 
et al., 2004). Proteinuria is correlated with MR and Sgk-1 expres-
sion in CKD (Quinkler et al., 2005). Reduction in proteinuria is the 
main benefit of MRA therapy in human renal disease; numerous 
small randomized controlled trials have demonstrated this effect 
(Ando et al., 2014; Bianchi et al., 2006; Chrysostomou et al., 2006; 
Epstein et al., 2006; Esteghamati et al., 2013; Furumatsu et al., 2008; 
Gonzales Monte et al., 2010; Guney et al., 2009; Rachmani et al., 
2004; Schjoedt et al., 2004; Tylicki et al., 2008), and a Cochrane re-
view concluded that MRA treatment in addition to standard therapy 
is beneficial in reducing proteinuria (Bolignano et al., 2014). MRA 
combination therapy with an ACEI was more effective in reducing 
proteinuria than either drug alone (Rachmani et al., 2004), whereas 
triple therapy (MRA, ACEI and ARB) was no more effective than 
ACEI and spironolactone co-therapy (Chrysostomou et al., 2006). 
Table 2 summarizes the studies investigating MR blockade on glo-
merular damage and proteinuria.

4.4 | Oxidative stress

Data suggest that oxidative stress is a central mechanism by which 
aldosterone/MR activation causes renal damage (Nishiyama & Abe, 
2006; Nishiyama et al., 2004), particularly vascular injury/endothelial 
dysfunction, renal cell apoptosis, inflammation and fibrosis (Leopold 
et al., 2007; Sanz-Rosa et al., 2005; Sun et al., 2002; Sun, Zhang, 
Zhang, & Ramires, 2000; Terada et al., 2005). Aldosterone-induced 
oxidative and nitrosative stress has been demonstrated in multiple 
cell types, including VSMCs (Maron et al., 2009), endothelial cells 
(Nagata et al., 2006), mesangial cells (Leopold et al., 2007), proxi-
mal tubular epithelial cells (Schupp et al., 2010) and distal tubular 
cells (Queisser et al., 2013), and increased urinary markers of oxida-
tive stress are detected following MR-induced injury in rats (Nagase 
et al., 2006). The pathways by which MR activation may result in 
oxidative stress are outlined in Figure 2. In laboratory species, MRA 
treatment reduces oxidative stress markers and ROS generation, and 
increases antioxidant enzyme mRNA expression (Mejía-Villet et al., 
2007; Queisser et al., 2013; Toyonaga et al., 2011). Further evidence 
is provided by the demonstration that many renal effects of MR 
blockade are reproduced by antioxidant treatment (Kitada et al., 
2012; Nagase et al., 2006; Son et al., 2008). Reduced oxidative stress 
is observed in diabetic nephropathy and kidney transplant patients 
treated with an MRA (Ojeda-Cervantes et al., 2013; Takebayashi, 
Matsumoto, Aso, & Inukai, 2006).

4.5 | Renal inflammation and fibrosis

Renal injury induced by aldosterone/MR activation is characterized 
by heightened inflammation and fibrosis, and MRAs abrogate these 
changes in both preclinical and clinical studies. Whether aldosterone 
directly contributes to inflammation and fibrosis or whether these 
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TA B L E  2   Studies investigating the effects of MR antagonism on proteinuria and glomerular damage

Reference Model/species/ population
Mineralocorticoid 
antagonist investigated Results

Preclinical studies

Aldigier et al. 
(2005)

Rats 5/6 nephrectomy Spironolactone 84% increase in GS index (compared with 
157% in controls), GS regression in some rats

BP increased despite spironolactone; 
effects on GS were enhanced when BP was 
controlled by antihypertensives

Asai et al. (2005) Rat model of glomerulonephritis Spironolactone, also 
looked at the effect of 
cilazapril (ACEI)

Reduced proteinuria (to the same degree as 
cilazapril)

Bamberg et al. 
(2018)

Uninephrectomized db/db mice (diabetes 
model) and uninephrectomized rats 
administered aldosterone and high salt

AZD9977 and 
eplerenone

Reduced UACR and GS

Blasi et al. (2003) Uninephrectomized rats, aldosterone/salt 
treatment

Eplerenone Reduced albuminuria and glomerular injury 
lesions

Brown, 
Nakamura, et al. 
(2000)

Rats with radiation injury Spironolactone, also 
looked at an AngI 
antagonist

Reduced proteinuria and GS (BP-independent 
effects)

Combination therapy had a greater effect on 
proteinuria than spironolactone alone

