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Abstract

Purpose of Review Biomedicine is witnessing a paradigm shift in the way complex disorders are investigated. In particular, the
need for big data interpretation has led to the development of pipelines that require the cooperation of different fields of expertise,
including medicine, functional biology, informatics, mathematics and systems biology. This review sits at the crossroad of
different disciplines and surveys the recent developments in the use of graph theory (in the form of network analysis) to interpret
large and different datasets in the context of complex neurodegenerative diseases. It aims at a professional audience with different
backgrounds.

Recent Findings Biomedicine has entered the era of big data, and this is actively changing the way we approach and perform
research. The increase in size and power of biomedical studies has led to the establishment of multi-centre, international working
groups coordinating open access platforms for data generation, storage and analysis. Particularly, pipelines for data interpretation
are under development, and network analysis is gaining momentum since it represents a versatile approach to study complex
systems made of interconnected multiple players.

Summary We will describe the era of big data in biomedicine and survey the major freely accessible multi-omics datasets. We
will then introduce the principles of graph theory and provide examples of network analysis applied to the interpretation of
complex neurodegenerative disorders.

Keywords Complex neurodegeneration - Network analysis - Protein-protein interactions - GWAS loci - Omics data - Data
integration - Gene co-expression

Introduction high resolution genomics data as genotyping arrays and next
generation sequencing (NGS, whole genome [WGS] or whole
During the past decade, the field of human genetics has  exome sequencing [WES]) have become time- and cost-effective
witnessed massive global improvements in the generation of  techniques to assist the genetic study of health and disease [1].
Similarly, transcriptomics and proteomics (and also epigenomics
and metabolomics) studies have benefited from rapid advance-
This article is part of the Topical Collection on Bioinformatics ments in the technologies and methods for data generation and
analysis [2¢]. Alongside, bioinformatics tools and pipelines that
are accessible and shared throughout the wider scientific com-
munity, together with ever improving computational environ-
Patrick A. Lewis mggts, have sppported an exppnentigl growth in big data avail-
plewis@rve.ac.uk ability for basic and applied biomedical research [3ee].
We are currently—probably for the first time in medical
history—facing a paradoxical “abundance problem”, i.e. having
more data at hand than we can ever interpret and effectively
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(classical) and holistic (novel) approaches cannot be treated as
separate fields anymore and need to be considered on a conver-
gent and cross-supportive path where systems biology, compu-
tational modelling, mathematics and informatics play a critical
role [5°].

In the era of big data, it has become increasingly clear that
advances can only result from collective efforts and data shar-
ing [6]. Biomedicine has thus seen the rise of consortia, large-
scale (mainly international) efforts aimed at sharing resources,
maximizing both sample collection and data generation and
harmonizing analytical strategies. In the field of neurodegen-
eration examples include the International Genomics of
Alzheimer’s Project (IGAP, http://web.pasteur-lille.fr/en/
recherche/u744/igap/igap _download.php), the International
Parkinson’s Disease Genomics Consortium (IPDGC, https://
pdgenetics.org) and the International Frontotemporal
Dementia Genomics Consortium (IFGC, https://
ifgesite.wordpress.com). These large-scale collaborative ef-
forts are paving the way for a coherent understanding of the
molecular mechanisms of complex neurodegenerative dis-
eases. More in general, “resource” consortia together with
international working committees and open access databases
have been set up to promote international collaborations, stan-
dardize nomenclature, data storage and sharing in line with the
highest standards and best practices (Table 1).

Complex Neurodegeneration and Network
Analysis

In monogenic disorders, a mutation with high effect size in a
specific gene that acts as pathogenic trigger and disease mech-
anism can be (directly) inferred through the functional analy-
sis of that single mutated gene.

In the case of complex diseases, multiple genetic markers with
small effect size contribute all together to the trait. In complex
neurodegenerative diseases, the genetic component for the ma-
jority of cases (sporadic) is indeed defined by a plethora of var-
iants, i.e. genetic architecture of disease, priming the individual to
develop disease at a certain stage of life [30]. In a minority of
complex neurodegeneration cases (familial), mutations in single
genes are isolated. Even if these mutations hold strong causative
effects, modifiers within the genetic architecture can modulate
disease onset and progression. Reports of PSENI mutation car-
riers who are resistant to or show a delayed onset for Alzheimer’s
disease (AD) due to their APOE genotype [31, 32] as well as the
non-complete penetrance of LRRK2 mutations in families affect-
ed by Parkinson’s disease (PD) [33] are examples of how seem-
ingly even monogenic cases of familial neurodegenerative dis-
eases can be indeed classified as complex disorders. In addition
to the genetic component, the environment also plays a role in
complex disease pathogenesis, acting as an additional risk factor,
e.g. inducing disease-relevant epigenetic changes and/or acting
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as disease trigger on a receptive genetic asset. The molecular
mechanisms at the basis of complex neurodegenerative diseases
are not straightforward to be read, since the genetic architecture
of risk is difficult to be modelled and requires multiple causative
markers to be analysed simultaneously (Fig. 1).

