IAI Accepted Manuscript Posted Online 24 February 2020 Infect. Immun. doi:10.1128/IAI.00879-19 Copyright © 2020 American Society for Microbiology. All Rights Reserved.

1 Generation and evaluation of a Glaesserella (Haemophilus) parasuis capsular

2 mutant

3

- 4 Kirsten C. Eberle¹, Samantha J. Hau¹, Shi-Lu Luan², Lucy A. Weinert², Judith A. Stasko¹,
- 5 Jinhong Wang², Sarah E. Peters², Paul R. Langford³, Andrew N. Rycroft⁴, Brendan W. Wren⁵,
- 6 Duncan J. Maskell^{2,6}, Alexander W. Tucker^{2a}, Susan L. Brockmeier^{1a#} on behalf of the BRaDP1T
- 7 Consortium.

8

- 9 ¹National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA
- 10 ²Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge,
- 11 CB3 0ES, UK
- 12 ³Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College

Downloaded from http://iai.asm.org/ on March 10, 2020 at Royal Veterinary College

- 13 London, St. Mary's Campus, London, UK
- 14 ⁴The Royal Veterinary College, Hawkshead Campus, Hatfield, United Kingdom
- 15 ⁵Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine,
- 16 London, UK
- 17 ⁶Current address: The University of Melbourne, Level 9, Raymond Priestley Building,
- 18 Melbourne, Victoria 3010, Australia
- 19 ^aAuthors made an equal contribution.
- 20
- 21 Running Title: Evaluation of a *Glaesserella parasuis* capsule mutant
- 22
- 23 #Address correspondence to Susan L. Brockmeier, susan.brockmeier@ars.usda.gov

25 *Glaesserella (Haemophilus) parasuis* is a commensal of the upper respiratory tract in pigs and 26 also the causative agent of Glässer's disease, which causes significant morbidity and mortality in 27 pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, 28 which has shown a correlation to isolate pathogenicity. To investigate the role capsule plays in 29 G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was 30 generated (HS069 Δ cap) through allelic exchange following natural transformation. HS069 Δ cap 31 was unable to cause signs of systemic disease during a pig challenge study and had increased 32 sensitivity to complement killing and phagocytosis by alveolar macrophages. When compared to 33 the parent strain, HS069 Δ cap produced more robust biofilm and adhered equivalently to 3D4/31 34 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all 35 pigs clearing HS069∆cap by 5 days post-challenge. Our results indicate the importance of 36 capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.

Downloaded from http://iai.asm.org/ on March 10, 2020 at Royal Veterinary College

37

39 *Glaesserella (Haemophilus) parasuis* is the etiologic agent of Glässer's disease in pigs, 40 which presents as a fibrinous polyserositis, arthritis and meningitis (1, 2). In addition, it can be a 41 bacterial contributor to swine respiratory disease and is found as a commensal in the nasal cavity 42 of healthy swine (1). *G. parasuis* isolates are classified into 15 serovars, based on gene content 43 and diversity at their capsular polysaccharide loci and via the Kielstein-Rapp-Gabrielson typing 44 scheme (3, 4). While it appears some serovars are more pathogenic and widespread, serotyping 45 has shown an incomplete correlation with isolate virulence (3, 5, 6).

46 The importance of capsular polysaccharide as a virulence factor for encapsulated bacteria 47 has been investigated (7-10), which indicates the capsule-deficient counterparts to encapsulated 48 bacteria are much less likely to cause invasive disease and are often reduced to avirulence. The 49 reduction in virulence seen in capsular mutants has been attributed to the role that capsule plays 50 in adherence to host tissues and evasion of the host immune response, specifically inhibition of 51 complement mediated killing and phagocytosis (11). Additionally, there is evidence indicating 52 capsular polysaccharide is essential for some encapsulated bacteria to colonize the mucous 53 membranes of hosts (12).

54 The functions of capsule have been partially evaluated in *G. parasuis* SH0165, a virulent 55 serovar 5 strain (10). The capsular mutant (SH0165∆capD) was significantly less virulent than 56 the wild type bacteria and unable to cause invasive disease in challenged pigs (10). SH0165∆cap 57 was also highly susceptible to complement mediated killing as compared to the wild type 58 bacteria (10). This presented evidence for the importance of capsule in causing invasive disease; 59 however, the characteristics of the capsular mutant were not fully elucidated and the capacity of 58 SH0165∆cap to colonize the swine nasal cavity was not evaluated. In this study, a capsule

61	mutant of G. parasuis HS069 (HS069∆cap), a virulent serovar 5 strain, was used to examine the
62	in vitro and in vivo characteristics of capsule. We evaluated HS069∆cap for susceptibility to
63	complement killing, biofilm formation, attachment to porcine macrophage 3D4/31 cells, and
64	phagocytosis by porcine alveolar macrophages. In addition, swine were challenged with HS069
65	and HS069∆cap to evaluate virulence, capacity for nasal colonization, and stimulation of host
66	immunity.

67

Accepted Manuscript Posted Online

68 Materials and Methods

69 Bacterial isolates

70 The virulent serovar 5 G. parasuis strain HS069 was isolated from the lung of a pig with clinical

71 signs of respiratory disease (13). Production and verification of HS069∆cap is described within

the following mutant generation and results sections. G. parasuis strains were grown on brain

73 heart infusion (BHI) plates or BHI broth (Becton, Dickinson and Company, Franklin Lakes, NJ)

- supplemented with 0.1 mg/mL nicotinamide adenine dinucleotide (NAD+) and 10% horse serum
- 75 (referred to as BHI+). G. parasuis strains were also grown on chocolate agar, made with
- 76 Columbia Blood Agar Base (Thermo Fisher Scientific Inc., Waltham, MA) supplemented 7%
- defibrinated horse blood (TCS Bioscience Ltd., Botolph Claydon, England) lysed at 80°C for 10
- 78 minutes and 25 µg/mL NAD+. Media were supplemented with chloramphenicol (1 µg/mL) for
- relation purposes. All strains were grown at 37°C with 5% CO₂.
- 80 Escherichia coli strain TOP10 (Invitrogen, Carlsbad, CA) was used as the cloning host. E. coli

81 was grown in Luria Bertani (LB) broth or agar (Oxoid). Media were supplemented with

82 ampicillin (100 μ g/mL) or chloramphenicol (50 μ g/mL) where required for selection.

