AEM Accepted Manuscript Posted Online 24 January 2020 Appl. Environ. Microbiol. doi:10.1128/AEM.02607-19 Copyright © 2020 American Society for Microbiology. All Rights Reserved.

1 Role of caecal microbiota in the differential resistance of inbred chicken lines to

- 2 colonization by Campylobacter jejuni.
- 3
- 4 Cosmin Chintoan-Uta^{1*}, Trong Wisedchanwet^{1*}, Laura Glendinning¹, Abi Bremner¹,
- 5 Androniki Psifidi^{1,2}, Lonneke Vervelde¹, Kellie Watson¹, Mick Watson¹, Mark P. Stevens¹.
- 6
- 7 ¹ The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, Midlothian,
- 8 EH25 9RG, Scotland, United Kingdom.
- 9 ² The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire,
- 10 AL9 7TA, United Kingdom.
- 11
- 12 * Cosmin Chintoan-Uta (CC) and Trong Wisedchanwet (TW) contributed equally to this study
- 13 and the order of authors was agreed by discussion and mutual consent. CC led the design
- 14 and execution of the animal work and bacteriology. TW led the processing of microbiota,
- 15 amplicon sequencing and data analysis. CC produced the first draft of the manuscript and
- 16 TW produced figures 2-8.
- 17
- 18 ^{III} Corresponding author. E-mail <u>Mark.Stevens@roslin.ed.ac.uk</u>. Tel. 44 131 651 9128.
- 19
- 20 Running title: Role of gut microbiota in avian resistance to *Campylobacter*.

21 Abstract

22	Campylobacter is the leading foodborne bacterial diarrhoeal illness in many countries,
23	with up to 80 % of human cases attributed to the avian reservoir. The only control strategies
24	currently available are stringent on-farm biosecurity and carcass treatments. Heritable
25	differences in the resistance of chicken lines to Campylobacter colonisation have been
26	reported and resistance-associated quantitative trait loci are emerging, albeit their impact
27	on colonization appears modest. Recent studies indicated a protective role of the
28	microbiota against colonization by Campylobacter in chickens. Furthermore, in murine
29	models, differences in resistance to bacterial infections can be partially transferred between
30	lines by transplantation of gut microbiota. In this study, we investigated whether heritable
31	differences in colonization of inbred chicken lines by Campylobacter jejuni are associated
32	with differences in caecal microbiota. We performed homologous and heterologous caecal
33	microbiota transplants between line 6_1 (resistant) and line N (susceptible), by orally
34	administering caecal contents collected from 3-week-old donors to day-of-hatch chicks.
35	Recipient birds were challenged (day 21) with <i>C. jejuni</i> 11168H. In birds given homologous
36	microbiota, the differential resistance of lines to <i>C. jejuni</i> colonization was reproduced.
37	Contrary to our hypothesis, transfer of caecal microbiota from line 6_1 to line N significantly
38	increased C. jejuni colonization. No significant difference in the overall composition of the
39	caecal microbial communities of the two lines was identified, albeit line-specific differences
40	for specific operational taxonomic units were identified. Our data suggest that while
41	heritable differences in avian resistance to Campylobacter colonization exist, these are not
42	explained by significant variation in the caecal microbiota.
43	

Keywords: *Campylobacter*, chickens, microbiota, colonization, resistance.

44

45 Importance

46	Campylobacter is a leading cause of foodborne diarrhoeal disease worldwide. Poultry are
47	a key source of human infections but there are currently few effective measures to
48	Campylobacter in poultry during production. One option to control Campylobacter may be
49	to alter the composition of microbial communities in the avian intestines by introducing
50	beneficial bacteria which exclude the harmful ones. We previously described two inbred
51	chicken lines which differ in resistance to intestinal colonization by Campylobacter. Here, we
52	investigated the composition of the microbial communities in the gut of these lines, and
53	whether transferring gut bacteria between the resistant and susceptible lines alters their
54	resistance to Campylobacter. No major differences in microbial populations were found and,
55	resistance or susceptibility to colonization was not conferred by transferring gut bacteria
56	between lines. The data suggest that gut microbiota did not play a role in resistance to
57	Campylobacter colonization, at least in the lines used.
57 58	<i>Campylobacter</i> colonization, at least in the lines used.
57 58 59	Campylobacter colonization, at least in the lines used. Introduction
57 58 59 60	Campylobacter colonization, at least in the lines used. Introduction Campylobacter is the main bacterial cause of zoonotic foodborne infections in many
57 58 59 60 61	Campylobacter colonization, at least in the lines used. Introduction Campylobacter is the main bacterial cause of zoonotic foodborne infections in many countries. In the United Kingdom, approximately 90 % of human cases are caused by
57 58 59 60 61 62	Campylobacter colonization, at least in the lines used. Introduction Campylobacter is the main bacterial cause of zoonotic foodborne infections in many countries. In the United Kingdom, approximately 90 % of human cases are caused by Campylobacter jejuni, with C. coli and other species playing a relatively minor role (1).
57 58 59 60 61 62 63	Campylobacter colonization, at least in the lines used. Introduction Campylobacter is the main bacterial cause of zoonotic foodborne infections in many countries. In the United Kingdom, approximately 90 % of human cases are caused by Campylobacter jejuni, with C. coli and other species playing a relatively minor role (1). Symptoms can range from mild gastroenteritis to severe haemorrhagic diarrhoea that can
57 58 59 60 61 62 63 64	Campylobacter colonization, at least in the lines used. Introduction Campylobacter is the main bacterial cause of zoonotic foodborne infections in many countries. In the United Kingdom, approximately 90 % of human cases are caused by Campylobacter jejuni, with C. coli and other species playing a relatively minor role (1). Symptoms can range from mild gastroenteritis to severe haemorrhagic diarrhoea that can last as long as two weeks and occasionally relapse. In addition, campylobacteriosis can
57 58 59 60 61 62 63 64 65	Campylobacter colonization, at least in the lines used. Introduction Campylobacter is the main bacterial cause of zoonotic foodborne infections in many countries. In the United Kingdom, approximately 90 % of human cases are caused by Campylobacter jejuni, with C. coli and other species playing a relatively minor role (1). Symptoms can range from mild gastroenteritis to severe haemorrhagic diarrhoea that can last as long as two weeks and occasionally relapse. In addition, campylobacteriosis can involve severe sequelae, including inflammatory bowel disease and debilitating
57 58 59 60 61 62 63 64 65 66	Campylobacter colonization, at least in the lines used. Introduction Campylobacter is the main bacterial cause of zoonotic foodborne infections in many countries. In the United Kingdom, approximately 90 % of human cases are caused by Campylobacter jejuni, with C. coli and other species playing a relatively minor role (1). Symptoms can range from mild gastroenteritis to severe haemorrhagic diarrhoea that can last as long as two weeks and occasionally relapse. In addition, campylobacteriosis can involve severe sequelae, including inflammatory bowel disease and debilitating inflammatory neuropathies such as the Guillain-Barré syndrome. Recent estimates place its