In this scenario, in silico systems biology approaches, for
example network analysis, have the potential to revolutionise
the translation of genetics information into functional under-
standing of the molecular basis of disease. The availability of
large sets of well-curated omics data and the development of
bioinformatics approaches based on graph theory are opening
up the possibility, for the first time, to study complex diseases
by simultaneously modelling the multiple genetic factors at play
with a more holistic approach by studying networks [5¢].

Networks, also called graphs, are mathematical objects that
represent multiple data as a whole. Networks are composed of
nodes (objects constituting the network) and edges (connec-
tions between those objects). One can visualize biological
networks by using freely available tools such as Cytoscape
[34] (https://cytoscape.org) and yED (https://
www.yworks.com/products/yed), and study networks through
the mathematical approaches offered by graph theory.

Transcriptomics or proteomics (both steady-state and time-
series type of data) are used for building gene co-expression
networks (GCNs) following the assumption that genes that are
co-expressed are probably co-regulated and thus part of the
same pathway [35]. The input dataset for GCNs needs to be
statistically processed (different methods have been developed
such as WGCNA, CLR, ARACNe, PCIT, GENIE3, SIRENE
and GeCON [36¢°]) to generate the co-expression information,
i.e. the relationships that are essential for building edges.

Protein interaction data, derived from a wide range of cel-
lular and biochemical model systems, can be used for building
protein-protein interaction networks (PINs). Generating PINs
is relatively straightforward considering that the relationship
between nodes and edges (i.e. protein interaction) directly
reflects the type of information contained in the original
datasets [37].

Finally, hybrid networks can be constructed by mixing dif-
ferent types of omics data. Gene regulatory networks (GRNs)
are a type of complex network where nodes can be genes,
proteins, metabolites. Pairs of nodes are connected by edges
where one of the nodes in the pair influences (via inhibition or
activation) the activity of the other [38]. The construction of
GRNS is usually performed by applying statistical approaches
based on inference algorithms (including Bayesian, artificial
neuronal, and Boolean networks, regression-based model, or-
dinal differential equation and information theory) [39, 40].
These methods are all aimed at extracting the probability of
the reciprocal regulation for all pairs of nodes within large
datasets used as input (e.g. gene expression, protein-DNA
interactions, transcription factors binding) mathematically
generating edges between nodes.
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Table 1 Open access, big data repositories
Resource Website Details Ref.
Database of Genotypes and https://www.ncbi.nlm.nih.gov/gap Catalogue of genetic datasets [7]
Phenotypes (dbGaP)
European Genome-phenome https://www.ebi.ac.uk/ega/home Catalogue of genetic datasets [8]
Archive (EGA)
GWA catalogue https://www.ebi.ac.uk/gwas Catalogue of published GWA 9]
Genome Reference Consortium https://www.ncbi.nlm.nih.gov/gre/data Controls or general population genome [10]
1000 Genomes https://www.internationalgenome.org Controls or general population human genome [11]
Exac http://exac.broadinstitute.org Controls or general population human genome [12]
GnomAD https://gnomad.broadinstitute.org Controls or general population human genome
Wellderly Controls or general population human genome [13]
NCBI https://www.ncbi.nlm.nih.gov/genome Open access genome browsers [14]
ucCsc https:/genome.ucsc.edu Open access genome browsers [14]
Ensembl https://www.ensembl.org Open access genome browsers [14]
Gene Expression Omnibus (GeO) https://www.ncbi.nlm.nih.gov/geo Comprehensive collection of transcriptomics [15]
data and gene expression
Genotype-Tissue Expression https://gtexportal.org/home/index.html Transcriptional profiles of multiple human tissues [16]
project (GTEXx)
Braineac http://www.braineac.org Transcriptional profiles of multiple human brain regions ~ [17]
The Encyclopedia of DNA Elements  https://www.encodeproject.org Catalogue of non-coding elements [18]
(ENCODE)
Functional Annotation of the http://fantom. gsc.riken.jp Catalogue of non-coding elements [19]
Mammalian Genome (FANTOM)
ROADMAP http://www.roadmapepigenomics.org Catalogue of epigenetic changes [20]
Uniprot https://www.uniprot.org Encyclopedic reference source for proteins [21]
Molecular Exchange Consortium https://www.imexconsortium.org Protein-protein interaction (PPIs) are stored in [22]
(IMEx) manually curated databases the majority of
which follow standardised guidelines for data
processing and collection as defined by IMEx
ProteomeXchange http://www.proteomexchange.org Collection of proteomics repositories [23]
Human Proteome Map https://www.humanproteomemap.org/ Comprehensive proteomics data generated in multiple [24]
human tissues
Gene Ontology (GO) http://geneontology.org Catalogue of gene associated: biological processes & [25]
molecular functions & cellular components
Online Mendelian Inheritance in https://www.omim.org Gene-disease associations [26]
Man (OMIM)
DisGeNET http://www.disgenet.org Gene-disease associations [27]
Reactome https://reactome.org Pathways repository [28]
Kyoto Enciclopedia of Genes and https://www.genome jp/kegg/pathway.html Pathways repository [29]

Genomes (KEGG pathway)