Du et al. (2009) DS rats Eplerenone, also 
looked at the effect of 
amlodipine

Reduced proteinuria and BP
Superior to amlodipine in inhibiting GS 

but inferior in inhibiting tubulointerstitial 
fibrosis

Gullulu, Akdag, 
Kahvecioglu, 
Filiz, and Savci 
(2006)

Rat model of glomerulonephritis Spironolactone, also 
looked at the effect of 
valsartan (ARB)

Reduced GS and TGF-β1 expression

Guo et al. (2006) Uninephrectomized type 1 (streptozotocin-
treated rat) and type 2 (db/db mouse) 
diabetes models

Eplerenone Reduced albuminuria, podocyte injury, 
fibrosis, glomerular hypertrophy and 
mesangial expansion (BP-independent 
effects)

Huang et al. 
(2012)

Mouse, unilateral ureteral obstruction Eplerenone Reduced albuminuria, GS and glomerular 
crescents, infiltration of inflammatory cells, 
proinflammatory cytokines

Podocyte-specific MR deletion had no effect

Kang et al. (2009) Diabetic rats
Cultured mesangial cells treated with high 

glucose and aldosterone

Eplerenone, also 
looked at the effect of 
enalaprilat (ACEI)

Dose-dependent reduction in albuminuria 
and GS

Decreased expression of TGF-β1, type IV 
collagen and PAI-1

Synergistic effect with enalaprilat

Kobayashi et al. 
(2005)

Rats Eplerenone Prevented renal failure, proteinuria and 
histological lesions despite persistence of 
severe hypertension

Kobayashi et al. 
(2005)

Salt-treated DS rats Eplerenone Decreased GS and proteinuria

Lee et al. (2009) Podocytes in vitro under diabetic conditions
Rats with streptozotocin-induced diabetes

Spironolactone Inhibited podocyte apoptosis and injury

Luther et al. 
(2012)

Aldosterone synthase knockout mice and 
wild-type littermates, treated with AngII or 
vehicle plus salt loading

Spironolactone Reduced glomerular hypertrophy 
(aldosterone deficiency did not)

AngII/salt promoted glomerular injury via the 
MR in aldosterone synthase knockout mice

(Continues)
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Reference Model/species/ population
Mineralocorticoid 
antagonist investigated Results

Nagase et al. 
(2006) and 
Nagase et al. 
(2007)

Rat model of metabolic syndrome Eplerenone, plus looked 
at effect of tempol 
(antioxidant)

Reduced podocyte injury (evidenced by foot 
process effacement, induction of desmin 
and attenuation of nephrin)

Delayed progression of proteinuria and GS, as 
did tempol

Nishiyama et al. 
(2004)

Rats, aldosterone/salt treatment Eplerenone, also looked 
at effect of tempol 
(antioxidant)

Reduced proteinuria, as did tempol

Nishiyama et al. 
(2005)

Cultured rat mesangial cells Eplerenone Attenuated aldosterone-induced ERK1/2 
phosphorylation

Prevented the cellular proliferative and 
deforming effects of aldosterone

Nishiyama et al. 
(2010)

Diabetic rats Eplerenone, also 
looked at the effect of 
telmisartan (ARB)

Decreased proteinuria, GS and podocyte 
injury

Synergistic effect with telmisartan

Rocha et al. 
(2000)

AngII and L-NAME treated (nitric oxide 
synthase inhibitor) and salt-loaded rats

Adrenalectomy or 
eplerenone

Abrogated proteinuria; aldosterone 
administration to adrenalectomized rats 
restored proteinuria

Shibata et al. 
(2008)

Mice with increased Rac1 activity Eplerenone Prevented albuminuria and podocyte injury

Terada et al. 
(2005)

Rat cultured mesangial cells and rat isolated 
glomeruli

Spironolactone Aldosterone stimulated mesangial cell 
proliferation by activating mitogen-activated 
protein kinase 1/2, cyclin D1 and cyclin A 
pathways; spironolactone inhibited these 
effects

Zhou et al. (2011) DS rats fed high-salt diet Eplerenone Reduced proteinuria and glomerular injury 
score

Clinical studies

Ando et al. (2014) RCT, hypertensive patients with nondiabetic 
CKD

Eplerenone (in addition 
to ACE and/or ARB)

Reduced UACR

Bakris et al. 
(2015)

(ARTS-DN)

RCT, normotensive DN patients with high 
albuminuria

Finerenone (in addition 
to ACEI or ARB)