83 Mutant construction

84 DNA manipulation: Genomic DNA extractions were performed using the DNeasy Kit (Qiagen,

- 85 Hilden, Germany), plasmid DNA extractions were performed using a plasmid miniprep kit
- 86 (Qiagen), and PCRs were performed according to the manufacturers' protocols with Phusion
- 87 High-Fidelity DNA Polymerase mix (New England Biolabs, Ipswich, MA) for cloning and
- 88 GoTaq green PCR mix (Promega, Madison, WI) for verification. PCR fragments purified by
- 89 QIAquick PCR Purification Kit (Qiagen). Restriction enzymes were obtained from New England

 \triangleleft

90

91	DNA concentrations were measured using a NanoDrop (Bio-Rad Laboratories, Hercules, CA).
92	Construction of plasmid pGEMT-neuAup-Cm-wzsdn: Plasmid pGEMT-neuAup-cat-wzsdn was
93	constructed for deletion of the whole capsule gene cluster using a three-step cloning strategy.
94	First, genomic DNA of G. parasuis isolate HS069 was used as a template to amplify the
95	upstream and downstream regions flanking the 14-kb capsule locus (14, 15). The 647-bp
96	upstream region of the neuA gene (neuAup) was amplified using primers P1 and P2 and the 731-
97	bp downstream region of the wzs gene (wzsdn) using primers P3 and P4 (Table 1). In parallel,
98	the chloramphenicol resistance cassette (Cm), containing the 9-bp DNA uptake signal sequence
99	(USS) of 5'-ACCGCTTGT (16) was amplified from 50 ng linearized plasmid pUSScat (17) as
100	the template with primers P5 and P6 (Table 1). Second, PCR products were digested and ligated
101	into the pGEM-T vector. The PCR product of the upstream region of the neuA gene was digested
102	with SacI /BamHI and the downstream region of the wzs gene was digested with SalI/ BamHI.
103	The pGEM-T vector was digested with SacI /SalI. Restricted products were gel purified and
104	ligated. The constructed plasmid was transformed into E. coli TOP10 and transformants were
105	confirmed using PCR. After purification, the plasmid pGEMT-neuAup-wzsdn was verified by
106	Sanger sequencing. Finally, the purified plasmid pGEMT-neuAup-wzsdn and PCR product of
107	the Cm cassette were subject to BamHI restriction. The gel purified fragments were mixed,
108	ligated and transformed into E. coli TOP10. The resulting plasmid pGEMT-neuAup-cat-wzsdn
109	was extracted and confirmed by Sanger sequencing.
110	Construction of the whole capsule locus deletion mutant Δcap :: Cm mutant of G. parasuis
111	HS069: The plasmid pGEMT-neuAup-cat-wzsdn was linearized with SacI and used to transform
112	G. parasuis HS069 using natural transformation method as described previously with some

Biolabs. Plasmid DNA was extracted from the agarose gel using Gel Extraction Kit (Qiagen).

113

114	BHI broth to achieve an $OD_{660} = 2$. Then, a 20 µl aliquot of a 1/10 dilution of the suspension was
115	spread in a 10 mm area on prewarmed chocolate agar and 20 μl of 8 mM cAMP and 10 μl of
116	donor DNA in TE buffer were added and mixed with the bacterial cells. The mixture was
117	incubated at 37°C overnight. Bacterial cells were scraped up, suspended in 300 µl BHI broth, and
118	plated onto chocolate agar with 1 ug/mL chloramphenicol. After incubation at 37°C for 2 days,
119	suspected transformants were verified using PCR. For negative control, 10 μ l of TE buffer
120	without donor DNA was added to a bacterial spot. The deletion was also confirmed by whole
121	genome sequencing using the Illumina HiSeq 250 platform and PacBio RS II Resequencing
122	protocol of the SMRT Analysis software v.2.3.0. Assembly of the PacBio generated HS069 wild
123	type was done using HGAP (19), circularized using Circlator v.1.1.3 (20), and polished using
124	Quiver v.1. The Illumina reads were subsequently mapped onto the PacBio assembly to correct
125	small indels. Comparison of HS069 Δ cap against the wild type was made by mapping the
126	Illumina and PacBio reads of HS069∆cap against the finished HS069 wild type assembly.
127	Transmission electron microscopy (TEM) for capsule visualization
128	Capsule was visualized via transmission electron microscopy (TEM) using previously described
129	methods (21-23). Briefly, G. parasuis grown on BHI+ plates overnight were suspended in 0.1 M
130	cacodylate buffer with 2.5% glutaraldehyde and 0.1% ruthenium red and incubated for 2 hours at
131	room temperature. Bacteria were pelleted and resuspended in 0.1 M cacodylate buffer with 2.5%
132	glutaraldehyde and 1.0 mg/mL of polycationic ferritin and incubated for 30 minutes at room
133	temperature. Bacteria were washed three times in 0.1 M cacodylate buffer. After staining with
134	ruthenium red and ferritin, samples were post-fixed with 2% osmium tetroxide and rinsed three
135	times in 0.1 M cacodylate buffer. The samples were processed through graded ethanols,

modifications (18). Briefly, HS069 was grown on chocolate agar overnight and suspended in

 $\overline{\mathbb{A}}$

136 propylene oxide, and embedded in Eponate 12 (Ted Pella Inc., Redding, CA). Following a 48 137 hour polymerization, thin sections were taken and stained with 4% uranyl acetate and Reynolds' lead stain. Sections were examined with a FEI Tecnai G² BioTWIN electron microscope (FEI 138 139 Co., Hillsboro, OR). 140 **Growth kinetics** 141 Growth kinetics of G. parasuis HS069 and HS069∆cap were evaluated using a GeneQuant Pro 142 spectrophotometer (Amersham PLC, Little Chalfont, United Kingdom). G. parasuis isolates 143 were inoculated from a liquid overnight culture into BHI+ broth at an OD_{600} of 0.05. The

144 cultures were incubated at 37°C with 5% CO2 and shaking at 200 RPM. OD600 readings were 145 taken hourly for 8 hours.