A key advantage of networks in an experimental context is
that they are mathematical objects kept together by connec-
tions (i.e. relationships) between the nodes. Therefore, net-
works include multiple players simultaneously (nodes) that
are analysed assessing their concurrent interactions within
the global structure of the graph. This type of topological
analysis is aimed at identifying relevant nodes and under-
standing how the information flows throughout the entire
structure of the network [41]. Relevant nodes are, for example,
hubs (highly connected nodes), i.c. essential genes within the
network structure [42], and bottlenecks (shortcuts), i.e. non-
essential genes that can be targeted (e.g. by drugs) to modify
the flow of information within the network [43]. Assuming

that nodes are genes and/or proteins connected in the network
through functional relationships, the information contained in
the network is a powerful aid for the prediction of disease
pathways, key functional players, candidate genes for rare
variant discovery or sites for therapeutic intervention. In this
respect, one of the underlying assumptions when doing net-
work analysis is the “guilt by association principle”; here, the
function of a node is inferred from the functions of its con-
nected nodes (neighbours) [44]. The “network parsimony
principle” summarizes another important assumption used in
network analysis, for which the shortest path across (disease)
relevant nodes is supposed to be indicative of the disease
molecular pathway. An additional approach to identify

@ Springer



Curr Genet Med Rep

Architecture of risk:
RISK BARCODE

Effect size

~

\ . Mutation

\

. Mutation

= ,g Gain of function effect si CASE 1 CASE 2 CASE 1
= ain of function effect size —
% § o0 ® ' . @ variant 2
c g O .

Q
2 5 — —Baseline - Qommon mutation A | | mutation B @ variant3
5 E @ Risk factors | @ variant 1| @ variant 4
®o 0o®o ) . .

5 variant1 J | @ variant2 | | @ variant5
:ﬁ § Loss of function effect size 1 \\‘ & S o :

J

Fig. 1 The genetic architecture of disease can be graphically schematized
by a “risk-barcode” where each line represents a risk factor that can be
either a genetic variant or an environmental exposure. Lines have
different thicknesses to represent different levels of contribution
(strength or effect size) of each single component to the final disease
risk. The principal problems in modelling the genetic architecture of
risk with classical functional approaches are due to (i) common risk

relevant regions of the network for understanding how the flux
of information moves within the graph and how this can be
modified during disease is the detection/analysis of both mo-
tifs (peculiar concatenations of nodes) [45] and modules
(representing portions of the network identified as discrete
clusters because of shared homogenous characteristics). This
lead to another network analysis principle called “local hy-
pothesis”, for which nodes involved in the same function (or
disease) tend to share interactions and cluster within the same
network module(s) [36°e, 41].

Complex Neurodegenerative Diseases: Too
Many Genes

As indicated above, in familial cases of complex neurodegen-
erative diseases, it is possible to identify mutation(s) with high
effect size in so called Mendelian gene(s). It is noteworthy that
different/multiple genes can be isolated in familial cases, and
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factors which are usually non-coding variants thus not immediately
associated with any specific gene, (i) common risk factors which have
small effect sizes (strength) that are likely to fall below the sensitivity
threshold of common functional experiments, (iii) modelling multiple risk
factors concomitantly in the same model system which has proven
challenging and sometimes impractical

that all of them contribute to the pathogenesis of the same
disease. For example, familial PD strongly associates with
mutations in at least 7 different genes [46]; in familial
frontotemporal dementia (FTD), at least 10 different mutated
genes are associated with disease (despite some of them being
extremely rare within the FTD population) [47]. It follows that
a number of challenging questions arise, i.e why do many
different (mutated) genes trigger a cascade of biological
events that lead to the same clinical phenotype? One possibil-
ity is that, despite apparent differences, there is a limited num-
ber of common functions/pathways impacted in disease
pathogenesis.

Classically, the effect of pathogenic mutations in familial
genes has been investigated through knock-out/down models
or in systems carrying one of the disease mutations (geneti-
cally modified models or patient-derived cells). Therefore,
mutated genes have mainly been studied in isolation; rarely
mixed models have been used to correlate the action of 2 or 3
genes. For example, LRRK?2 (frequently mutated in familial
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PD) has been evaluated both in isolation (very frequently) and
in hybrid models (rarely) in synergy with other familial PD
genes such as SNCA [48] or VPS35 [49, 50] showing that
these genes might indeed be part of communal molecular pat-
terns of disease. It must be noted that this type of studies can
be expensive and technically challenging as classical function-
al biology is not well equipped to model multiple genes at the
same time. Similarly, there are many mouse models for AD
developed by modifying only one single gene, while very few
models are available as double transgenic (to study concomi-
tant mutations in APP and PSENI) or triple transgenic (to
study concomitant mutations in APP, PSENI and MAPT)
[51]. Network analysis has become an ever-increasing popular
in silico approach to identify and prioritize communal path-
ways shared across “disease genes”, thus helping to shed light
onto molecular mechanisms of disease and assisting disease
modelling. Results from network analyses still need confirma-
tion in the functional environment; however, networks offer a
time- and cost-effective approach to inform wet lab research.
Specifically, networks allow for a more holistic support of
disease modelling and help in focusing resources on the most
promising functional targets.

Different network-based approaches have been developed,
yet, generally, they can be categorised in 2 major groups. The
bottom-up group comprises those approaches that “build the
network up” starting from the genes under investigation.
Conversely, the top-down methods build a larger and unbiased
network in the first instance and then map the genes of inter-
ested onto it.