Dose-dependent reduction in UACR at 
90 days (study end (BP-independent))

Bianchi et al. 
(2006)

Randomized open-label study; patients with 
CKD (non-DN)

Spironolactone (in 
addition to ACEI and/
or ARB)

Additional antiproteinuric effect
Baseline aldosterone levels were correlated 

with proteinuria and predicted degree of 
proteinuria reduction with spironolactone

Bolignano et al. 
(2014)

Meta-analysis (2002–2011); 1549 CKD 
patients (nondialysis)

Spironolactone and 
eplerenone (in addition 
to an ACEI and/or ARB)

Concluded that MRAs effectively reduce 
proteinuria when used in combination with 
ACEIs and ARBs

No effect on short-term eGFR

Chrysostomou et 
al. (2006)

RCT, CKD Spironolactone
(in addition to 

ACE ± ARB)

Greater reduction in protein excretion 
occurred in treatment regimens that 
incorporated spironolactone, sustained at 6 
and 12 months

No advantage of triple blockade over dual 
RAS blockade

Currie et al. 
(2016)

Meta-analysis (2005–2014); 1,646 CKD 
patients (nondialysis)

Spironolactone and 
eplerenone (in addition 
to an ACEI or ARB or 
both)

Reduced weighted mean protein/albumin 
excretion by 38.7%

Slightly deleterious short-term impact on 
eGFR

Epstein et al. 
(2006)

DN Eplerenone
(in addition to ACEI)

Reduced UACR compared with placebo; 
comparable between 50 mg and 100 mg 
dosages

TA B L E  2   (Continued)
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occur predominantly secondary to vascular injury is somewhat uncer-
tain, although some experimental data suggest the latter (Rocha et al., 
2000). Aldosterone/MR activation in rodents induces the renal expres-
sion of profibrotic molecules, including connective tissue growth factor 
(Gumz et al., 2003; Kadoya et al., 2015; Martín-Fernández et al., 2016), 

plasminogen activator inhibitor-1 (Brown, Nakamura, et al., 2000), epi-
dermal growth factor and its receptor (Krug et al., 2003; Sheng et al., 
2016), matrix metalloproteinase-2 (Martín-Fernández et al., 2016) and 
TGF-β1 (Fujisawa et al., 2004; Kadoya et al., 2015; Lai et al., 2006; Sun 
et al., 2006) with successful inhibition by MRA documented in most 

Reference Model/species/ population
Mineralocorticoid 
antagonist investigated Results

Esteghamati et al. 
(2013)

RCT DN Spironolactone/ARB vs. 
ACEI/ARB

Greater reduction in proteinuria after 
18 months, independent of BP (decreased 
urinary albumin excretion by 46, 72 and 59% 
after 3, 12 and 18 months)

No difference in eGFR decline rate between 
groups

Furumatsu et al. 
(2008)

RCT, patients with nondiabetic CKD Spironolactone (in 
addition to ACEI and 
ARB)

Reduced proteinuria compared with baseline 
by 58%, no change in controls

Reduced urinary type IV collagen level

Gonzales Monte 
et al. (2010)

Kidney transplant recipients with severe 
proteinuria

Spironolactone (in 
addition to ARB and 
ACEI)

>50% reduction in proteinuria in 9/11 
patients, sustained at 6 months

Guney et al. 
(2009)

Nondiabetic CKD Spironolactone (in 
addition to ACE and/
or ARB)

Reduction in UPCR at 6 months
Reduction in urinary TGF-β1 excretion

Hou, Xiong, Cao, 
Wen, and Li 
(2015)

Meta-analysis of patients with DN Spironolactone (in 
addition to ACEI or 
ARB)

Reduced 24-hr urinary albumin/protein 
excretion and UACR

Significantly reduced BP was also reported, 
therefore proteinuria reduction may have 
been partly due to BP-lowering effects

Pitt et al. (2013) 
(ARTS)

RCT, open-label; heart failure patients with 
mild or moderate CKD

Finerenone vs. 
spironolactone

Finerenone was equivalent to spironolactone 
in decreasing albuminuria

Finerenone was associated with a lower 
incidence of hyperkalaemia and worsening 
renal function

Rachmani et al. 
(2004)

Patients with DN and hypertension Spironolactone, cilazapril 
or their combination

Spironolactone was superior to cilazapril in 
reducing UACR

Co-therapy more effective than either drug 
alone

BP-independent effects

Sato et al. (2003) Patients with DN Spironolactone (in 
addition to ACEI)