146 Biofilm assay using microtiter plate

147 The microtiter plate assay for biofilm formation was adapted from a protocol described by Cassat 148 et al. (24). Overnight cultures of G. parasuis were adjusted to an initial OD₆₀₀ of 0.05, 0.125, or 149 0.25 in BHI+ broth. Diluted G. parasuis was plated in triplicate on a Nunc 96-well flat bottom 150 plate (Thermo Fisher Scientific Inc., Waltham, MA) and incubated statically for 48 hours at 37°C 151 with 5% CO₂. Cultures were gently removed from the plate and washed three times with sterile 152 PBS. Biofilm was fixed with 100% ethanol, allowed to dry for 10 minutes, and stained with 153 0.1% crystal violet. After 15 minutes at room temperature, plates were washed gently three times 154 with PBS and allowed to dry overnight. Crystal violet was eluted from the biofilm with 150 uL 155 of 100% ethanol for 10 minutes. The elution (120 uL) was transferred to a new 96 well plate and 156 absorbance measured at 538 nm with a SpectraMax M5 (Molecular Devices, LLC, Sunnyvale,

- 157 CA). Three independent replicates were performed.
- 158 **Complement mediated killing**

 \triangleleft

Infection and Immunity

 \mathbb{A}

159	To assess sensitivity to complement mediated killing, G. parasuis cultures were treated with
160	guinea pig serum (GPS) (Quidel, San Diego, CA). Heat inactivated GPS (30 minutes at 56°C)
161	was used as a negative control. G. parasuis cultures were grown on BHI+ plates and suspended
162	in PBS to reach an OD ₆₀₀ of 0.42 ($1x10^8$ bacteria/mL). In a 96-well plate, 90 uL of GPS was
163	added to 10 uL of G. parasuis (approximately 10 ⁶ CFU). The G. parasuis and GPS incubated for
164	1 hour at 37°C, 5% CO ₂ , 100 rpm shaking. Serial dilutions were plated on BHI+ plates.
165	Adherence capacity to porcine alveolar macrophage cell line (3D4/31 cells)
166	The interaction of G. parasuis HS069 and HS069 Δ cap with porcine alveolar macrophages was
167	tested in vitro using the 3D4/31 cell line (ATCC, Manassas, VA). 3D4/31 cells were maintained
168	in complete Advanced RPMI 1640 (Thermo Fisher Scientific Inc., Waltham, MA) as per
169	ATCC's recommendations. For the assay, 3D4/31 cells were plated into 4-well chamber slides
170	(ibidi USA Inc., Madison, WI) at 5×10^5 cells/mL and allowed to adhere overnight. G. parasuis
171	HS069 and HS069∆cap were added to the chambers to obtain an MOI of 10:1 and incubated for
172	1 hour at 37°C and 5% CO ₂ . After incubating, 3D4/31 cells were washed to remove non-adherent
173	bacteria and chamber slides were placed on ice. G. parasuis cells were incubated with mouse
174	monocolonal antibody to the outer membrane protein P5 (provided by M. Gottschalk) for 30
175	minutes at 4°C followed by incubation with goat anti-mouse IgG3 (SouthernBiotech,
176	Birmingham, AL) for 30 minutes at 4°C. Cells were fixed with ice cold 50:50 methanol:acetone
177	for 10 minutes and dried. Images were taken using Nikon AR1+Si confocal microscope and
178	evaluated using the NIS Elements software (Nikon Instruments Inc., Melville, NY). Bacterial
179	intensity was evaluated using 10 random views.
180	Phagocytosis assessment using primary porcine alveolar macrophages
181	Porcine alveolar macrophages (PAMs) were isolated as previously described (25, 26), with

182	modifications. Briefly, the lungs of healthy pigs were flushed with PBS repeatedly until around
183	250 mL of fluid was collected. The lavage fluid was centrifuged at 1000 RPM for 10 minutes.
184	The pellet was washed twice and resuspended in complete RPMI-1640 medium (10% fetal
185	bovine serum, 1 μ g/mL fungizone, 100 U/mL penicillin, and 100 μ g/mL streptomycin). PAMs
186	were allowed to adhere to petri dishes for 2 hours at 37° C with 5% CO ₂ . After 2 hours, media
187	and non-adherent cells were aspirated and adherent cells were washed with complete RPMI.
188	Adherent cells were removed via cell scraping, washed twice with PBS, and resuspended in
189	RPMI without antibiotics. Cells were counted and scored for viability using the Countess II
190	Automated Cell Counter (Invitrogen, Carlsbad, CA). PAMs were plated into 48-well plates with
191	5×10^5 PAMs per well and allowed to adhere for 20 minutes prior to starting the assay.
192	Bacterial stocks were generated by suspending agar grown HS069 and HS069∆cap in
193	PBS with 50% glycerol at an OD ₆₀₀ of 0.42. The stocks were quantified via serial dilution and
194	frozen at -80° C until use. HS069 or HS069∆cap stocks were diluted to obtain an MOI of 10:1 in
195	250 μ L total volume per well (approximately 5x10 ⁶ CFU/well).
196	To assess phagocytosis, the media was aspirated and RPMI containing G. parasuis was
197	added to each well. The PAMs were incubated with the bacteria for 1 or 2 hours and the
198	supernatant was used to quantify non-phagocytosed bacteria. PAMs were isolated from four
199	different animals and 2-4 replicates were completed per animal for each isolate. The CFU/mL
200	was quantified for HS069 and HS069 Δ cap inocula. The log fold reduction was calculated by
201	subtracting the remaining bacteria at hour 1 or 2 from the initial inoculum.
202	G. parasuis challenge
203	All experiments were approved by the National Animal Disease Center's Institutional Animal
204	Care and Use Committee. Caesarian-derived, colostrum-deprived (CDCD) pigs were derived at

 $\overline{\triangleleft}$

205	the National Animal Disease Center. At 4 weeks of age, pigs were intranasally challenged with 2
206	mL (1 mL per nostril) of 1x10 ⁸ CFU/mL G. parasuis HS069 (4 pigs) or HS069∆cap (5 pigs)
207	suspended in PBS. Pigs were monitored for clinical signs (lameness, respiratory distress,
208	lethargy, neurologic signs) and humanely euthanized when systemic signs of disease were noted.
209	At necropsy, gross lesions were recorded and serum, nasal swabs, serosal swabs, joint fluid, lung
210	lavage, and cerebral spinal fluid samples were obtained and plated for CFU counts. Serum and
211	nasal swab samples were taken on day 0 and day 21 post-challenge. To investigate the vaccine
212	potential of HS069∆cap, the pigs surviving challenge with HS069∆cap (5 pigs) were intranasally
213	challenged with 2 mL (1 mL per nostril) of 1×10^8 of G. parasuis HS069 wild type on day 21
214	post-challenge with HS069∆cap. Pigs were monitored and treated as described above
215	A follow up study was conducted to evaluate nasal colonization of HS069∆cap in CDCD
216	pigs. At 6 weeks of age, 6 pigs were inoculated intranasally with 2 mL (1 mL per nostril) of
217	1×10^{8} CFU/mL suspension of G. parasuis HS069 Δ cap in PBS. Nasal swabs were obtained on
218	day 0, 1, 3, 5, 7, and 14 post-challenge for G. parasuis detection. G. parasuis species specific
219	PCR was run on these samples to detect bacterial colonization utilizing the primer set described
220	by Howell et al. (27). Briefly, DNA was extracted from 50 μ L of nasal swab samples using the
221	MagMAX Pathogen RNA/DNA Kit (Thermo Fisher Scientific Inc., Waltham, MA). Extracted
222	DNA was screened as previously described using G. parasuis species specific primers:
223	HPS_219690793-F (5'-ACAACCTGCAAGTACTTATCGGGAT-3') and HPS_219690793-R
224	(5'-TAGCCTCCTGTCTGATATTCCCACG-3') (27).
225	ELISA for serum antibody titer
226	Nunc MaxiSorp plates (Thermo Fisher Scientific Inc., Waltham, MA) were coated with 0.5