AEM

68

69	to be unreported for every one captured by national surveillance (3).
70	Poultry are an important reservoir of human campylobacteriosis, with some estimates
71	attributing up to 80 % of human infections to this source (4). The caeca are a key site of
72	persistence of Campylobacter in chickens, where numbers of C. jejuni can reach as high as
73	10 ¹⁰ colony forming unit (CFU)/g of contents. Given such levels, contamination of carcasses
74	with numbers of C. jejuni predicted to be adequate for human infection is challenging to
75	prevent during the slaughter process. Control of Campylobacter relies mainly on stringent
76	on-farm biosecurity measures and carcass treatments, including freezing, rapid surface
77	chilling or the application of organic acid solutions or chlorinated water, where permitted by
78	national regulations. There are currently no effective commercial vaccines for
79	Campylobacter in poultry and, even though some protective candidates have been
80	described in the literature, these often confer modest protection that has proven
81	challenging to reproduce across repeated studies and laboratories (5).
82	Inbred chicken lines 6_1 and N are known to exhibit heritable differences in resistance to
83	colonization by several C. jejuni strains (6) and recent work using backcross and advanced
84	intercross populations of these lines has identified quantitative trait loci (QTL) associated
85	with this phenotype (7). Differential resistance to <i>C. jejuni</i> colonization has also been
86	detected between other chicken lines and was associated with variation in caecal and
87	systemic transcriptional responses (8, 9, 10). Heritable differences in resistance to
88	Campylobacter also appear to exist in commercial broilers, although only 10 % of the
89	variation in Campylobacter colonization phenotype was explained by host genetics in a
90	population studied recently (11).

confirmed cases of human infection were recorded in 2017 (1) and 9.3 cases are predicted

4

91	In murine models, Campylobacter-induced enteritis and colonization requires the prior
92	depletion of the indigenous microbiota with antibiotics (12). This study also indicated that
93	Enterococcus faecalis may be a protective constituent of the microbiota. More recently,
94	Clostridium cluster XI, Bifidobacterium and Lactobacillus spp. were reported to be
95	significantly enriched in mice that were protected against Campylobacter-induced colitis
96	(13). These authors also demonstrated that oral administration of sodium deoxycholate, a
97	secondary bile acid that is produced via the metabolism of the aforementioned bacteria,
98	reduced enteritis. Moreover, removal of these bacterial taxa through antibiotic treatment
99	enhanced the severity of Campylobacter-induced colitis (13).
100	In chickens, Han et al demonstrated that the presence of intestinal microbiota is
101	protective against Campylobacter by comparing colonization levels in C. jejuni-challenged
102	birds that had naturally-acquired microbiota or which had been reared under germ-free
103	conditions or treated with antibiotics (14). However, the individual components of the
104	microbiota that were associated with the protective effect and relative role(s) of direct
105	competition versus immune priming by the microbiota were not investigated. More
106	recently, Connerton et al studied the effects of Campylobacter colonization on the caecal
107	microbiota of chickens and found that colonization by Campylobacter significantly alters the
108	composition of the gut microbiota, with decreases in the abundance of operational
109	taxonomic units (OTUs) in the families of <i>Lactobacillaceae</i> and <i>Clostridium</i> cluster XIVa (15).
110	However, they also found that the age of bird had an effect on the composition of the
111	microbiota and that the effect of age exceeded that of Campylobacter infection as time
112	progressed (15).
113	In this study, we sought to investigate whether intestinal microbiota plays a role in the
114	differential resistance of chicken inbred lines 6_1 (resistant) and N (susceptible) to

115	colonization by C. jejuni. This involved analysing the caecal microbiome of birds of each line
116	at three weeks of age, when they are known to differ in resistance to C. jejuni challenge (6;
117	7), and performing homologous and heterologous microbiota transplants between the two
118	lines. A precedent exists in the literature for transferring resistance against bacterial
119	colonization in this way. For example, when using inbred mouse lines that differ in
120	resistance to colonization by the murine attaching & effacing pathogen Citrobacter
121	rodentium, reciprocal transfer of the microbiota to the heterologous line altered
122	susceptibility to colonization (16). Furthermore, faecal microbiota transplants are now
123	accepted treatments for acute and recurrent Clostridium difficile infections in humans, even
124	in cases where antibiotic treatment failed (17; 18). The rationale for our study is given
125	further impetus by the recent observation that introduction of adult microbiota into flocks
126	of neonatal chicks has a mild protective effect against Campylobacter colonization and
127	altered the gut microbiome (19).
128	
129	Materials and Methods
130	
131	Bacterial strains and culture conditions
132	C. jejuni 11168H was obtained from the National Collection of Typed Cultures and has
133	been fully sequenced (20) and confirmed to be proficient in colonization of chickens (7). It
134	was cultured on modified charcoal-cephoperazone-deoxycholate agar (mCCDA) (Oxoid, UK)
135	or in Mueller-Hinton Broth (MH; Oxoid), at 37 °C in a microaerophilic workstation (Don
136	Whitley Scientific, UK) in a low oxygen atmosphere (5 $\%$ O_2, 5 $\%$ CO_2 and 90 $\%$ N_2). Broth
137	cultures of Campylobacter were grown with shaking at 400 rpm.
138	

139 Experimental animals

140	All procedures were conducted under Home Office project license PCD70CB48, according
141	to the requirements of the Animal (Scientific Procedures) Act 1986, with the approval of
142	local ethical review committees. A total of 88 chickens were used in licensed procedures.
143	Forty four chickens of each of the inbred lines 61 (http://www.narf.ac.uk/chickens/line-6/)
144	and N (http://www.narf.ac.uk/chickens/line-n/) were obtained on the day of hatch from the
145	National Avian Research Facility at The Roslin Institute, a Home Office licensed breeding
146	establishment. Eggs were incubated and hatched under specified pathogen-free (SPF)
147	conditions. Animals were housed in four groups of 22 in colony cages in a single study.
148	Groups were of mixed sex and were individually wing-tagged for identification. Water and
149	sterile irradiated feed based on vegetable protein (DBM Ltd., UK) were provided ad libitum.
150	A further five birds of each line, reared under SPF conditions, were culled at 3 weeks of age
151	by cervical dislocation to act as donors of caecal microbiota.
152	As previously described (6), chicken lines 6_1 and N were derived originally from White
153	Leghorn flocks at the Avian Disease and Oncology Laboratory of the US Department of
154	Agriculture, Agricultural Research Service, the former Regional Poultry Laboratory in East
155	Lansing, MI, USA. The lines were maintained by random mating within the flock at the
156	Institute for Animal Health (IAH) since 1972 (line 6_1) or 1982 (line N), before being
157	transferred to the SPF unit of the National Avian Research Facility in 2013, where they have
158	been maintained since. Inbred chicken line 6_1 was obtained from a White Leghorn
159	background in 1939 to be resistant to avian leukosis virus (21). These two inbred lines have
160	previously been reported to differ in resistance to intestinal colonization by C. jejuni when
161	challenged on the day of hatch (6) or at three weeks old (7), as well as to enteric
162	colonization by Salmonella enterica serovar Typhimurium (22).