Reduced urinary albumin excretion by 40%
Effect higher in patients with aldosterone 

breakthrough
BP independent

Sato et al. (2005) CKD (DN and non-DN, BP controlled) Spironolactone (in 
addition to ACEI)

Reduced urinary albumin excretion, effect 
greater in diabetic vs. nondiabetic patients 
(46% vs. 29%)

Reduced urinary collagen type IV

Tylicki et al. 
(2008)

Randomized open crossover study; 
nondiabetic CKD

Spironolactone (in 
addition to ACEI and 
ARB)

Triple therapy reduced 24-hr urine protein 
excretion compared with dual therapy

White et al. 
(2003)

Patients ≥ 50 years old with systolic 
hypertension and widened pulse pressure; 
double-blind titration to effect design

Eplerenone (vs. 
amlodipine)

Eplerenone more effective than amlodipine in 
reducing UACR (52% vs. 10%) at 24 weeks

Equivalent effects on systolic BP, pulse 
pressure and pulse wave velocity

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; AngII, angiotensin II; ARB, angiotensin receptor blocker; BP, blood pressure; CKD, 
chronic kidney disease; DN, diabetic nephropathy; DS, Dahl salt-sensitive; eGFR, estimated glomerular filtration rate; ERK, extracellular signal-
regulated kinase; GS, glomerulosclerosis; L-NAME, N(gamma)-nitro-L-arginine methyl ester; MRA, mineralocorticoid receptor antagonist; PAI-1, 
plasminogen activator inhibitor-1; RAS, renin–angiotensin system; RCT, randomized controlled trial; TGF-ß1, transforming growth factor-ß1; UACR, 
urinary albumin/creatinine ratio.
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cases. Aldosterone induces collagen synthesis in cultured fibroblasts 
(Nagai et al., 2005; Zhou, Kandala, Tyagi, Katwa, & Weber, 1996) and 
glomerular mesangial cells (Diah et al., 2008), and fibronectin synthe-
sis (Chen et al., 2013) and osteopontin expression in renal fibroblasts 
(Irita et al., 2008). Aldosterone causes fibroblast proliferation due to 
rapid activation of growth factor receptors and induction of phospho-
inositide 3-kinase/mitogen-activated protein kinase signalling (Huang, 
Nikolic-Paterson, Ma, & Tesch, 2012). Collagen deposition is inhibited 
by spironolactone in vivo (Fujisawa et al., 2004). Aldosterone may also 
contribute to fibrosis by inducing epithelial-to-mesenchymal transi-
tion, seemingly via a ROS-mediated pathway (Zhang, Jia, Guo, & Yang, 
2007).

Aldosterone has been used to induce renal inflammation in ro-
dents (Irita et al., 2011; Sogawa et al., 2018; Sun et al., 2006); leuco-
cyte infiltration is associated with ROS accumulation and nuclear 
factor-κB activation in this model (Irita et al., 2011; Queisser et al., 
2013; Shibata, Nagase, Yoshida, Kawachi, & Fujita, 2007; Terada et al., 
2005). Aldosterone-infused rats show increased renal expression of 
proinflammatory cytokines, an effect attenuated by MRAs and MR de-
letion in macrophages (Blasi et al., 2003; Irita et al., 2011; Kadoya et al., 
2015; Martín-Fernández et al., 2016; Sun et al., 2006). Indeed, macro-
phages are key in mediating MR-induced injury; MR activation causes 
macrophage polarization towards the proinflammatory M1 phenotype 
(Bene, Alcaide, Wortis, & Jaffe, 2014; Martín-Fernández et al., 2016). 
Aldosterone/salt treatment causes perivascular leucocyte infiltra-
tion and increased expression of monocyte chemoattractant protein 
(MCP)-1, interleukin (IL)-6 and IL-1β in the rat kidney, with MRAs being 
protective against this proinflammatory state (Blasi et al., 2003).

In people with CKD, renal MR and Sgk-1 expression are posi-
tively correlated with TGF-β1 and MCP-1 expression, and serum 
aldosterone levels with renal fibrosis (Quinkler et al., 2005). 
Spironolactone reduces urinary TGF-β1 levels and markers of fi-
brosis and tubular injury in renal biopsies in this population (Guney 
et al., 2009; Tylicki et al., 2008) and also urinary type IV colla-
gen in patients with diabetic (Sato et al., 2005) and nondiabetic 
nephropathy (Furumatsu et al., 2008). A tendency for reduced 

tubulointerstitial fibrosis was also demonstrated in a small study 
of paediatric patients with chronic allograft nephropathy receiving 
eplerenone (Medeiros et al., 2017). Given that the dominant histo-
pathological features of feline CKD are tubulointerstitial fibrosis 
and inflammation (Chakrabarti et al., 2013), it is proposed that MR 
blockade in this species would be beneficial in reducing these le-
sions and resultant disease progression.