227 mg/mL of HS069∆cap sonicate in 100 mM carbonate-bicarbonate buffer (pH 9.6) at 4°C

228	overnight. Plates were washed with 0.05% Tween 20 in PBS (PBST) followed by blocking for 1
229	hour at 37°C with 2% bovine serum albumin (BSA) in PBST. After washing with PBST, serum
230	samples were serially diluted in 1% BSA/PBST and applied to wells for 2 hours at 37°C. Plates
231	were washed with PBST and HRP-conjugated secondary goat anti-swine IgG antibody (SeraCare
232	Life Sciences, Milford, MA) was diluted 1:50,000 in 1% BSA/PBST added and incubated for 1
233	hour at 37°C. ELISAs were developed using tetramethylbenzidine (TMB) substrate (Thermo
234	Fisher Scientific Inc., Waltham, MA). TMB was added to each well, incubated at room
235	temperature for 15 minutes, and the reaction halted with sulfuric acid (2 N). Absorbance 450 nm
236	was measured on a SpectraMax M5 (Molecular Devices, LLC, Sunnyvale, CA).
237	Statistical analysis
238	Statistical analysis was completed using GraphPad Prism 7.03 (GraphPad Software, La Jolla,
239	CA). Biofilm formation was compared using an unpaired t test. Complement mediated killing
240	was evaluated as a log-fold reduction in G. parasuis between heat inactivated GPS and GPS and
241	analyzed using an unpaired t test. Phagocytosis was evaluated using log-fold reduction in G .
242	parasuis between the inoculum and PAM incubated wells. The difference in reduction between
243	HS069 and HS069∆cap was compared using an ordinary one-way ANOVA. Comparison of
244	adherence to porcine alveolar macrophages was completed using unpaired t tests comparing both
245	bacterial cells per 3D4/31 cell and fluorescent intensity per 3D4/31 cell. Welch's corrections
246	were used to account for differences in standard deviation when necessary. Results were
247	considered significant at a p-value of $p < 0.05$.
248	

 \mathbb{A}

249 Results

250 Development and confirmation of HS069 capsule mutant

251 The capsule locus of HS069 was removed by deleting the sequence from *neuA_3* to *etk*

252 (alternatively *wzc* or *wzs*) (Figure 1-A), which removed the biosynthesis and glycosyltransferase

253 proteins contained within the serovar 5 capsule locus. The deleted sequence was confirmed with

254 whole genome sequencing using the PacBio sequencing platform. When the wild type and

HS069∆cap genomes were compared, no HS069∆cap reads mapped to the region of the capsule

locus (Figure 1-B).

257 Transmission electron microscopy (TEM) was also performed to phenotypically confirm

the deletion of the capsule locus. In Figure 2, the surface of the HS069 wild type cells is irregular

Downloaded from http://iai.asm.org/ on March 10, 2020 at Royal Veterinary College

and thickened as compared to HS069∆cap. This confirmed the absence of capsular

260 polysaccharide of the cell surface of $HS069\Delta cap$.

261 Growth characteristics and cellular morphology

262 Comparison of the growth kinetics of G. parasuis HS069 and HS069 Δ cap grown in BHI+ broth

263 indicated there was no alteration in cellular proliferation associated with deletion of the capsule

264 locus (Supplemental Figure 1).

265 **Biofilm formation**

266 Evaluation of static biofilm production indicated similar capacity for G. parasuis isolates to

267 produce biofilm at all starting cell densities tested (0.05, 0.125, and 0.25) (data not shown).

268 Statistical evaluation of static biofilm production by HS069 and HS069∆cap grown from an

269 initial cell density of 0.05 indicated a significant enhancement in production associated with loss

of capsular polysaccharide production (p = 0.0193) (Figure 3).

271 Complement mediated killing

283	counts ($p = 0.0594$) or compared for fluorescent intensity ($p = 0.4296$).
284	Phagocytosis by primary porcine alveolar macrophages

285 Changes in susceptibility to phagocytosis were assessed by incubation with isolated primary

Sensitivity to complement mediated killing (serum sensitivity) was evaluated using non-treated

and heat inactivated GPS. A significant increase in sensitivity to complement killing was noted

Confocal microscopy was used to evaluate the adherence capacity of HS069 and HS069∆cap to

porcine alveolar macrophages (3D4/31 cells). A distinct difference in the pattern of attachment

Because of the aggregation of HS069 Δ cap, adherence was evaluated both as a bacterial count per

was visualized between HS069 and HS069\(\Delta cap (Figure 5), with HS069\(\Delta cap producing))

aggregates of bacteria (Figure 6B) that were not noted with HS069 wild type (Figure 6A).

3D4/31 cell and fluorescent intensity per 3D4/31 cell. There was no statistically significant

difference in adherence capacity when HS069 and HS069∆cap were compared for bacterial

for HS069 Δ cap as compared to wild type HS069 (p = 0.0207) (Figure 4).

Adherence capacity to porcine alveolar macrophage cell line

- 286 porcine alveolar macrophages. After one hour of incubation, there was no difference in
- 287 phagocytosis between HS069 and HS069 Δ cap (P = 0.93); however, after two hours of
- 288 incubation, significantly more HS069∆cap were phagocytosed compared with HS069 wild type
- 289 (P < 0.01) (Figure 7).

290 Virulence assessment

- 291 To assess the virulence of HS069 Δ cap as compared to the parent strain, a total of 11 CDCD pigs
- 292 were challenged with HS069∆cap and four with wild type HS069. The parent strain resulted in
- 293 100% mortality by day 2 post-challenge, while animals challenged with HS069∆cap showed no
- 294 clinical signs of G. parasuis infection and survived until the end of the study (20 days post-

 \triangleleft

296	Colonization and immune stimulation
297	A second study was conducted to evaluate nasal colonization of HS069∆cap in CDCD pigs. The
298	presence of G. parasuis in nasal wash samples was assessed by PCR. Species specific primers
299	detected G. parasuis on days 1 (1 pig) and 3 (2 pigs) post-challenge; however, all pigs were
300	negative by PCR by day 5 post-challenge.
301	Serum antibody titer for animals challenged with HS069∆cap was determined at day 0, 7,
302	14, and 21 post-challenge (Figure 8). A mild increase in serum antibody to HS069∆cap sonicate
303	was seen over the study period with the average Log_{10} titer rising from 3.121 ± 0.336 to
304	3.572±0.250. However, upon intranasal challenge of HS069∆cap inoculated animals with wild
305	type G. parasuis HS069, all animals succumbed to disease by 3 days post challenge.