Our group has contributed to the bottom-up approaches by
developing a pipeline named weighted protein-protein interac-
tion network analysis (WPPINA); here, PPIs were used to build
a multiple layers interactome for each of the familial genes for
both FTD and PD. The single interactomes were subsequently
merged into a final network (familial network for PD and familial
network for FTD). Graph theory was applied to extract inter-
interactome hubs (IIHs) that are those nodes responsible for
keeping graph cohesion. ITHs were then used to successfully
identify communal (and discriminative) pathways to disease via
functional and pathway enrichment [52, 53].

Dervishi et al. applied a similar bottom-up approach to the
study of amyotrophic lateral sclerosis (ALS). After selecting a
number of distinct seed genes associated with disease, they used
protein interactions (through Ingenuity, QIAGEN Comp, LA,
USA) to build an ALS network used to: “suggest how different
gene mutations converge into significant perturbations in protein
interaction domains” [54]. Similarly, Beltran et al. applied the
PIN approach through Ingenuity on an input set composed of
copy number variations (CNVs) and additional genes differently
associated with ALS. This was instrumental to identify a number
of core genes in ALS-associated subnetworks, disease pathways
and mechanisms to be further functionally validated [55]. A top-
down approach was used in AD by building a whole human PPI

network to function as background for inferring an AD-specific
protein sub-network [56] for conjunct functional analysis of AD
genes and prediction of additional AD gene candidates. Another
top-down approach has been investigated by Kahle et al., in
which they firstly generated a PIN for ataxia genes.
Subsequently, they integrated the literature-derived information
with primary interaction data, experimentally obtained for select-
ed ataxia proteins. They parsed medical records of patients with
ataxia to identity comorbidities and finally evaluated whether
proteins implicated in the comorbid conditions were present
within the ataxia interactome and how connections among these
proteins were structured. Such strategy was instrumental in shed-
ding light onto the biological origin of the comorbidity and
shared mechanisms across diseases [57].

Ghiassian et al. investigated the concept of “disease mod-
ule” and, by analysing how proteins involved in disease are
typically linked together within the structure of the network,
they developed a pipeline (DIAMOnD) to detect disease mod-
ules within PINs for specific disease phenotypes [58].

GCNs have been applied in the form of weighted gene co-
expression network analysis (WGCNA [59]) to the study fa-
milial FTD. Here, expression profiles from different regions of
the brain relevant for disease were analysed, and gene co-
expression was analysed through permutation. Clusters
(modules) of highly co-expressed genes were identified, and
familial genes for FTD were mapped onto those modules prior
topological and functional evaluation highlighting impacted
biological pathways in different brain regions [60].

Gilman et al. [61] used a hybrid network approach (network-
based analysis of genetic associations (NETBAG)) to simulta-
neously analyse all the genes affected by CNVs in autism to
prioritize and suggest biological processes and pathways at the
basis of the disorder. The hybrid network was built with the entire
set of human genes as nodes and considering edges
(connectivity) based on shared Gene Ontology annotations (from
GO), KEGG pathways interaction partners and co-evolutionary
patterns. Genes with autism-associated CNVs were then mapped
on the network and used to identify strongly connected clusters
to be studied. This permitted the evaluation of the entirety of
CNVs alterations in one step and the assessment of their func-
tional relevance in a genome-wide context.

Inferring Disease Genes from the Genetic
Architecture of Risk

The genetic architecture at the basis of complex neurodegen-
erative diseases is difficult to model. Genome-wide associa-
tion (GWA) analysis is, very frequently, the technique of
choice to evaluate the contribution of small effect size variants
(distributed in the entire genome) to a complex trait [62].
GWA findings have to be validated in model systems to
provide functional information on mechanisms leading to
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disease. However, the translation of genetics into the functional
understanding of disease is challenging (Fig. 1). One of the
issues with GWA types of studies is that signals do not neces-
sarily pinpoint genes, rather regions of the genome (i.e. loci)
that increase risk of disease, yet it is very difficult to understand
which is the actual gene that is modulated by the disease-
associated risk variants and what biological function is altered
and eventually responsible for disease. Historically, researchers
have suggested the open reading frame (ORF) closest to the risk
signal to be the associated causal gene; this has, over the years,
possibly generated type I error interpretation regarding the iden-
tity of the actual gene(s) modulated by the variant. Therefore,
more recently, many groups are striving to establish pipelines to
identify the real target genes of GWA variants.

Among the most successful approaches, there is the integra-
tion of genetic with quantitative trait loci (QTL) data [63]. The
most popular form of QTL is expression QTL (eQTL), where the
expression of cis-genes in relation to susceptibility markers is
assessed (Fig. 2). Other QTL approaches, such as splicing QTL
(sQTL), have been applied to determine alterations in splicing
induced by the risk variant; methylation QTL (m-QTL) to verify
the epigenetic change in methylation profile of nearby genes, and
protein QTL (p-QTL) where the protein levels, rather than the
RNA levels (as per eQTL), are evaluated. Clearly, not all the
GWA signals can be explained via QTL analysis. This is possibly
due to incompleteness of the omics databases needed for the
analysis (tissue- and disease-specific data availability) or by
methodological restrictions (e.g. in evaluating trans-QTLs
[64—66] or QTLs resulting from a combination of multiple var-
iants [67]). In this respect, again, network approaches have been
proposed to be combined with QTLs to improve prioritization of
modulated genes at the GWA loci.