AEM

163

164 Microbiota transplant experiment

165	The donor birds were housed in separate floor pens in the SPF unit of the NARF until
166	three weeks of age. At this age, they were culled by cervical dislocation and caecal contents
167	from the donor birds of each line were collected for separate DNA extractions to assess
168	variability in their microbiota and for transplantation. For DNA extraction, the samples were
169	promptly processed without freeze-thawing as described below. For transplants, the caecal
170	contents of five birds were mixed within line in equal weight and diluted 1:6 (v/v) in sterile
171	phosphate-buffered saline (PBS) to provide a mixture of sufficiently low viscosity that it
172	could be reliably administered by oral gavage using a syringe and blunt-ended needle.
173	Homologous transplants (6_1 microbiota into line 6_1 or N microbiota into line N) and
174	heterologous transplants (6_1 microbiota into line N or N microbiota into line 6_1) were
175	performed by administering 100 μl of a suspension of caecal contents by oral gavage, within
176	30 minutes of collection from donors, under aerobic conditions. Four birds from each group
177	were sampled at 1, 7 and 21 days after the microbiota transplant. At 21 days post-
178	transplant, all remaining birds (10 per group) were inoculated with 10 ⁴ CFU of <i>C. jejuni</i>
179	11168H administered by oral gavage in a volume of 100 μl , diluted in sterile PBS. All infected
180	birds were culled by cervical dislocation at 9 days post-challenge to enumerate caecal
181	Campylobacter by plating 100 μl of serial 10-fold dilutions of caecal contents in PBS on
182	mCCDA plates. At the same time, samples of caecal contents were promptly transported on
183	ice to the laboratory for DNA isolation and analysis of the microbiota. Differences in caecal
184	colonization by Campylobacter were investigated using a one-way, two-sided ANOVA test in
185	Minitab (Minitab LLC, USA). <i>P</i> values \leq 0.05 were taken to be significant. Power analysis
186	using measures of inter-animal variance from our past research on Campylobacter vaccines,

Applied and Environmental

Microbiology

187 mutants and heritable resistance indicated that 10 birds per group can detect a 2 log₁₀

188 CFU/g difference with 80 % power at a significance level of α = 0.05.

189

190 DNA extraction

191 DNA extractions were performed using pooled contents from both caeca of each bird, 192 with a separate extraction for each individual. Extraction was performed using a DNeasy 193 Powersoil kit (Qiagen, Valencia, CA, USA) with minimal delay from the time of collection and 194 without freezing. Samples were extracted in a single batch at the earlier time-points and in 195 two batches at the last time-point, with samples collected from birds which received the 196 transplant from the same donor birds extracted in the same batch. Due to the low volume 197 of caecal contents at 1 day post-hatch, the entire caeca (tissues and contents) were used for 198 DNA extraction. For birds of all other ages, only caecal contents were used. Caecal contents 199 or tissues were transferred to bead containing tubes with Powersoil solution c1 and were 200 heated at 65 °C for 10 minutes. A bead beating step was performed using a Precellys 24 201 Homogenizer (Bertin Technologies, France) at 5000 rpm for 45 seconds. After this step, DNA 202 extraction was carried out following the manufacturer's protocol. A reagent-only control 203 was produced for every DNA extraction batch. All negative control samples returned 204 between 22 and 810 reads per sample, whereas the cutoff of the caecal samples was 43,808 205 reads per sample. As such, any low level contamination is unlikely to have impact our 206 analysis given the high biomass of the caecal samples. DNA was also extracted from a 207 ZymoBIOMICS Microbial Community Standard (Zymo Research, Irvine, CA, USA) in the same 208 manner as for caecal samples and this was used as a mock community positive control. 209 After DNA extraction, DNA samples were stored at -80 °C until sequence analysis, for up to 210 three months.

Accepted Manuscript Posted Online

Applied and Environmental Microbiology

211

212 Amplicon Library Construction and Sequencing

213	Barcoded primers specific to the variable 4 (V4) region of 16S bacterial ribosomal DNA
214	were used for amplification by polymerase chain reaction (23). PCR was performed with Q5
215	High-Fidelity 2x Master Mix (New England BioLabs, Beverly, MA, USA) with denaturation at
216	95 $^\circ$ C for 2 minutes, followed by 30 cycles of 95 $^\circ$ C for 20 seconds, 55 $^\circ$ C for 15 seconds and
217	72 \degree C for 5 minutes, with a final extension at 72 \degree C for 10 minutes. PCR amplicons were
218	purified using the Ampure XP PCR purification system (Beckman Coulter, La Brea, CA, USA).
219	The concentration of purified amplicons was measured using the Qubit dsDNA HS Assay kit
220	(Thermo Fisher Scientific, Hemel Hempstead, UK). Amplicons were then pooled at
221	equimolar concentrations into a single library, whereby samples from each individual bird
222	could be identified via unique barcodes. A mock DNA control sample from Zymobiotics was
223	included as a control for the PCR step, containing bacterial DNA comprised of 25 $\%$
224	Enterobacetriaceae and 12.5 % of each of another 6 bacterial species. The pooled library
225	was sequenced by paired-end 250 base pair reads on the Illumina Miseq platform (Illumina,
226	San Diego, CA, USA) using v2 chemistry. Sequencing was carried out by Edinburgh
227	Genomics, The University of Edinburgh.
228	
229	Bioinformatic analysis
230	The microbiome helper pipeline (24) was used in this study following version 1 of the 16S
231	Bacteria and Archaea standard operating procedure from the developer. In brief, paired-end
232	reads were stitched with PEAR v0.9.6 (25). Stitched reads were filtered by quality score
233	(q=30) and length (250 bp) with the <i>read_filter.pl</i> command. Chimeric sequences were

\triangleleft	
nvironmental ology	
ed and Er Microbio	
Appli	

235	QIIME wrapper scripts version 1.9.1 was used for OTU classification (28). SortMeRNA v2.1b
236	(29) was used as the reference-based OTU picking method while SUMACLUST v1
237	https://git.metabarcoding.org/obitools/sumaclust/wikis/home/) was used for the <i>de novo</i>
238	OTU picking method. Samples were rarefied by using the lowest number of reads from any
239	sample in the analysis excluding negative control samples. Finally, OTU tables were
240	generated in BIOM format for diversity analysis and abundance comparison with R version
241	3.4.2. Non-Metric Multidimensional Scaling (NMDS) plots were constructed using Bray-
242	Curtis dissimilarity values and statistical analyses comparing the distance of bacterial
243	community compositions between groups were performed using the adonis function in R,
244	which is part of the vegan package (31). Comparisons of bacterial abundance were
245	calculated with analysis of composition of microbiomes (ANCOM) (32). Data visualization
246	was performed with the ggplot2 package (33). P values \leq 0.05 were taken to be significant.
247	
248	Accession number(s).
249	Sequencing reads can be accessed in the European Nucleotide Archive under accession
250	number PRJEB35577.
251	
252	Results
253	
254	Reciprocal transfer of caecal microbiota from resistant or susceptible inbred lines does not
255	confer the phenotype against <i>C. jejuni</i> colonization.
256	We hypothesised that differential resistance of inbred lines 6_1 and N to C. jejuni
257	colonization will be associated with variation in indigenous microbiota at a key site of
258	persistence, and that heterologous transplants of caecal microbiota would transfer