Downloaded from http://iai.asm.org/ on March 10, 2020 at Royal Veterinary College

306

307 Discussion

308	Capsular polysaccharide is an important factor for the survival and virulence of many bacteria. It
309	is known to function in adhesion and immune evasion through resistance to complement killing
310	and phagocytosis (11). In this study, we sought to better evaluate the function of capsule for G .
311	parasuis, the causative agent of Glässer's Disease in pigs. Capsule has been correlated with
312	virulence, with some serovars associated with disease and others with nasal colonization (3, 5,
313	6). The importance of capsule for G. parasuis was previously investigated in the serovar 5 strain
314	SH0165 (10). Wang and colleagues found SH0165∆capD to be less serum resistant and non-
315	virulent in a pig challenge, compared to the highly virulent parent strain (10). To confirm and
316	expand on these findings and better understand how capsule contributes to G. parasuis disease,
317	we generated a capsular mutant of the virulent serovar 5 strain HS069 followed by evaluation of
318	sensitivity to complement killing and macrophage adhesion in vitro as well as virulence,
319	colonization, and immune stimulation in vivo.
320	Here, the virulence of HS069∆cap was assessed with a combination of <i>in vitro</i> assays and
321	an <i>in vivo</i> challenge. We found that, similar to previous reports, HS069∆cap was markedly less
322	virulent in a pig challenge than the encapsulated parent strain. This confirmed what was noted by
323	Wang and colleagues with SH0165\(\Delta\)cap (10). Reduced virulence of capsule deficient isolates has
324	been attributed in part to the marked increase in serum sensitivity in non-encapsulated G .
325	parasuis strains, which was seen with both HS069∆cap (Figure 4) and SH0165∆cap (10).
326	Resistance to complement killing enables bacteria that penetrate mucosal defenses to better
327	survive and disseminate to systemic sites, such as the central nervous system, joints, and serosal
328	surfaces, as seen in G. parasuis infection.
329	Virulence has also been correlated with susceptibility to porcine alveolar macrophages

 \mathbb{A}

Infection and Immunity

330

331	interaction between $HS069\Delta$ cap and porcine alveolar macrophages, we examined the adherence
332	capacity of HS069∆cap and the parent strain to 3D4/31 cells (Figure 6). In this investigation,
333	HS069 and HS069∆cap adhered equivalently, indicating the capsule is not playing a role in the
334	interaction between G. parasuis HS069 and 3D4/31 cells. This analysis was made more
335	complicated by the aggregation of HS069∆cap (Figure 5); however, through analysis of
336	fluorescent intensity, we were able to account for aggregated bacteria (Figure 6B). We also
337	evaluated HS069 and HS069∆cap for susceptibility to phagocytosis by primary PAMs, which
338	revealed significantly more HS069 Δ cap was phagocytosed over two hours than HS069 wild
339	type. This indicates the importance of G. parasuis capsule in protection against macrophage
340	phagocytosis, which has not been shown previously in G. parasuis.
341	Additionally, we investigated the persistence of G. parasuis HS069 Δ cap in the nasal
342	passageways, which indicated the importance of capsular polysaccharide not just in systemic
343	infection, but also to colonization. Though biofilm production was enhanced for HS069 Δ cap
344	(Figure 3), it did not contribute to persistent nasal colonization and HS069∆cap was cleared from
345	all pigs in the second study by 5 days post-inoculation. This contrasts with colonization of the
346	parent strain, which can persist in the nasal tract of vaccinated pigs (4/5 animals) through 11
347	days post-challenge (data not shown). Previous results assessing the role of capsule in
348	colonization and adherence of other bacterial species have conflicted, with some studies
349	reporting deficient colonization seen with capsular mutants and others indicating an increased
350	capacity for adhesion to cell lines in vitro (12, 29-32). It has been hypothesized that the absence
351	of capsule may increase the exposure of surface adhesins that contribute to adherence in vitro;
352	however, most studies evaluated only in vitro adherence and have not investigated the effect of

(28), which serve as the first line of defense during pulmonary infection. To investigate the

 $\overline{\mathbb{A}}$

353

354

355 Streptococcus pneumoniae (12). 356 The lack of virulence seen with G. parasuis capsular mutants would potentially make 357 them a good candidate for an attenuated live vaccine; however, our investigation showed only a 358 mild increase in G. parasuis serum antibody titer over the 21 day study period (Figure 8) with an 359 average Log_{10} titer at 21 days post-inoculation of 3.572 ± 0.250 . The titers seen in animals 360 inoculated with HS069\Delta cap are low when compared with other studies in which animals were 361 vaccinated with a single dose HS069 bacterin (average Log₁₀ titer 21 days post vaccination 362 4.221 ± 0.377) or after boost vaccination (average Log₁₀ day 42 titer 4.752 ± 0.190), which has 363 shown protection against homologous challenge. Low titers associated with HS069\(Lambda) cap are 364 likely due to its rapid clearance from the nasal cavity, which would limit interaction with 365 immune cells and development of an adaptive immune response. Furthermore, when pigs 366 inoculated with HS069∆cap were challenged with the parent strain, we saw no protection from 367 G. parasuis disease, indicating the antibody response generated was not protective. 368 It is important to note, this evaluation of the importance of capsule in G. parasuis 369 colonization and infection involved the generation and use of a mutant deficient in all genes of 370 the capsule locus. Because of this, we cannot eliminate the possibility that there are alternative 371 functions for genes within the capsule locus that may be contributing to the phenotypes we 372 observed in this study. Additionally, because of the size of the capsule locus, a mutant 373 complemented with the deleted genes was not generated and comparisons can only be made 374 between the wild type and the mutant. 375 Conclusions

capsule in colonization in vivo. Our findings in this study indicate capsule may play a significant

role in persistent colonization with G. parasuis in vivo, similar to that seen previously with

 $\overline{\triangleleft}$

376 This investigation of the G. parasuis capsule mutant HS069∆cap confirms the importance 377 of capsule to a fully virulent phenotype in vivo that has been seen previously with 378 SH0615\(\Delta\)capD. Capsular polysaccharide plays an important role in resistance to complement 379 killing and phagocytosis, which may be a key factor in the dissemination of G. parasuis during 380 infection to systemic sites. In this study, we also found capsule to be an essential factor in G. 381 parasuis HS069 for persistent colonization of the swine nasal cavity. However, because of the 382 rapid clearance of HS069∆cap from the nasal cavity, generation of antibody was minimal and no 383 protection was provided against challenge with the parent strain making HS069 Δ cap a poor 384 modified live vaccine candidate.