Our group applied PIN analysis to PD-GWA signals. We
firstly identified pathways shared by familial genes for PD using
PIN; we then mapped the ORFs in linkage disequilibrium (LD)
with the GWA risk variants onto those pathways and the PIN.

eQTL

Locus with
wild-type sequence

Cgihl —t i —

L I

GeneA GeneC
Gene A mRNA GeneB GenelD
@
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-

I
GeneA GeneC
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Fig. 2 Examples of a case of eQTL and a case of sQTL. eQTL, the
presence of the variant at the locus affects the amount of mRNA (in this
case reduction) produced for gene A, the variant is directly affecting the
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The rationale was that those ORFs whose protein product was
present in the network, and was involved in at least one of those
pathways, were to be prioritized as gene candidates [30].

Alternatively, Voineagu et al. generated a GCN for autism
using RNA profiling of post-mortem brain tissues identifying
2 relevant modules, enriched in neuronal and glia markers,
respectively, to be correlated with disease. Co-expression
modules where then tested for enrichment of autism-
associated signals showing that GWA data converged on the
neuronal module only [68]. With a similar approach, Seyfried
et al. reported GCNs (obtained through WGCNA applied to
proteomic profiling of human brain cortical tissue) descriptive
of expression changes of both asymptomatic and symptomatic
AD. GWA signals were first linked to ORFs through gene set
analysis (thus, generating a single p value for each ORF pres-
ent at the risk loci). Then, significant ORFs were overlapped
with GCN modules to infer specific pathways correlated with
disease progression [69].

Future Directions

The pressing request for approaches able to handle increasingly
large (omics) and complex (multi-omics) sets of data has been
the driving force behind the development of tailored network
analyses in biomedicine. This is consequence of networks being
relatively simple yet powerful tools for biological data inference.
Machine learning (ML) has started to support network analysis
[70]. ML is referred to as a computational approach where a
machine is set-up to recognize patterns in a dataset and to in-
crease its accuracy by correction over process reiteration
(learning) [71]. ML is used for building networks; many tech-
niques for inferring edges in GRNs have been developed as ML
approaches; for example, ML can power the identification of
DNA patterns and transcriptional factors binding sites in large
datasets. Alternatively, ML can be applied to the analysis of
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expression level of gene A. sQTL, the presence of the variant at the locus
affects the splicing of gene C, in this case the long isoform is no more
produced due to the presence of the variant
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graphs. The potential of ML to efficiently detect re-occurring
patterns of connections (motifs and network architecture) or iden-
tify similarities leading to node segregation (clustering) is starting
to be investigated [72]. For example ML has been used to iden-
tify alterations in specific gene expression patterns indicative of
candidate genes for cancer [73, 74] and predict PPIs based on
protein pair features [75], as well as for dimensionality reduction
after GO functional enrichment.

Conclusions

The research community is witnessing a very productive mo-
ment in biomedicine, experiencing an exponential growth in
the amount of data that is generated with many initiatives taking
place to improve the way we analyse data to extract biologically
meaningful information to be translated for the benefit of medical
practice. Of course, even if the computational power, the statisti-
cal approaches and the mathematics of graph theory are avail-
able, such paradigm shift in basic and applied research is still in
its infancy. There still are levels of complexity that need to be
overcome; for example, networks are more static than dynamic
objects, where both edges and nodes can reconfigure themselves
as in the real biological context [76¢], and many omics datasets
still lack that critical cell specificity type of information that
would be necessary to draw more comprehensive functional
conclusions. A specific initiative called Dialogue for Reverse
Engineering Assessment and Methodology (DREAM) challenge
(http://dreamchallenges.org) has been launched in 2006 as a
crowdsourcing effort, where teams from all over the world are
competing to develop the best performing pipelines to address
compelling, big data problems in biomedicine. Analytical pipe-
lines are being generated at a fast pace; however, these will need
to stand the test of time; particularly, the next critical step will be
validating the in silico findings, thus develop useful functional
systems to model disease and highlight efficient endpoints for
therapeutic drug intervention.

Funding Information This work was supported by the Medical Research
Council (grant nos. MR/N026004/1; MR/L010933/1 to PAL); the
Biomarkers Across Neurodegenerative Diseases Grant Program 2019,
BAND3 (Michael J Fox Foundation, Alzheimer’s Association,
Alzheimer’s Research UK and Weston Brain Institute, grant no. 18063
to CM and PAL); and Alzheimer’s Society (grant no. 284 to RF).

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflicts of
interest associated with this manuscript.