259	susceptibility (microbiota from line N into line 6_1) or resistance (microbiota from line 6_1 into
260	line N) to Campylobacter challenge. Caecal microbiota was pooled from five donor birds of
261	each line at 21 days of age. Following homologous or heterologous administration of caecal
262	contents from the donor birds to day of hatch recipient chicks, 4 recipient birds were
263	sampled from each group at 1, 7 and 21 days post-hatch and on day 21, the remaining 10
264	birds from each group were challenged with 10 ⁴ CFU of <i>C. jejuni</i> 11168H as described in
265	Materials and Methods. The data presented derive from a single study of this design.
266	In birds of each line given homologous caecal microbiota, the previously described
267	differences in <i>C. jejuni</i> colonization were reproduced (Figure 1). A mean of 1.3 x 10 ⁷ CFU/g
268	caecal contents was detected in susceptible line N birds given line N microbiota, whereas for
269	resistant line 6_1 birds given line 6_1 microbiota, no Campylobacter was isolated at the limit of
270	detection by direct plating (2 \log_{10} CFU/g). In the groups that received heterologous
271	microbiota, none of line 6_1 birds given microbiota from susceptible line N were colonized at
272	the limit of detection (Figure 1). In birds of line N given microbiota from the resistant line 6_1 ,
273	a mean of 2.1 x 10^8 CFU/g caecal contents was detected, which represents a statistically
274	significant increase compared to the birds of the same line which received homologous
275	microbiota (Figure 1; $P = 0.002$).
276	
277	The global composition of the caecal microbiota of donor birds varying in Campylobacter
278	resistance is not significantly different but line-specific OTUs exist
279	From a total of 106 samples (including positive and negative controls) in this experiment,
280	a total of 23,065,560 reads were sequenced on the Illumina Miseq platform. After quality
281	filtering and the chimeric reads removal step, there were 9,911,881 reads from all caecal

282 content samples that passed through the OTUs classification step. The average number of

283	reads per caecal sample was 101,620 \pm 46,029. All samples were rarefied at 43,808 reads. In
284	the mock bacterial population control sample used as the DNA extraction control, we
285	obtained on average 11.15 % (\pm 7.97 %) abundance of the six bacterial species and
286	Enterobacteriaceae were present at 31 %. In the mock DNA control sample used as the
287	control for the PCR step, we obtained on average 13.24 % (\pm 5.28 %) abundance of the six
288	bacterial species and Enterobacteriaceae were present at 19 %. The relative abundance of
289	the individual bacterial species in the mock controls is given in Supplementary Table 1.
290	While we observed some differences between the observed and the expected mock
291	community compositions, any biases are likely to be consistent across samples.
292	Furthermore, while Listeria was under-represented in the PCR control sample, it is not
293	anticipated to be a major genus in the intestinal microbiota of chickens.
294	The total number of OTUs generated from the classification step was 1,297 OTUs (from
295	all caecal and positive control samples). The average number of OTUs from caecal samples
296	was 662 OTUs per sample. This compares favourably to independent analysis of microbial
297	diversity in broiler chicken caeca (34; 35) Using a non-metric multidimensional scaling
298	(NMDS) plot to compare the caecal microbiota obtained from donor lines 6_1andN at 21
299	days of age, no significant difference was observed between them (Figure 2; $P = 0.061$ by
300	the adonis test). The caecal bacterial communities of the donor birds were dominated by
301	the phylum Firmicutes (Figure 3). At family level, unknown families in the orders
302	Clostridiales and Ruminococcaceae dominated in both chicken lines (Figure 3). However, a
303	comparison of bacterial abundance between lines at the level of individual OTUs using the
304	analysis of composition of microbiomes method (ANCOM) revealed three significantly
305	different OTUs between the lines from the <i>Ruminococcaceae</i> family (<i>P</i> values < 0.05). One
306	OTU in the genus Oscillospira was present at a mean of 146 ± 64 reads in caecal microbiota

13

Applied and Environmental

lied and Environmental

Microbiology

Microbiology

from resistant line 6_1 donor birds but was completely absent from susceptible donor birds of line N. An OTU of an unclassified genus was found to be significantly more abundant in line N while another OTU of an unclassified genus was found to be significantly more abundant in line 61.

Age rather than the origin of transplanted microbiota had a dominant effect on the caecal 313 microbial communities studied

314 We next investigated whether microbiota transplants influenced the composition of the 315 caecal microbiota over time. The NMDS plot in Figure 4 indicates that age rather than the 316 treatment received was the major factor that influenced the caecal microbiome. The 317 microbiota of day-old birds clustered separately from 21- and 30-day-old birds, with the 7-318 day-old birds showing an intermediate clustering (*P* values ≤ 0.001 at all time intervals 319 studied). At family and phylum levels, no significant differences were detected between the 320 microbial communities found in the caeca of line 61 or N birds given homologous or 321 heterologous microbiota over time (Figure 5). The microbiota of chickens at 1 day post-322 transplant had a lower diversity of bacteria and was mainly dominated by the phylum 323 Proteobacteria (Figure 5). At day 1 post-transplant the microbiota clustered separately from 324 that of donor chickens (Figure 4), which was dominated by the *Firmicutes* phylum (Figure 5). 325 Within this phylum, the Enterobacteriaceae family dominated at 1 day post-transplant 326 (Figure 5). The analysis pipeline used in this study was not able to identify the bacteria to 327 the species level; however, nucleotide sequence alignments using BLAST searches with 328 representative sequences of this OTU indicated that the dominant bacterium at 1 day post-329 transplant was *Escherichia coli*. The intermediate phenotype of 7-day-old chickens was 330 largely a consequence of the presence of bacteria in the *Bacillaceae* family (Figure 5).