385

M

Infection and Immunity

386 Acknowledgements

387	The authors would like to thank Sarah Shore for sharing her expertise on microtiter biofilm
388	assays. This research was funded by the U. S. Department of Agriculture. Mention of trade
389	names or commercial products in this article is solely for the purpose of providing specific
390	information and does not imply recommendation or endorsement by the USDA. USDA is an
391	equal opportunity provider and employer. This work was supported by a Longer and Larger
392	(LoLa) grant from the Biotechnology and Biological Sciences Research Council (BBSRC grant
393	numbers BB/G020744/1, BB/G019177/1, BB/G019274/1 and BB/G018553/1), the UK
394	Department for Environment, Food and Rural Affairs, and Zoetis awarded to the Bacterial
395	Respiratory Diseases of Pigs-1 Technology (BRaDP1T) consortium. LAW is funded by a Sir
396	Henry Dale Fellowship co-funded by the Royal Society and Wellcome Trust (Grant Number:
397	109385/Z/15/Z). This project was additionally supported in part by an appointment to the
398	Agricultural Research Service Postdoctoral Research Program administered by the Oak Ridge
399	Institute for Science and Education (ORISE). Funding sources had no role in study design, data
400	collection and analysis, decision to publish, or preparation of the manuscript.
401	

Infection and Immunity

Infection and Immunity

 \mathbb{A}

402 Literature Cited

403 1. Aragon V, Segales J, Oliveira S. 2012. Glasser's Disease, p 760-769. In Zimmerman 404 JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW (ed), Diseases of Swine, 10 405 ed. John Wiley & Sons, Inc, West Sussex, UK. 2. Dickerman A, Bandara AB, Inzana TJ. 2019. Phylogenomic analysis of 406 407 Haemophilus parasuis and proposed reclassification to *Glaesserella parasuis*, gen. 408 nov., comb. nov. Int J Syst Evol Microbiol doi:10.1099/ijsem.0.003730. 409 3. Kielstein P, Rapp-Gabrielson VJ. 1992. Designation of 15 serovars of Haemophilus 410 parasuis on the basis of immunodiffusion using heat-stable antigen extracts. I Clin 411 Microbiol 30:862-865. 412 4. Howell KJ, Peters SE, Wang J, Hernandez-Garcia J, Weinert LA, Luan SL, 413 Chaudhuri RR, Angen O, Aragon V, Williamson SM, Parkhill J, Langford PR, 414 Rvcroft AN, Wren BW, Maskell DJ, Tucker AW, BRaDP1T Consortium, 2015. 415 Development of a Multiplex PCR Assay for Rapid Molecular Serotyping of 416 *Haemophilus parasuis*. J Clin Microbiol **53**:3812-3821. Aragon V, Cerda-Cuellar M, Fraile L, Mombarg M, Nofrarias M, Olvera A, Sibila 417 5. 418 M, Solanes D, Segales J. 2010. Correlation between clinico-pathological outcome 419 and typing of *Haemophilus parasuis* field strains. Vet Microbiol **142**:387-393. 420 Oliveira S, Blackall PJ, Pijoan C. 2003. Characterization of the diversity of 6. 421 Haemophilus parasuis field isolates by use of serotyping and genotyping. Am I Vet 422 Res 64:435-442. 423 7. Jia Q, Lee BY, Bowen R, Dillon BJ, Som SM, Horwitz MA. 2010. A Francisella 424 *tularensis* live vaccine strain (LVS) mutant with a deletion in capB, encoding a 425 putative capsular biosynthesis protein, is significantly more attenuated than LVS yet 426 induces potent protective immunity in mice against *F. tularensis* challenge. Infect 427 Immun 78:4341-4355. Drysdale M, Heninger S, Hutt J, Chen Y, Lyons CR, Koehler TM. 2005. Capsule 428 8. 429 synthesis by *Bacillus anthracis* is required for dissemination in murine inhalation 430 anthrax. EMBO J 24:221-227. 431 9. Smith HE, Damman M, van der Velde J, Wagenaar F, Wisselink HJ, Stockhofe-432 Zurwieden N, Smits MA. 1999. Identification and characterization of the cps locus 433 of *Streptococcus suis* serotype 2: the capsule protects against phagocytosis and is an 434 important virulence factor. Infect Immun 67:1750-1756. 435 Wang X, Xu X, Wu Y, Li L, Cao R, Cai X, Chen H. 2013. Polysaccharide biosynthesis 10. 436 protein CapD is a novel pathogenicity-associated determinant of Haemophilus 437 parasuis involved in serum-resistance ability. Vet Microbiol 164:184-189. 438 11. **Roberts IS.** 1996. The biochemistry and genetics of capsular polysaccharide 439 production in bacteria. Annu Rev Microbiol **50**:285-315. 440 12. Magee AD, Yother J. 2001. Requirement for capsule in colonization by 441 Streptococcus pneumoniae. Infect Immun 69:3755-3761. 442 Howell KJ, Weinert LA, Chaudhuri RR, Luan SL, Peters SE, Corander J, Harris D, 13. 443 Angen O, Aragon V, Bensaid A, Williamson SM, Parkhill J, Langford PR, Rycroft 444 AN, Wren BW, Holden MT, Tucker AW, Maskell DJ, BRaDP1T Consortium. 2014.