Human and Animal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any of
the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Papers of particular interest, published recently, have been
highlighted as:

+ Of importance

¢ Of major importance

1. Wetterstrand KA. 2019. https://www.genome.gov/about-genomics/
fact-sheets/Sequencing-Human-Genome-cost.

2.« Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis
PA, et al. Genome, transcriptome and proteome: the rise of omics
data and their integration in biomedical sciences. Brief Bioinform.
2018;19(2):286-302. https://doi.org/10.1093/bib/bbw114 Review
paper surveing the basics of principal techniques, applications
and pitfalls in genomics, transcriptomics and proteomics;
accessible to readers with different background knowledge
and students.

3.e¢ Perez-Riverol Y, Zorin A, Dass G, Vu MT, Xu P, Glont M, et al.
Quantifying the impact of public omics data. Nat Commun.
2019;10(1):3512. https://doi.org/10.1038/s41467-019-11461-w
Description of the Omics Discovery Index tool with interesting
points of discussion regarding data availability and impact of
datasets policies/ethics.

4. Rooman M, Dehouck Y, Kwasigroch JM, Biot C, Gilis D. What is
paradoxical about Levinthal paradox? J Biomol Struct Dyn.
2002;20(3):327-9. https://doi.org/10.1080/07391102.2002.10506850.

5. Wang RS, Maron BA, Loscalzo J. Systems medicine: evolution of
systems biology from bench to bedside. Wiley Interdiscip Rev Syst
Biol Med. 2015;7(4):141-61. https://doi.org/10.1002/wsbm.1297
Comprehensive review on the evolution of systems biology
into systems medicine and systems pharmacology originated
as integration and analysis of multiple-fields, large sets of data
with translational examples.

6. Vollstedt EJ, Kasten M, Klein C, Group MGGPsDS. Using global
team science to identify genetic Parkinson’s disease worldwide.
Ann Neurol. 2019;86(2):153—7. https://doi.org/10.1002/ana.25514.

7. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov
R, et al. The NCBI dbGaP database of genotypes and phenotypes.
Nat Genet. 2007;39(10):1181-6. https://doi.org/10.1038/ng1007-
1181.

8. Lappalainen I, Almeida-King J, Kumanduri V, Senf A, Spalding
JD, Ur-Rehman S, et al. The European genome-phenome archive of
human data consented for biomedical research. Nat Genet.
2015;47(7):692-5. https://doi.org/10.1038/ng.3312.

9. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J,
Malangone C, et al. The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary

@ Springer


https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://doi.org/10.1093/bib/bbw114
https://doi.org/10.1038/s41467-019-11461-w
https://doi.org/10.1080/07391102.2002.10506850
https://doi.org/10.1002/wsbm.1297
https://doi.org/10.1002/ana.25514
https://doi.org/10.1038/ng1007-1181
https://doi.org/10.1038/ng1007-1181
https://doi.org/10.1038/ng.3312

Curr Genet Med Rep

10.

11.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005-D12.
https://doi.org/10.1093/nar/gky1120.

Kay M, Clarke L, Santoyo-Lopez J, Maslen G, Siepel A, Cuomo C,
et al. Finishing the euchromatic sequence of the human genome.
Nature. 2004;431(7011):931-45.

Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP,
Kang HM, et al. A global reference for human genetic variation.
Nature. 2015;526(7571):68-74. https://doi.org/10.1038/nature15393.
Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer
DM, Kavanagh D, et al. The EXAC browser: displaying reference data
information from over 60 000 exomes. Nucleic Acids Res.
2017;45(D1):D840-D5. https://doi.org/10.1093/nar/gkw971.

Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-
Van Zeeland AA, et al. Whole-genome sequencing of a healthy
aging cohort. Cell. 2016;165(4):1002—11. https://doi.org/10.1016/
j.cell.2016.03.022.

S SDaR. Encyclopedia of Bioinformatics and Computational
Biology. Elsevier; 2019. p. 251-256.

Clough E, Barrett T. The gene expression omnibus database.
Methods Mol Biol. 2016;1418:93—110. https://doi.org/10.1007/
978-1-4939-3578-9 5.

Consortium GT. The genotype-tissue expression (GTEx) project.
Nat Genet. 2013;45(6):580-5. https://doi.org/10.1038/ng.2653.
Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker
R, et al. Genetic variability in the regulation of gene expression in
ten regions of the human brain. Nat Neurosci. 2014;17(10):1418—
28. https://doi.org/10.1038/nn.3801.

Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I,
et al. The Encyclopedia of DNA elements (ENCODE): data portal
update. Nucleic Acids Res. 2018;46(D1):D794-801. https://doi.
org/10.1093/nar/gkx1081.

Lizio M, Abugessaisa I, Noguchi S, Kondo A, Hasegawa A, Hon
CC, et al. Update of the FANTOM web resource: expansion to
provide additional transcriptome atlases. Nucleic Acids Res.
2019:47(D1):D752-D8. https://doi.org/10.1093/nar/gky1099.
Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA,
Leung D, et al. Human body epigenome maps reveal noncanonical
DNA methylation variation. Nature. 2015;523(7559):212-6.
https://doi.org/10.1038/nature14465.

UniProt C. UniProt: a hub for protein information. Nucleic Acids
Res. 2015;43(Database issue):D204—12. https://doi.org/10.1093/
nar/gku989.

Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S, et al.
Protein interaction data curation: the international molecular ex-
change (IMEx) consortium. Nat Methods. 2012;9(4):345-50.
https://doi.org/10.1038/nmeth.1931.