331	To further investigate the stability of the transplanted microbiota we used a multivariate
332	comparison of all the treatment groups at each time-point separately to determine if the
333	origin of the transplant or recipient line contributed significantly to the clustering of the
334	microbiota. This analysis revealed that the donor transplant had some effect on the
335	composition of the microbiota, but not at all time-points studied (Figure 6). Using the adonis
336	test, the origin of transplant influenced the caecal microbiota of 1 day-old recipient chickens
337	but the genotype of the recipient did not ($P = 0.007$ and 0.071, respectively). At 7 days of
338	age, neither transplanted bacteria nor the genotype of the recipient birds had a significant
339	effect on the caecal microbiota of the recipient ($P = 0.068$ and 0.232, respectively), possibly
340	owing to the low number of birds sampled at each of the first three time-points. After 21
341	days of age, the genotype of the recipient significantly affected the caecal microbiota of the
342	recipient ($P = 0.002$ and 0.001 at 21- and 30-days-old, respectively). The transplanted
343	microbiota did not affect the caecal microbiota at 21-days of age (<i>P</i> = 0.261), but had a
344	significant effect in the 30-day-old recipients ($P = 0.012$).
345	Lastly, because we observed significant effects of the transplant at some time intervals
346	(Figure 6), but the average bacterial abundance at phylum and family levels was not
347	statistically different (Figure 5), we investigated whether the microbiota transplants
348	changed the relative abundance in the recipient birds of the same OTUs which we identified
349	to be significantly different in donor birds. An OTU in an unknown genus of
350	Ruminococcaceae was more abundant in the donor birds of line N (Figure 7A); an OTU from
351	unknown genus of Ruminococcaceae was significantly more abundant in the donor birds of
352	line 6 ₁ (Figure 7B); and an OTU in the genus <i>Oscillospira</i> was significantly more abundant in
353	the donor birds of line 6_1 (Figure 7C). The abundance of these OTUs per line following
354	homologous or heterologous microbiota transplants was determined using ANCOM analysis.

AEM

355	We found that these OTUs did not show significant differences when compared between
356	recipient lines or donor bacteria at 1 or 7 days post-transplant (Figure 7). The only
357	significant effect was that of the genotype of the recipient line at both 21 and 30 days of age
358	(Figure 7). This suggest that the transplanted bacteria may have only been able to persist in
359	the recipient birds for a limited period of time.
360	At the level of individual OTUs we also examined the relative abundance of
361	Campylobacter (Figure 8). Sequence reads corresponding to Campylobacter OTUs were only
362	detected in the susceptible line N birds and, within this line, the birds which received the
363	heterologous microbiota transplant had significantly higher abundance of Campylobacter
364	compared to the birds which received homologous microbiota (Figure 8; $P < 0.05$),
365	consistent with the bacterial counts detected (Figure 1).
366	
367	Discussion
367 368	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no
367 368 369	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the
367 368 369 370	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal
367 368 369 370 371	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal microbiota can play a role in resistance to enteric pathogens in mice (16), chickens (14; 19)
367 368 369 370 371 372	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal microbiota can play a role in resistance to enteric pathogens in mice (16), chickens (14; 19) and pigs (36). Consequently, we investigated the contribution of caecal microbiota to the
367 368 369 370 371 372 373	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal microbiota can play a role in resistance to enteric pathogens in mice (16), chickens (14; 19) and pigs (36). Consequently, we investigated the contribution of caecal microbiota to the differential resistance of inbred chicken lines 6 ₁ and N to colonization by <i>C. jejuni</i> , which
367 368 369 370 371 372 373 374	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal microbiota can play a role in resistance to enteric pathogens in mice (16), chickens (14; 19) and pigs (36). Consequently, we investigated the contribution of caecal microbiota to the differential resistance of inbred chicken lines 6 ₁ and N to colonization by <i>C. jejuni</i> , which have been demonstrated by experimental inoculation with several <i>C. jejuni</i> strains (6; 7).
367 368 369 370 371 372 373 374 375	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal microbiota can play a role in resistance to enteric pathogens in mice (16), chickens (14; 19) and pigs (36). Consequently, we investigated the contribution of caecal microbiota to the differential resistance of inbred chicken lines 6 ₁ and N to colonization by <i>C. jejuni</i> , which have been demonstrated by experimental inoculation with several <i>C. jejuni</i> strains (6; 7). The same lines also differ in resistance to enteric carriage of <i>S</i> . Typhimurium in the same
367 368 369 370 371 372 373 374 375 376	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal microbiota can play a role in resistance to enteric pathogens in mice (16), chickens (14; 19) and pigs (36). Consequently, we investigated the contribution of caecal microbiota to the differential resistance of inbred chicken lines 6 ₁ and N to colonization by <i>C. jejuni</i> , which have been demonstrated by experimental inoculation with several <i>C. jejuni</i> strains (6; 7). The same lines also differ in resistance to enteric carriage of <i>S</i> . Typhimurium in the same direction (22) and we reasoned that differences in their microbiota may contribute to this.
367 368 369 370 371 372 373 374 375 376 377	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal microbiota can play a role in resistance to enteric pathogens in mice (16), chickens (14; 19) and pigs (36). Consequently, we investigated the contribution of caecal microbiota to the differential resistance of inbred chicken lines 6 ₁ and N to colonization by <i>C. jejuni</i> , which have been demonstrated by experimental inoculation with several <i>C. jejuni</i> strains (6; 7). The same lines also differ in resistance to enteric carriage of <i>S</i> . Typhimurium in the same direction (22) and we reasoned that differences in their microbiota may contribute to this. To this end, we performed homologous and heterologous microbiota transplants between
367 368 369 370 371 372 373 374 375 376 377 378	Discussion Control of <i>Campylobacter</i> infections in poultry remain challenging and, to date, no methods for effective control at the farm level have been developed, other than the application of stringent biosecurity. Previous literature has demonstrated that the intestinal microbiota can play a role in resistance to enteric pathogens in mice (16), chickens (14; 19) and pigs (36). Consequently, we investigated the contribution of caecal microbiota to the differential resistance of inbred chicken lines 6 ₁ and N to colonization by <i>C. jejuni</i> , which have been demonstrated by experimental inoculation with several <i>C. jejuni</i> strains (6; 7). The same lines also differ in resistance to enteric carriage of <i>S</i> . Typhimurium in the same direction (22) and we reasoned that differences in their microbiota may contribute to this. To this end, we performed homologous and heterologous microbiota transplants between these two lines of chickens, followed by inoculation with a dose per bird of 10 ⁴ CFU of <i>C</i> .

AEM

379	Jejuni 11168H. Contrary to a precedent in the interature which described resistance to
380	Citrobacter being transferable between strains of inbred mice following transfer of faecal
381	microbiota (16), we observed a significant increase in susceptibility of line N to C. jejuni
382	following the transfer of caecal microbiota from resistant line 6_1 birds (Figures 1 and 8). The
383	underlying basis of this effect will require repetition and further investigation.
384	The colonization phenotypes observed following heterologous transfer of microbiota are
385	to be interpreted in the context of 16S rDNA amplicon analysis. This revealed no statistically
386	significant difference in the clustering of the microbiota of the donor birds, albeit visually
387	there appeared to be separation of the microbiota of the two lines by principal component
388	analysis plots (Figure 2). It is possible that if we had sampled more birds of each line
389	differences at the level of the global community, phyla or families may have become
390	significant. A similar separation of caecal microbial communities by the recipient line was
391	detected (Figure 6), which was significantly different at the latter two time-points, possibly
392	owing to the higher number of birds analysed. As we only examined C. jejuni colonization of
393	the caeca of lines 6_1 and N for parity with preceding studies (6, 7), we cannot preclude the
394	possibility that microbial transplants may have affected faecal excretion of Campylobacter
395	and bird-to-bird transmission, as was reported to be significantly impaired following faecal
396	microbiota transplantation in a seeder-bird challenge model up to a typical slaughter age of
397	broiler chickens (19).
398	It could be argued that the microbiota transplant did not successfully establish in the
399	recipient birds as no significant differences were observed at the level of the entire
400	microbiome after the transplant (Figure 5). However, when dissected across the time-
401	course, the microbiota transplant did exert a significant effect on the microbiota of the

.