5  | FURTHER COMMENTS ON MR A S IN 
HUMAN CKD AND END -STAGE RENAL 
DISE A SE

It is important to note that although numerous studies have investi-
gated the effect of MRAs in human CKD patients, most have focused 
on the reduction in proteinuria and hypertension. To date, no studies 
have evaluated primary end points which allow conclusions to be 
made about whether MRAs reduce mortality or slow CKD progres-
sion. Two small studies have suggested the latter, however, based 
on a slower decline in estimated GFR (eGFR) compared with control 
groups (Bianchi et al., 2006; Tylicki et al., 2008). Enrolment is ongoing 
for a trial designed to evaluate the effect of finerenone on disease 
progression in patients with diabetic nephropathy (NCT02540993). 
Additionally, studies investigating MRA treatment in severe CKD 
are still limited, although a meta-analysis of dialysis patients found 
a reduction in mortality with the addition of MRA treatment (Quach 
et al., 2016). This is proposed to be due to improved cardiac function 
and reduced cardiovascular events. Table 3 summaries the studies 
investigating MRAs in the context of cardiovascular outcomes in 
renal disease.

5.1 | Possible adverse effects of MRAs

MRAs have the potential to reduce renal blood flow and GFR. Small 
decreases in eGFR are not infrequently reported in people receiving 

F I G U R E  2   Proposed pathways 
responsible for the effect of 
mineralocorticoid receptor activation 
on oxidative stress. ER, endoplasmic 
reticulum; glucose-6-PDH, glucose-
6-phosphate dehydrogenase; MAPK, 
mitogen-activated protein kinase; 
NADPH, nicotinamide-adenine 
dinucleotide phosphate; NF-κB, nuclear 
factor- κB; NO, nitric oxide; NOS, nitric 
oxide synthase; ROS, reactive oxygen 
species
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TA B L E  3   Studies investigating the effects of MR antagonism on cardiovascular outcomes in renal disease

Reference Model/species/population

Mineralocorticoid 
antagonist 
investigated Results

Preclinical studies

Bonnard et al. 
(2018)

Subtotal nephrectomy CKD 
model in mice

Finerenone Prevented cardiac diastolic dysfunction, improved LV 
contractility, despite maintained renal dysfunction

Prevented the increase in cardiac α-SMA expression, no 
effect on TGF-β1 expression

Lachaux et al. 
(2018)

Zucker fa/fa rat, a model 
of metabolic syndrome 
cardiorenal injury

Finerenone Short-term: improvement in cardiac perfusion, reduced LV 
systolic diameter, decreased LV ROS production

Long-term: reduced cardiac hypertrophy, fibrosis and 
dysfunction

Michea et al. (2008) Subtotal nephrectomy CKD 
model in rats

Spironolactone Attenuated LV hypertrophy and prevented increased 
cardiomyocyte size in both ventricles, despite no effect 
on BP

Attenuated LV oxidative stress

Clinical studies

Boesby, Elung-
Jensen, 
Strandgaard, and 
Kamper (2013)

Stage 3–stage 4 CKD Eplerenone Attenuated pulse wave reflections (as measured by the 
Augmentation Index) after 24 weeks

No effect on pulse wave velocity or ambulatory arterial 
stiffness index but may be underpowered and study 
period may have been too short

Charytan et al. 
(2019)

Haemodialysis patients Spironolactone No effect on echocardiographic parameters measured, 
although study was of an exploratory design

Edwards et al. 
(2010) and 
Edwards, Steeds, 
Stewart, Ferro, 
and Townend 
(2009)

“Early” CKD (stage 2–stage 3) Spironolactone Improved LV systolic and diastolic function, LV 
hypertrophy and arterial stiffness (pulse wave velocity/
analysis, aortic distensibility)

Eschalier et 
al. (2013) 
(EMPHASIS-HF)

Patients ≥ 55 years old with 
heart failure and reduced 
ejection fraction, including 
patients with mild or 
moderate CKD