Deutsch EW, Csordas A, Sun Z, Jarmnuczak A, Perez-Riverol Y,
Ternent T, et al. The ProteomeXchange consortium in 2017:
supporting the cultural change in proteomics public data deposition.
Nucleic Acids Res. 2017;45(D1):D1100-D6. https://doi.org/10.
1093 /nar/gkw936.

Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R,
et al. A draft map of the human proteome. Nature. 2014;509(7502):
575-81. https://doi.org/10.1038/nature13302.

The Gene Ontology C. The gene ontology resource: 20 years and
still GOing strong. Nucleic Acids Res. 2019;47(D1):D330-DS.
https://doi.org/10.1093/nar/gky1055.

McKusick VA. Mendelian inheritance in man and its online ver-
sion. OMIM Am J Hum Genet. 2007;80(4):588—604. https:/doi.
org/10.1086/514346.

Pinero J, Bravo A, Queralt-Rosinach N, Gutierrez-Sacristan A,
Deu-Pons J, Centeno E, et al. DisGeNET: a comprehensive plat-
form integrating information on human disease-associated genes
and variants. Nucleic Acids Res. 2017;45(D1):D833-D9. https://
doi.org/10.1093/nar/gkw943.

@ Springer

28.

29.

30.

31

32.

33.

34.

35.

36,00

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M,
Garapati P, et al. The reactome pathway knowledge base. Nucleic
Acids Res. 2018;46(D1):D649-D55. https://doi.org/10.1093/nar/
gkx1132.
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res. 2000;28(1):27-30. https://doi.org/
10.1093/nar/28.1.27.
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease.
Genome Biol. 2017;18(1):83. https://doi.org/10.1186/s13059-017-
1215-1.
Arboleda-Velasquez FL JF, O’Hare M, Delgado-Tirado S, Marino
C, Chmielewska N, Saez-Torres KL, et al. Resistance to autosomal
dominant Alzheimer’s disease in an APOE3 Christchurch homozy-
gote: a case report. Nature Medicine. 2019. https://doi.org/10.1038/
s41591-019-0611-3.
Velez J1, Lopera F, Sepulveda-Falla D, Patel HR, Johar AS, Chuah
A, et al. APOE*E2 allele delays age of onset in PSEN1 E280A
Alzheimer’s disease. Mol Psychiatry. 2016;21(7):916-24. https://
doi.org/10.1038/mp.2015.177.
Trinh J, Guella I, Farrer MJ. Disease penetrance of late-onset par-
kinsonism: a meta-analysis. JAMA Neurol. 2014;71(12):1535-9.
https://doi.org/10.1001/jamaneurol.2014.1909.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 2003;13(11):
2498-504. https://doi.org/10.1101/gr.1239303.

Serin EA, Nijveen H, Hilhorst HW, Ligterink W. Learning from co-
expression networks: possibilities and challenges. Front Plant Sci.
2016;7:444. https://doi.org/10.3389/pls.2016.00444.

Sonawane AR, Weiss ST, Glass K, Sharma A. Network medicine in
the age of biomedical big data. Front Genet. 2019;10:294. https:/
doi.org/10.3389/fgene.2019.00294 Comprehensive review on
networks applied to different types of big-data with applicative
examples to multiple aspects of biomedicine.
V F. Encyclopedia of Bioinformatics and Computational Biology,
vol. 1. Amsterdam: Elsevier; 2019. p. 915-21.
Delgado FM, Gomez-Vela F. Computational methods for gene regula-
tory networks reconstruction and analysis: a review. Artif Intell Med.
2019;95:133-45. https://doi.org/10.1016/j.artmed.2018.10.006.
Barbosa S, Niebel B, Wolf S, Mauch K, Takors R. A guide to gene
regulatory network inference for obtaining predictive solutions: un-
derlying assumptions and fundamental biological and data con-
straints. Biosystems. 2018;174:37-48. https://doi.org/10.1016/j.
biosystems.2018.10.008.
Hawe JS, Theis FJ, Heinig M. Inferring interaction networks from
multi-omics data. Front Genet. 2019;10:535. https://doi.org/10.
3389/fgene.2019.00535.

Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a
network-based approach to human disease. Nat Rev Genet.
2011;12(1):56-68. https://doi.org/10.1038/nrg2918.
Costanzo M, Kuzmin E, van Leeuwen J, Mair B, Moffat J, Boone
C, et al. Global genetic networks and the genotype-to-phenotype
relationship. Cell. 2019;177(1):85-100. https://doi.org/10.1016/j.
cell.2019.01.033.
Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The impor-
tance of bottlenecks in protein networks: correlation with gene es-
sentiality and expression dynamics. PLoS Comput Biol. 2007;3(4):
€59. https://doi.org/10.1371/journal.pcbi.0030059.