....

402 recipient birds (Figure 6), albeit later in the experiment the line of recipient birds had a

403	larger influence. RNA sequencing analysis using caecal mucosa from these two chicken lines
404	supports the notion that bird genetics have the greatest influence on C. jejuni colonization
405	as we observed the largest number of differences in gene expression between uninfected
406	birds of the two lines, with the expression of relatively few additional genes affected by
407	Campylobacter infection (Russell KM, Smith J, Bremner A, Chintoan-Uta C, Vervelde L, Psifidi
408	A and Stevens MP submitted for publication). Previous experiments have made similar
409	observations, with the line of chickens being described as one of the main factors which
410	influences the intestinal microbiota (35). While we detected some significant differences in
411	the prevalence of specific OTUs between donor birds, we could not conclusively
412	demonstrate the early transfer of these OTUs in reciprocal transplants, albeit we did
413	observe these OTUs to be present in similar proportions to donor birds in recipient birds of
414	the same line later following inoculation (Figure 7). Alternatively, given the delay in
415	observing this phenotype, it is possible that these OTUs were differentially selected from
416	the environment by each recipient line, as with increasing age bird line exerted a stronger
417	effect on the microbiota composition.
418	We observed that the age of birds has a large effect on the composition of the
419	microbiota. At one day post-hatch, irrespective of the origin and composition of donor
420	microbiota, we observed a large population of Proteobacteria (and more specifically E. coli)
421	in the caeca. By one week following inoculation with microbiota Firmicutes dominate the
422	caeca. Similar observations were reported in other microbiota studies in chickens (37; 38). It
423	is not known what causes this proliferation of <i>E. coli</i> in neonatal chicks but it may plausibly
424	be linked to the susceptibility of neonatal chickens to colibacillosis, which is widely
425	recognised as a key cause of mortality of chicks in hatcheries and soon after placement (39).
426	A large influence of the age of the chickens on the composition of their microbiota was also

AFM

446

reported in relation to colonisation by *C. jejuni* (15) and was identified via meta-analysis of
available datasets (40).

429 Our study determined that, at least in the case of these two particular inbred chicken 430 lines under our experimental conditions, the microbiota does not play a major role in their 431 differential resistance to *Campylobacter* colonization and that the transplantation of the 432 microbiota from resistant to susceptible birds may not be a viable control strategy. Recent 433 evidence in mice (41) highlights variability in the effect of the transplant when using 434 recipient mice of different ages. Indeed, it has been reported that while faecal microbiota 435 transfer reduced C. jejuni colonization and transmission when given to neonatal chicks, it 436 had little impact when administration was delayed to day 7 of age (19). The observations of 437 these authors indicates that the concept of microbiota transplantation has merit, however, 438 while they found the microbiota of recipients to be affected by the transplant, they too 439 observed expansion of OTUs that were not a major component of the transplanted material 440 (e.g. Lactobacilli; 19). This may indicate that the transplant changes the gut environment to 441 favour other microbes, as much as transfer them directly. Such changes may account for the 442 significant increase in C. jejuni colonisation in the susceptible line following transplant of 443 caecal contents from the resistant line. Where future studies reliably detect protective 444 effects, they may therefore need to consider impacts on metabolites and the mucosal 445 immune system, not just the microbes present per se.

We gratefully acknowledge the support of the Biotechnology & Biological Sciences Research
Council (Institute Strategic Programmes BBS/E/D/20002172 and BBS/E/D/30002276, and
Core Capability Grant in support of the National Avian Research Facility) and Scottish

AEM

Applied and Environmental Microbiology 451

452	programme of research for 2016-2021.
453	
454	References
455	1. Anon. 2017. Zoonoses report UK 2017.
456	https://www.gov.uk/government/publications/zoonoses-uk-annual-reports
457	
458	2. Tam CC, O'Brien SJ (2016) Economic cost of Campylobacter, norovirus and rotavirus
459	disease in the United Kingdom. PLoS ONE. 11(2): e0138526
460	
461	3. Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR, Gray JJ, Letley LH, Rait G,
462	Tompkins DS, O'Brien SJ and ID2 Study Executive Committee. 2012. Longitudinal study of
463	infectious intestinal disease in the UK (IID2 study): incidence in the community and
464	presenting to general practice. Gut. 61(1): 69-77
465	
466	4. EFSA Panel on Biological Hazards (BIOHAZ). 2011. Scientific opinion on Campylobacter in
467	broiler meat production: control options and performance objectives and/or targets at
468	different stages of the food chain. EFSA J. 9: 2105.
469	
470	5. Johnson TJ, Shank JM and Johnson JG. 2017. Current and potential treatments for
471	reducing Campylobacter colonisation in animal hosts and disease in humans. Front
472	Microbiol. 8: 487.

Government funding via the Rural & Environmental Science and Analytical Services

6. Boyd Y, Herbert EG, Marston KL, Jones MA, Barrow PA. 2005. Host genes affect intestinal
colonisation of newly hatched chickens by *Campylobacter jejuni*. *Immunogenetics*. 57: 24853.

478 7. Psifidi A, Fife M, Howell J, Matika O, van Diemen PM, Kuo R, Smith J, Hocking PM, Salmon
479 N, Jones MA, Hume DA, Banos G, Stevens MP and Kaiser P. 2016. The genomic architecture
480 of resistance to *Campylobacter jejuni* intestinal colonisation in chickens. *BMC Genomics*. 17:
481 293.

482

483 8. Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, He H and Zhou H. 2010.

484 Gene expression profiling of the local cecal response of genetic chicken lines that differ in

9. Li XY, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, He H, Pevzner IY and

485 their susceptibility to *Campylobacter jejuni* colonization. PLoS One. 5: e11827.

486

487

Zhou HJ. 2011. Caecal transcriptome analysis of colonized and non-colonized chickens
within two genetic lines that differ in caecal colonization by *Campylobacter jejuni. Anim Genet.* 42: 491-500.
10. Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, He H, McCarthy FM,
Burgess SC, Pevzner IY and Zhou H. 2012. Systemic response to *Campylobacter jejuni*infection by profiling gene transcription in the spleens of two genetic lines of chickens. *Immunogenetics.* 64: 59-69.