Eplerenone Reduced the risk of CV death or hospitalization for heart 
failure; as effective in CKD patients as in non-CKD 
patients

Hammer et al. 
(2019)

Haemodialysis patients Spironolactone No change in LV mass or LV ejection fraction

Matsumoto et al. 
(2014)

Haemodialysis patients Spironolactone Reduced risk of cerebrovascular/CV death or 
hospitalization due to a cerebrovascular/CV event

Pitt et al. (2013)
(ARTS)

Patients with heart failure 
and reduced left ventricular 
ejection fraction and mild to 
moderate CKD

Spironolactone vs. 
finerenone

Finerenone decreased the levels of B-type natriuretic 
peptide, amino-terminal pro-B-type natriuretic peptide to 
the same extent as spironolactone

Quach et al. (2016) Meta-analysis of 9 trials (829 
patients, 2005–2015) in 
dialysis patients, with or 
without heart failure

Spironolactone and 
eplerenone

Decreased risk of CV mortality (relative risk 0.34) and 
all-cause mortality relative to controls (relative risk 0.40), 
however quality of evidence deemed low

Sato et al. (2003) DN Spironolactone Reduced LV mass index, without BP change

Taheri et al. (2009) Haemodialysis in patients with 
moderate or severe heart 
failure

Spironolactone Improved ejection fraction and LV mass compared with 
placebo

Abbreviations: BP, blood pressure; CKD, chronic kidney disease; CV, cardiovascular; DN, diabetic nephropathy; LV, left ventricular; TGF-ß1, 
transforming growth factor-ß1.



14  |     SPENCER et al.

MRAs, likely reflecting reversal of hyperfiltration (Bolignano et al., 
2014; Pisoni et al., 2012; Schjoedt et al., 2004). Although “worsening 
renal function” (based on eGFR) was described in large cardiovascu-
lar trials, mortality rates remained improved (Pitt et al., 1999, 2003; 
Zannad et al., 2011).

Hyperkalaemia is a concern with MRA treatment in human 
medicine, preventing their prescription in many instances 
(Maggioni et al., 2013). Individual studies report various effects on 
plasma potassium concentrations following MR blockade, includ-
ing no difference between placebo and treatment (Epstein et al., 
2006; Gonzales Monte et al., 2010; Sato et al., 2003) and increased 
hyperkalaemia incidence (Ando et al., 2014; Bianchi et al., 2006; 
Chrysostomou et al., 2006; Pisoni et al., 2012; Quach et al., 2016; 
Rachmani et al., 2004). Even though meta-analyses conclude that 
MRAs (in addition to ACEIs and/or ARBs) increase the risk of hy-
perkalaemia, the mean increase in potassium levels with treatment 
is very small compared with placebo (0.26 mM) (Bolignano et al., 
2014) and compared with baseline (0.19 mM) (Currie et al., 2016). 
Many trials excluded patients with high-normal baseline circulat-
ing potassium concentrations, however. Even when statistically 
significant, increases in serum potassium are deemed “clinically 
modest,” and generally, the benefits of MR blockade are deemed 
greater than the risk of clinically relevant hyperkalaemia (Pisoni 
et al., 2012; Pitt et al., 1999, 2003).

Other adverse effects of spironolactone are related to its an-
ti-androgenic and progestogenic properties and include gynaeco-
mastia, impotence, menstrual irregularities and mastalgia (Kolkhof 
& Borden, 2012; Matsumoto et al., 2014; Pitt et al., 1999; Ponda & 
Hostetter, 2006). These effects are not reported with eplerenone 
due to its increased MR selectivity (Ando et al., 2014; Pitt et al., 
2003; Zannad et al., 2011) and would not be an issue in treating a cat 
population which are predominantly neutered.

6  | ALDOSTERONE/MR AC TIVATION IN 
FELINE CKD

Understanding aldosterone's ability to promote renal injury in 
laboratory animals and humans provides a convincing basis for its 
potential role in feline CKD. There is limited information available 
regarding aldosterone/MR activation in this species. Although refer-
ence ranges for plasma aldosterone concentrations have been de-
termined, the pulsatile nature of aldosterone release and effect of 
diet (sodium and potassium intake) may contribute to large intra- and 
interindividual variation (Buranakarl, Mathur, & Brown, 2004; Syme 
et al., 2007; Yu & Morris, 1998). Primary hyperaldosteronism, either 
due to adrenal gland neoplasia (Ash, Harvey, & Tasker, 2005) or due 
to hyperplasia (Javadi et al., 2005), is recognized in cats and, as in 
people, is associated with progressive renal disease and histopatho-
logical changes encompassing hyaline arteriosclerosis, glomerulo-
sclerosis and tubulointerstitial fibrosis (Javadi et al., 2005).