Downloaded from http://iai.asm.org/ on March 10, 2020 at Royal Veterinary College

445		The use of genome wide association methods to investigate pathogenicity,
446		population structure and serovar in <i>Haemophilus parasuis</i> . BMC Genomics 15 :1179.
447	14.	Howell KJ, Weinert LA, Luan SL, Peters SE, Chaudhuri RR, Harris D, Angen O,
448		Aragon V, Parkhill J, Langford PR, Rycroft AN, Wren BW, Tucker AW, Maskell
449		DJ, BRaDP1T Consortium. 2013. Gene content and diversity of the loci encoding
450		biosynthesis of capsular polysaccharides of the 15 serovar reference strains of
451		Haemophilus parasuis. J Bacteriol 195: 4264-4273.
452	15.	Xu Z, Yue M, Zhou R, Jin Q, Fan Y, Bei W, Chen H. 2011. Genomic characterization
453		of <i>Haemophilus parasuis</i> SH0165, a highly virulent strain of serovar 5 prevalent in
454		China. PLoS One 6: e19631.
455	16.	Zhang L, Li Y, Dai K, Wen Y, Wen X, Wu R, Huang X, Cao S. 2014. The confirmation
456	10.	of the DNA uptake signal sequence needed for genetic manipulation in <i>Haemophilus</i>
457		parasuis. Vet Microbiol 173:395-396.
458	17.	Bosse JT, Soares-Bazzolli DM, Li Y, Wren BW, Tucker AW, Maskell DJ, Rycroft
459		AN, Langford PR, BRaDP1T Consortium. 2014. The generation of successive
460		unmarked mutations and chromosomal insertion of heterologous genes in
461		Actinobacillus pleuropneumoniae using natural transformation. PLoS One
462		9: e111252.
463	18.	Bigas A, Garrido ME, de Rozas AM, Badiola I, Barbe J, Llagostera M. 2005.
464	10.	Development of a genetic manipulation system for <i>Haemophilus parasuis</i> . Vet
465	10	Microbiol 105 :223-228.
466	19.	Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A,
467		Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid,
468		finished microbial genome assemblies from long-read SMRT sequencing data. Nat
469		Methods 10: 563-569.
470	20.	Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator:
471		automated circularization of genome assemblies using long sequencing reads.
472		Genome Biol 16 :294.
473	21.	Jacques M, Foiry B. 1987. Electron microscopic visualization of capsular material of
474	<i>L</i> 1.	<i>Pasteurella multocida</i> types A and D labeled with polycationic ferritin. J Bacteriol
		169: 3470-3472.
475		
476	22.	Borrathybay E, Sawada T, Kataoka Y, Okiyama E, Kawamoto E, Amao H. 2003.
477		Capsule thickness and amounts of a 39 kDa capsular protein of avian Pasteurella
478		multocida type A strains correlate with their pathogenicity for chickens. Vet
479		Microbiol 97: 215-227.
480	23.	Kawamoto E, Okiyama E, Sasaki H, Sawada T, Mikazuki K, Ueshiba H. 2007.
481		Ultrastructural characteristics of the external surfaces of <i>Pasteurella pneumotropica</i>
482		from mice and <i>Pasteurella multocida</i> from rabbits. Lab Anim 41: 285-291.
483	24.	Cassat JE, Lee CY, Smeltzer MS. 2007. Investigation of biofilm formation in clinical
	24.	
484	- -	isolates of <i>Staphylococcus aureus</i> . Methods Mol Biol 391 :127-144.
485	25.	Cullen JM, Rycroft AN. 1994. Phagocytosis by pig alveolar macrophages of
486		Actinobacillus pleuropneumoniae serotype 2 mutant strains defective in haemolysin
487		II (ApxII) and pleurotoxin (ApxIII). Microbiology 140 (Pt 2): 237-244.
488	26.	Hu Y, Wang M, Zhang X, Wang P, Liu H, Wang Q. 2016. Heterogeneity of swine
489		lung macrophages inoculated by porcine reproductive and respiratory syndrome
490		virus. Food and Agricultural Immunology 27: 724-733.
		, , , , , , , , , , , , , , , , , , ,
		22

Q
≦
⊇
<u>o</u>
g
æ
ă
₽
o,
R
-
Ħ
÷
5
<u></u>
÷
g
<u>S</u>
.⊐
ò
5
2
0
⊐
~
ລື
5
4
_
_
10
10,
10, 20
10, 202
10, 2020
10, 2020 a
10, 2020 at
10, 2020 at R
10, 2020 at Ro
10, 2020 at Roya
10, 2020 at Royal
10, 2020 at Royal V
10, 2020 at Royal Ve
10, 2020 at Royal Vete
10, 2020 at Royal Veteri
10, 2020 at Royal Veterin:
10, 2020 at Royal Veterinar
10, 2020 at Royal Veterinary
10, 2020 at Royal Veterinary C
10, 2020 at Royal Veterinary Co
10, 2020 at Royal Veterinary Colle
10, 2020 at Royal Veterinary Collec
Downloaded from http://iai.asm.org/ on March 10, 2020 at Royal Veterinary College

40.1	0.7	
491	27.	Howell KJ, Weinert LA, Peters SE, Wang J, Hernandez-Garcia J, Chaudhuri RR,
492		Luan SL, Angen O, Aragon V, Williamson SM, Langford PR, Rycroft AN, Wren
493		BW, Maskell DJ, Tucker AW. 2017. "Pathotyping" Multiplex PCR Assay for
494		Haemophilus parasuis: a Tool for Prediction of Virulence. J Clin Microbiol 55:2617-
495		2628.
496	28.	Olvera A, Ballester M, Nofrarias M, Sibila M, Aragon V. 2009. Differences in
497		phagocytosis susceptibility in <i>Haemophilus parasuis</i> strains. Vet Res 40: 24.
498	29.	Schaffner TO, Hinds J, Gould KA, Wuthrich D, Bruggmann R, Kuffer M,
499		Muhlemann K, Hilty M, Hathaway LJ. 2014. A point mutation in cpsE renders
500		Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence
501		and competence. BMC Microbiol 14: 210.
502	30.	Tu TY, Hsieh MK, Tan DH, Ou SC, Shien JH, Yen TY, Chang PC. 2015. Loss of the
503		Capsule Increases the Adherence Activity but Decreases the Virulence of
504		Avibacterium paragallinarum. Avian Dis 59: 87-93.
505	31.	Xu B, Pei X, Su Y, Ma Z, Fan H. 2016. Capsule of Streptococcus equi subsp.
506		zooepidemicus hampers the adherence and invasion of epithelial and endothelial
507		cells and is attenuated during internalization. FEMS Microbiol Lett 363 .
508	32.	Rioux S, Galarneau C, Harel J, Kobisch M, Frey J, Gottschalk M, Jacques M. 2000.
509		Isolation and characterization of a capsule-deficient mutant of Actinobacillus
510		pleuropneumoniae serotype 1. Microb Pathog 28: 279-289.
511		tt

512

 \mathbb{A}

Infection and Immunity

Primer	Sequence (5'-3') ^a	SH0165
		genome (15)
P1 (neuAupFor1)	AAGACT <u>GAGCTC</u> TCGTTTTCCAGACAGCAATG	49398-49417
P2 (neuAupRev1)	AAGACT <u>GGATCC</u> CTCCTTTACATGCCCCCATC	50044-50025
P3 (wzsDnFor1)	AAGACT <u>GGATCC</u> TTGATGTAAGCGGTGGGATT	64033-64052
P4 (wzsDnRev1)	AAGCGA <u>GTCGAC</u> AGTTGCGGCATAATCCAAAT	64763-64744
P5 (catFor)	GCGAT <u>GGATCC</u> TGTGGAATTGTGAGCGGATA	n/a
P6 (catRev)	GCGAT <u>GGATCC</u> ACAAGCGGTTTCAACTAACGG	n/a

513 Table 1: Primers utilized in the construction of HS069∆cap.

^a Restriction sites are underlined, BamHI: GGATCC, SalI: GTCGAC and SacI: GAGCTC.