AEM

497	11. Bailey RA, Kranis A, Psifidi A, Watson KA, Rothwell L, Hocking PM, Kaiser P, Stevens MP
498	and Avendano S. 2018. Colonization of a commercial broiler line by Campylobacter is under
499	limited genetic control and does not significantly impair performance or intestinal health.
500	Poul Sci. 97: 4167-4176.
501	
502	12. O'Loughlin J, Samuelson DR, Braundmeier-Fleming AG, White BA, Haldorson GJ, Stone
503	JB, Lessman JJ, Eucker TP and Konkel ME. 2015. The intestinal microbiota influences
504	Campylobacter jejuni colonization and extraintestinal dissemination in mice. App Environ
505	Microbiol. 81: 4642-4650.
506	
507	13. Sun X, Winglee K, Gharaibeh RZ, Gauthier J, He Z, Tripathi P, Avram D, Bruner S, Fodor A
508	and Jobin C. 2018. Microbiota-derived metabolic factors reduce campylobacteriosis in mice.
509	Gastroenterology. 154: 1751-1763.
510	
511	14. Han Z, Willer T, Pielsticker C, Rychlik I, Velge P, Kaspers B and Rautenschlein S. 2017.
512	Influence of the gut microbiota composition on Campylobacter jejuni colonization in
513	chickens. <i>Infect Immun.</i> 85: e00380-17.
514	
515	15. Connerton P, Richards PJ, Lafontaine GM, O'Kane PM, Ghaffar N, Cummings NJ, Smith
516	DL, Fish NM and Connerton IF. 2018. The effect of the timing of exposure to Campylobacter
517	<i>jejuni</i> on the gut microbiome and inflammatory responses of broiler chickens. <i>Microbiome</i> .
518	6: 88.
519	

AEM

520	16. Willing BP, Vacharaksa A, Croxen M, Thanachayanont T and Finlay BB. 2011. Altering
521	host resistance to infections through microbial transplantation. <i>PLoS ONE</i> . 6: e26988.
522	
523	17. Bakken JS, Borody T, Brandt JL, Brill JV, Demarco DC, Franzos MA, Kelly C, Khoruts A,
524	Louise T, Martinelli LP, Moore TA, Russell G and Surawicz C. 2011. Treating Clostridium
525	difficile infection with faecal microbiota transplant. Clin Gastroenterol and Hepatol. 9: 1044-
526	1049.
527	
528	18. Brandt JL, Aroniadis OC, Mellow M, Kanatzar A, Kelly C, Park T, Stollman N, Rohlke F and
529	Surawicz C. 2012. Long-term follow-up of colonoscopic faecal microbiota transplant for
530	recurrent Clostridium difficile infection. Am J Gastroenterol. 107: 1079-1087.
531	
532	19. Gilroy R, Chaloner G, Wedley A, Lacharme-Lora L, Jopson S and Wigley P. 2018.
533	Campylobacter jejuni transmission and colonisation in broiler chickens is inhibited by faecal
534	microbiota transplantation. <i>BioRxiv</i> . Pre-print. DOI: https://doi.org/10.1101/476119.
535	
536	20. Pascoe B, Williams LK, Calland JK, Meric G, Hitchings MD, Dyer M, Ryder J, Shaw S, Lopes
537	BS, Chintoan-Uta C, Allan E, Vidal A, Fearnley C, Everest P, Pachebat JA, Cogan TA, Stevens
538	MP, Humphrey TJ, Wilkinson TS, Cody AJ, Colles FM, Jolley KA, Maiden MCJ, Strachan N,
539	Pearson BM, Linton D, Wren BW, Parkhill J, Kelly DJ, van Vliet AHM, Forbes KJ, Sheppard SK.
540	2019. Domestication of Campylobacter jejuni NCTC 11168. Microb Genom. 5.
541	
542	21. Waters NF. 1945. Breeding for resistance and susceptibility to avian lymphomatosis.
543	Poult Sci. 24:259-269.

AEM

545	22. Fife MS, Howell JS, Salmon N, Hocking PM, van Diemen PM, Jones MA, Stevens MP and
546	Kaiser P. 2011. Genome-wide SNP analysis identifies major QTL for Salmonella colonization
547	in the chicken. Anim Genet. 42: 134-40.
548	
549	23. Kozich JJ, Westcott SL, Baxter TT, Highlander SK and Schloss PD. 2013. Development of a
550	dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data
551	on the MiSeq Illumina sequencing platform. App Environ Microbiol. 79: 5112-5120.
552	
553	24. Comeau AM, Douglas GM, and Langille MGI. 2017. Microbiome Helper: a custom and
554	streamlined workflow for microbiome research. mSystems. 2:e00127-16
555	
556	25. Zhang J, Kobert K, Flouri T and Stamatakis A. 2014. PEAR: a fast and accurate Illumina
557	Paired-End reAd mergeR. Bioinformatics. 30: 614-620.
558	
559	26. Rognes T, Flouri T, Nichols B, Quince C and Mahé, F. 2016. VSEARCH: a versatile open
560	source tool for metagenomics. <i>PeerJ</i> . 4: e2584.
561	
562	27. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske
563	CR and Tiedje JM. 2014. Ribosomal Database Project: data and tools for high throughput
564	rRNA analysis. Nucleic Acids Res. 42(Database issue), D633–D642.
565	
566	28. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N,
567	Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE,

AEM

568	Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ,
569	Walters WA, Widmann J, Yatsunenko T, Zaneveld J and Knight R. 2010. QIIME allows analysis
570	of high-throughput community sequencing data. Nat Methods. 7: 335-6.
571	
572	29. Kopylova E, Noé L and Touzet H. 2012. SortMeRNA: fast and accurate filtering of
573	ribosomal RNAs in metatranscriptomic data. <i>Bioinformatics</i> . 28: 3211-3217.
574	
575	30. Mercier C, Boyer F, Bonin A and Coissac E. 2013. SUMATRA and SUMACLUST: fast and
576	exact comparison and clustering of sequences. In: Programs and Abstracts of the SeqBio
577	2013 workshop (Abstract), GdRBIM and gdrIM, Montpellier, France.
578	
579	31. Dixon P. 2003. VEGAN, a package of R functions for community ecology. J Veg Sci. 14:
580	927-930.
581	
582	32. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R and Peddada SD. 2015.
583	Analysis of composition of microbiomes: a novel method for studying microbial
584	composition. Microb Ecol Health Dis. 26: 27663.
585	
586	33. Wickham H. 2016. ggplot2, elegant graphics for data analysis. Springer International
587	Publishing.
588	
589	34. Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW and Pallen MJ. 2014.
590	Extensive microbial and functional diversity within the chicken cecal microbiome. <i>PLoS One</i> .
591	9: e91941.