As in laboratory species and human patients, RAAS activation is 
an important factor in the pathogenesis of feline CKD (Ames et al., 

2019). Plasma renin, aldosterone, angiotensin I and angiotensin II 
are increased in cats with experimentally induced CKD following 
renal ischaemia/reperfusion injury (Watanabe & Mishina, 2007). 
Models employing renal wrapping exacerbate RAAS activation, 
resulting in more pronounced hypertension, proteinuria and histo-
pathological changes (Buranakarl et al., 2004; Mathur et al., 2004). 
RAAS activation is further exacerbated by low sodium intake in 
this model (Buranakarl et al., 2004) and also occurs in cats with 
naturally occurring CKD which are transitioned onto (relatively so-
dium-restricted) renal diets (Syme, 2003). Although experimental 
data support RAAS activation in feline CKD, it may not directly 
translate to naturally occurring disease, as plasma renin activity 
and aldosterone concentrations do not differ between normoten-
sive azotaemic CKD cats and nonazotaemic age-matched controls 
(Jepson et al., 2014). Mishina et al. (1998) reported increased cir-
culating renin, angiotensin II and aldosterone levels along with in-
creased blood pressure in cats with CKD, although it is unclear 
whether the groups were age-matched. As in people and rodents, 
local (intrarenal) RAAS is likely of importance; three studies to 
date have investigated this using immunohistochemistry in natu-
rally occurring feline CKD (Mitani, Yabuki, Sawa, Chang, & Yamato, 
2013; Mitani, Yabuki, Taniguchi, & Yamato, 2013; Taugner, Baatz, 
& Nobiling, 1996). Renin expression was not associated with azo-
taemia severity or histopathological lesions (Taugner et al., 1996). 
Tubular and interstitial angiotensin II, but not ACE or ACE2 expres-
sion, was correlated with glomerulosclerosis and tubulointerstitial 
inflammation (Mitani, Yabuki, Sawa, et al., 2013; Mitani, Yabuki, 
Taniguchi, et al., 2013). Intrarenal aldosterone has not been ex-
amined, although assessment of renal 11β-HSD activity has been 
attempted by urinary cortisol–cortisone ratio measurement; cats 
with CKD had a lower ratio, not supportive of the hypothesis that 
decreased excretion of active glucocorticoid may potentially re-
flect excessive MR stimulation in this population (Walker, Elliott, 
& Syme, 2009).

Aldosterone appears to be associated with feline systemic 
hypertension, a common finding in cats with CKD. Plasma aldo-
sterone levels are higher in hypertensive azotaemic cats than non-
hypertensive cats with and without renal disease (Jensen et al., 
1997; Jepson et al., 2014). Lower plasma potassium tends to be 
a risk factor for feline hypertension in epidemiological studies, 
providing support for MR activation (Jepson et al., 2009; Sansom, 
Rogers, & Wood, 2004; Syme, Barber, Markwell, & Elliott, 2002), 
although blood pressure is not directly associated with plasma or 
urinary aldosterone concentrations (Syme, Barber, et al., 2002; 
Syme et al., 2007; Williams et al., 2013). Increased plasma aldo-
sterone concentration is not seemingly driven by plasma renin 
activity, as cats with concurrent CKD and hypertension have vari-
able or decreased renin compared with controls, resulting in in-
creased aldosterone-to-renin ratios (Jensen et al., 1997; Jepson 
et al., 2014; Syme, Markwell, et al., 2002). Given that increased 
circulating aldosterone in cats with concurrent CKD and hyper-
tension does not appear to be secondary to increased renin or hy-
perkalaemia, alternative explanatory mechanisms include primary 
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adrenal-dependent pathology, local MR activation, altered sensi-
tivity to stimuli which dictate aldosterone release or reduced aldo-
sterone degradation (Buranakarl et al., 2004).