515

Figure 1. Capsule locus deletion and verification. The entirety of the capsule locus was
deleted from *neuA_3* to *etk* as indicated (A). The loss of the capsule locus was verified using
Artemis Compare Tool (B). No sequence reads mapped to the region of the capsule locus.

Downloaded from http://iai.asm.org/ on March 10, 2020 at Royal Veterinary College

520 Figure 2. Transmission electron microscopy visualization of capsule. The capsule layer of G.

521 *parasuis* HS069 wild type (A) and HS069∆cap (B) were visualized using transmission electron

522 microscopy to verify HS069 Δ cap was deficient in capsular polysaccharide production. The

523 surface of HS069 Δ cap lacked thickened, irregular surface associated with capsule production.

524

525 Figure 3. Biofilm production by HS069 wild type and HS069 \triangle cap. The capacity of G.

- 526 parasuis HS069 and HS069∆cap to produce biofilm under static growth conditions was
- 527 quantified using microtiter assays. Results here represent data from replicates with a starting
- 528 OD₆₀₀ of 0.05. The average absorbance at 538nm is shown (column) with standard deviation

Infection and Immunity

529

530

531

532

533 reduction in CFU/mL was analyzed and statistical significance is indicated by the asterisk (*) at 534 a level of p < 0.05. 535 536 Figure 5. Adherence capacity of HS069 and HS069Acap to 3D4/31 cells. The capacity for 537 HS069 and HS069∆cap to adhere to porcine alveolar macrophages was evaluated using the 538 3D4/31 cell line. The interaction between G. parasuis and 3D4/31 cells was evaluated by 539 confocal microscopy in chamber slides. G. parasuis strains were stained using a monocolonal 540 antibody to the outer membrane protein P5. Bacterial aggregates were noted when evaluating 541 $HS069\Delta cap$ (B), but were not produced by the wild type HS069 isolate. 542 543 Figure 6. Adherence capacity to porcine alveolar macrophages (3D4/31 cell line). The 544 capacity of G. parasuis HS069 and HS069∆cap to adhere to porcine alveolar macrophages was 545 evaluated using the 3D4/31 cell line. Due to the clusters of bacterial cells noted using confocal 546 microscopy, adherence was evaluated both as bacterial cells detected per 3D4/31 cell (A) and

indicated (error bars). Statistical significance is indicated by the asterisk (*) at a level of p < 0.05.

Figure 4. Evaluation of sensitivity to complement killing. G. parasuis HS069 and HS069Acap

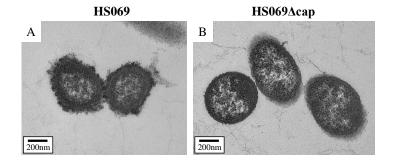
were screened for resistance to complement mediated killing. Statistical analysis of the log10

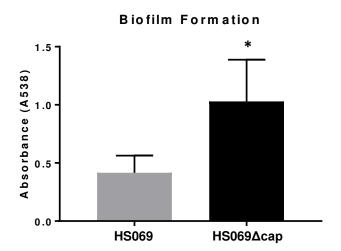
547 fluorescent intensity per 3D4/31 cell (B). No statistical differences were noted in bacteria per cell 548 or fluorescent intensity per cell.

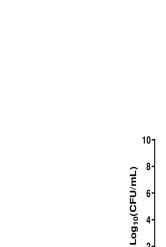
549

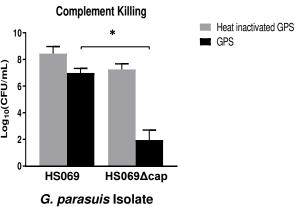
550 Figure 7. Evaluation of susceptibility to phagocytosis. G. parasuis HS069 and HS069∆cap

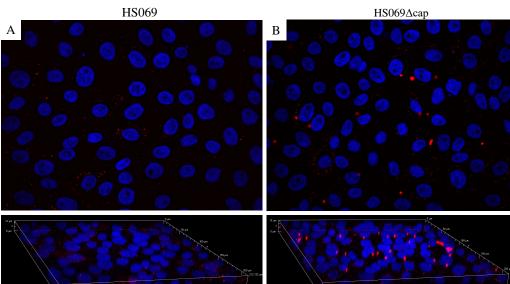
551 were screened for susceptibility to phagocytosis using porcine alveolar macrophages. Log fold

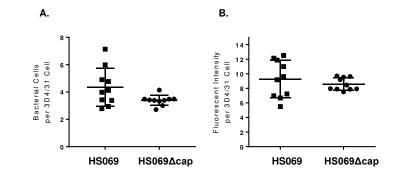

 \triangleleft

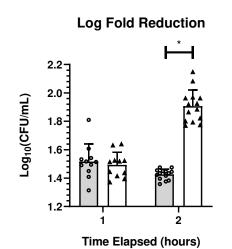

557	Figure 8. Serum antibody titers for pigs inoculated with HS069Acap. The serum antibody
556	
555	significantly more G. parasuis HS069 Δ cap was phagocytosed than HS069 wild type (P < 0.01).
554	after 1 hour of incubation ($P = 0.93$); however, after 2 hours of incubation with PAMs
553	incubation). The reduction of G. parasuis HS069 and HS069 Δ cap was not statistically different
552	reduction in G. parasuis [log10(CFU/mL)] is represented for both time points (1 hour and 2 hour


- 558 titer was detected using an ELISA to whole cell sonicate. The data presented in this graph
- represent the animals in the second study investigating colonization with HS069∆cap.

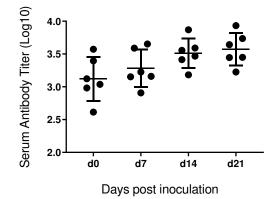

Downloaded from http://iai.asm.org/ on March 10, 2020 at Royal Veterinary College




Infection and Immunity


Infection and Immunity

 \mathbb{A}


 $\overline{\triangleleft}$

- HS069
- ▲ HS069∆cap

Infection and Immunity

 $\overline{\triangleleft}$