592	
593	35. Pandit RJ, Hinsu AT, Patel NV, Koringa PG, Jakhesara SJ, Thakkar JR, Shah TM, Limon G,
594	Psifidi A, Guitian J, Hume DA, Tomley FM, Rank DN, Raman M, Tirumurugaan KG, Blake DP
595	and Joshi CG. 2018. Microbial diversity and community composition of caecal microbiota in
596	commercial and indigenous Indian chickens determined using 16s rDNA amplicon
597	sequencing. BMC Microbiome. 6: 115.
598	
599	36. Niederwerder MC, Constance LA, Rowland RRR, Abbas W, Fernando SC, Potter ML,
600	Sheahan MA, Burkey TE, Hesse RA and Cino-Ozuna AG. 2018. Fecal microbiota
601	transplantation is associated with reduced morbidity and mortality in porcine circovirus
602	associated disease. Front Microbiol. 9: 1631.
603	
604	37. Johnson TJ, Youmans BP, Noll S, Cardrona C, Evans NP. Karnezos P, Ngunjiri JM, Abundo
605	MC and Lee CW. 2018. A consistent and predictable commercial broiler chicken bacterial
606	microbiota in antibiotic-free production displays strong correlations with performance. App
607	Environ Microbiol. 84: e00362-18.
608	
609	38. Jurburg SD, Brouwer MSM, Ceccarelli D, van der Goot J, Jansman AJM and Bossers A.
610	2019. Patterns of community assembly in the developing chicken microbiome reveal rapid
611	primary succession. Microbiology Open. e821.
612	
613	39. Kemmett K, Williams NJ, Chaloner S, Humphrey P, Wigley P and Humphrey T. 2014. The
614	contribution of systemic E. coli infection to the early mortalities of commercial broiler
615	chickens. Avian Pathol. 43: 37-42.
	20

616

617	40. Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Stegeman JA and Smidt H. 2018. Host and
618	environmental factors affecting the intestinal microbiota in chickens. Front Microbiol. 9:
619	235.
620	
621	41. Le Roy T, Debedat J, Marquet F, Da-Cunha C, Ichou F, Guerre-Millo M, Kapel N, Aron-
622	Wisniewsky J and Clement K. 2019. Comparative evaluation of microbiota engraftment
623	following faecal microbiota transfer in mice models: age, kinetics and microbial status
624	matter. Front Microbiol. 9: 3289.
625	

Downloaded from http://aem.asm.org/ on February 10, 2020 at 67683460

627

Accepted Manuscript Posted Online

628	Figure 1. Transfer of caecal microbiota between inbred lines $\mathbf{6_1}$ and N is not protective
629	against C. jejuni colonization. Chickens were given homologous or heterologous caecal
630	microbiota from 3-week-old donor birds on the day of hatch and infected with 10^4 CFU of C.
631	jejuni 11168H at 21 days post-transplant. Ten chickens were sampled in each group at 9
632	days post-infection and significant differences were identified using a one-way two-sided
633	ANOVA (Minitab, UK). Birds from line N which received microbiota from line 6_1 had a
634	significantly higher number of caecal C. jejuni compared to the line N birds that received line
635	N microbiota (P <0.05; asterisk). For groups noted on the X axis, the first letter denotes the
636	recipient line and the second letter denotes the donor line.
637	
638	Figure 2. Caecal microbial communities of donor birds of inbred lines that exhibit heritable
639	differences in resistance to C. jejuni colonisation are not significantly different. The figure
640	shows a non-metric multidimensional scaling (NMDS) plot of the caecal microbiota from the
641	5 donor chickens of each line 6_1 and N at 21 days of age. While spatially the two lines
642	clustered separately, there was no statistically significant difference between the microbiota
643	of the two lines of chickens when investigated using the adonis test ($P = 0.061$).
644	
645	Figure 3. The bacterial composition of the caecal microbiota of 21-day-old donor chickens
646	of lines 61 and N is dominated by <i>Firmicutes</i> at phylum level and <i>Ruminococacceae</i> and an
647	unknown family in the order Clostridiales at family level. Five birds were sampled in each

649 post-sequencing. The overall composition of the microbiota was not significantly different650 between the two lines.

651

652 Figure 4. Composition of the caecal microbiota of the recipients of transplants was 653 primarily determined by the age of birds rather than the treatment received. The NMDS 654 plot shows the clustering of caecal samples by bacterial community composition for all 655 recipient chickens, grouped by age (12-16 birds were sampled at days 1, 7 and 21 and 40 656 birds at day 30), and for donor chickens (10 birds sampled at 21 days of age). Samples from 657 all ages were found to cluster separately by the adonis test ($P \leq 0.001$). The Bray-Curtis 658 dissimilarity values were used to calculate the dissimilarity between samples. 659 660 Figure 5. Caecal microbiota of lines 61 and N that received homologous or heterologous 661 microbiota transplants are not significantly different. No significant differences were 662 detected in the average bacterial abundance at phylum (A) or family (B) level in the caecal 663 microbiota of inbred lines 61 and N given a homologous or heterologous microbiota 664 transplant. Five birds were sampled per group for the donor birds, 2-4 birds per group at 665 days 1, 7 and 21 and 10 birds per group at day 30. For groups noted on the X axis, the first 666 letter denotes the recipient line and the second letter denotes the donor line. 667 Figure 6. Caecal microbiota transplants influenced the composition of the microbiota early 668 669 in the experiment, but bird line had a dominant effect with increasing age. NMDS plot of 670 gut microbiota at each time point: day 1 - top left, day 7 - top right, day 21 - bottom left, day 671 30 - bottom right. P values for the effect of the transplant or the bird line were obtained 672 using the adonis test and are presented within boxes on each plot.

673

674	Figure 7. The abundance of specific OTUs in donor microbiota and in caeca following
675	homologous or heterologous transplants. (A) Unknown genus in the Ruminococcaceae
676	family. (B) A different unknown genus in the Ruminococcaceae family. (C) The genus
677	Oscillospira. Differences were investigated using ANCOM, P value for all comparisons is
678	<0.05 (asterisks). For groups noted on the X axis, the first letter denotes the recipient line
679	and the second letter denotes the donor line.
680	
681	Figure 8. The abundance of Campylobacter detected by direct plating on mCCDA was
682	validated by the abundance of OTUs detecting by sequencing. The graphs shows the
683	abundance of sequence reads corresponding to the OTU for the genus Campylobacter
684	across all groups. Ten birds were sampled per group at day 30 of age. Significant differences

685 were identified using a one-way two-sided ANOVA (Minitab, UK). Birds from line N which

received microflora from line 6_1 had a significantly higher number of reads compared to the

687 other three group (P < 0.05). Only the difference between the N/6 and N/N groups is shown

688 on the graph (*). For groups noted on the X axis, the first letter denotes the recipient line

and the second letter denotes the donor line.

Downloaded from http://aem.asm.org/ on February 10, 2020 at 67683460

Figure 1

Downloaded from http://aem.asm.org/ on February 10, 2020 at 67683460

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7a

Figure 7b

Figure 7c

Figure 8