6.1 | MRA use in cats

The optimal way to inhibit RAAS activation in feline CKD has yet 
to be determined, and to date, treatment has consisted of ACEI 
and/or ARB therapy. In many countries, the ACEI benazepril is li-
censed for treating proteinuria associated with CKD in cats and 
the ARB, telmisartan, is licensed for feline hypertension and pro-
teinuria treatment (Coleman et al., 2019; Glaus, Elliott, Herberich, 
Zimmering, & Albrecht, 2019). Benazepril ameliorates glomerular 
capillary hypertension, increases GFR and reduces proteinuria in 
a partial renal ablation model (Brown et al., 2001), and reduces 
proteinuria in naturally occurring CKD (King, Gunn-Moore, 
Tasker, Gleadhill, & Strehlau, 2006; Watanabe & Mishina, 2007). 
Telmisartan is as efficacious as benazepril in reducing urine pro-
tein/creatinine ratio in clinical cases (Sent, Gössl, Elliott, Syme, 
& Zimmering, 2015). Although ACEIs and ARBs successfully re-
duce proteinuria, a factor associated with reduced survival (King 
et al., 2007; Kuwahara et al., 2006; Syme et al., 2006), the present 
studies investigating these drugs in feline CKD have important 
limitations (e.g. are underpowered or not designed to test long-
term outcomes) which prevent definitive conclusions from being 
made about their effect on CKD progression and prognosis in cats 
(King et al., 2006; Sent et al., 2015; Watanabe & Mishina, 2007). 
Aldosterone breakthrough has not been studied in cats with CKD 
receiving long-term ACEIs or ARBs.

Two studies have investigated spironolactone in feline cardiac 
disease. Relevant to CKD pathology, feline hypertrophic cardio-
myopathy is characterized by significant interstitial fibrosis and 
arteriosclerosis (Fox, 2003). In a small study of hypertrophic car-
diomyopathy in Maine Coons, four of 13 treated cats developed 
severe ulcerative facial dermatitis approximately 2.5  months 
into treatment which the authors attributed to spironolactone 
(MacDonald & Kittleson, 2008). The dosage used in this study 
(2 mg/kg twice daily) was twice the recommended dosage in dogs 
(Guyonnet, Elliott, & Kaltsatos, 2010), and feline herpesvirus was 
not sufficiently ruled out as a possible cause. One cat also devel-
oped myelodysplasia. Cutaneous drug reactions are sporadically 
reported in people receiving spironolactone (Gupta, Knowles, & 
Shear, 1994) and spironolactone-induced agranulocytosis, and 
aplastic anaemia is also recognized (Ibáñez, Vidal, Ballarín, & 
Laporte, 2005). A second study reported no dermatological ad-
verse effects of spironolactone (1.7–3.3  mg/kg once daily) over 
a 15-month treatment period, and the prevalence of adverse 
events was similar between the treatment and placebo groups 
(James et al., 2018). The risk of hyperkalaemia with ACEI and spi-
ronolactone co-therapy is emphasized in veterinary medicine, al-
though combination therapy appears well-tolerated in cats and 
dogs with heart failure (James et al., 2018; Lefebvre et al., 2013). 

Cats with mild–moderate CKD tend to have lower than normal 
plasma potassium concentrations, with a 12%–20% prevalence of 
hypokalaemia (Elliott & Barber, 1998; King et al., 2007; Ross et al., 
2006). MRA therapy reduces hypokalaemia risk in people (Pisoni 
et al., 2012; Pitt et al., 2003), a potentially beneficial effect in fe-
line patients.

7  | CONCLUSIONS

Given the expanding evidence base from in vitro and in vivo 
experimental studies and from human medicine, it seems likely 
that aldosterone and MR activation is an important player in the 
pathogenesis of feline CKD. It must be noted, however, that ex-
perimental models may not be directly translatable to the clinical 
situation and that differences in CKD pathogenesis exist between 
humans and cats. Furthermore, there is a need for human studies 
evaluating the effect of MRAs on mortality and CKD progression 
as primary end points. MR blockade may protect the kidney from 
ischaemia, repeated bouts of which may be responsible for the 
loss of functioning renal tissue in the cat. Secondly, MRAs reduce 
proteinuria in other species, and as proteinuria is associated with 
renal fibrosis and disease progression in the cat, therapy may have 
beneficial effects on survival. Additionally, MR activation appears 
to contribute to hypertension in cats with CKD, and MRAs may 
reduce blood pressure and the subsequent risk of proteinuria and 
further ischaemic renal damage. Finally, disturbances in mineral 
and bone metabolism occur in feline CKD and MR blockade may 
prove beneficial in reducing secondary vascular and soft tissue 
mineralization, as has been shown experimentally. Field studies 
investigating aldosterone breakthrough and the use of MRAs in 
naturally occurring feline CKD, where the goal remains to slow 
disease progression, are indicated.
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