Oliver S. Guilt-by-association goes global. Nature.
2000;403(6770):601-3. https://doi.org/10.1038/35001165.
Milo R, Shen-Orr S, ITtzkovitz S, Kashtan N, Chklovskii D, Alon U.
Network motifs: simple building blocks of complex networks. Science.
2002;298(5594):824-7. https://doi.org/10.1126/science.298.5594.824.
Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes.
2016;30(6):386-96. https://doi.org/10.1016/j.mcp.2016.11.001.


https://doi.org/10.1093/nar/gky1120
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/nar/gkw971
https://doi.org/10.1016/j.cell.2016.03.022
https://doi.org/10.1016/j.cell.2016.03.022
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1038/ng.2653
https://doi.org/10.1038/nn.3801
https://doi.org/10.1093/nar/gkx1081
https://doi.org/10.1093/nar/gkx1081
https://doi.org/10.1093/nar/gky1099
https://doi.org/10.1038/nature14465
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1038/nmeth.1931
https://doi.org/10.1093/nar/gkw936
https://doi.org/10.1093/nar/gkw936
https://doi.org/10.1038/nature13302
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1086/514346
https://doi.org/10.1086/514346
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1186/s13059-017-1215-1
https://doi.org/10.1186/s13059-017-1215-1
https://doi.org/10.1038/s41591-019-0611-3
https://doi.org/10.1038/s41591-019-0611-3
https://doi.org/10.1038/mp.2015.177
https://doi.org/10.1038/mp.2015.177
https://doi.org/10.1001/jamaneurol.2014.1909
https://doi.org/10.1101/gr.1239303
https://doi.org/10.3389/fpls.2016.00444
https://doi.org/10.3389/fgene.2019.00294
https://doi.org/10.3389/fgene.2019.00294
https://doi.org/10.1016/j.artmed.2018.10.006
https://doi.org/10.1016/j.biosystems.2018.10.008
https://doi.org/10.1016/j.biosystems.2018.10.008
https://doi.org/10.3389/fgene.2019.00535
https://doi.org/10.3389/fgene.2019.00535
https://doi.org/10.1038/nrg2918
https://doi.org/10.1016/j.cell.2019.01.033
https://doi.org/10.1016/j.cell.2019.01.033
https://doi.org/10.1371/journal.pcbi.0030059
https://doi.org/10.1038/35001165
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1016/j.mcp.2016.11.001

Curr Genet Med Rep

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Ferrari R, Manzoni C, Hardy J. Genetics and molecular mecha-
nisms of frontotemporal lobar degeneration: an update and future
avenues. Neurobiol Aging. 2019;78:98-110. https://doi.org/10.
1016/j.neurobiolaging.2019.02.006.

Bae EJ, Kim DK, Kim C, Mante M, Adame A, Rockenstein E, et al.
LRRK?2 kinase regulates alpha-synuclein propagation via RAB35
phosphorylation. Nat Commun. 2018;9(1):3465. https://doi.org/10.
1038/s41467-018-05958-z.

Inoshita T, Arano T, Hosaka Y, Meng H, Umezaki Y, Kosugi S, et al.
Vps35 in cooperation with LRRK?2 regulates synaptic vesicle endocy-
tosis through the endosomal pathway in drosophila. Hum Mol Genet.
2017;26(15):2933-48. https://doi.org/10.1093/hmg/ddx179.

Mir R, Tonelli F, Lis P, Macartney T, Polinski NK, Martinez TN,
et al. The Parkinson’s disease VPS35[D620N] mutation enhances
LRRK2-mediated Rab protein phosphorylation in mouse and hu-
man. Biochem J. 2018;475(11):1861-83. https://doi.org/10.1042/
BCJ20180248.

Myers A, McGonigle P. Overview of transgenic mouse models for
Alzheimer’s disease. Curr Protoc Neurosci. 2019;89(1):e81. https:/
doi.org/10.1002/cpns.81.

Ferrari R, Kia DA, Tomkins JE, Hardy J, Wood NW, Lovering RC,
et al. Stratification of candidate genes for Parkinson’s discase using
weighted protein-protein interaction network analysis. BMC
Genomics. 2018;19(1):452. https://doi.org/10.1186/s12864-018-
4804-9.

Ferrari R, Lovering RC, Hardy J, Lewis PA, Manzoni C. Weighted
protein interaction network analysis of frontotemporal dementia. J
Proteome Res. 2017;16(2):999—-1013. https://doi.org/10.1021/acs.
jproteome.6b00934.

Dervishi I, Gozutok O, Murnan K, Gautam M, Heller D, Bigio E,
et al. Protein-protein interactions reveal key canonical pathways,
upstream regulators, interactome domains, and novel targets in
ALS. Sci Rep. 2018;8(1):14732. https://doi.org/10.1038/s41598-
018-32902-4.

Beltran S, Nassif M, Vicencio E, Arcos J, Labrador L, Cortes BI,
et al. Network approach identifies pacer as an autophagy protein
involved in ALS pathogenesis. Mol Neurodegener. 2019;14(1):14.
https://doi.org/10.1186/s13024-019-0313-9.

Hu YS, Xin J, Hu Y, Zhang L, Wang J. Analyzing the genes related
to Alzheimer’s disease via a network and pathway-based approach.
Alzheimers Res Ther. 2017;9(1):29. https://doi.org/10.1186/
$13195-017-0252-z.

Kahle JJ, Gulbahce N, Shaw CA, Lim J, Hill DE, Barabasi AL,
et al. Comparison of an expanded ataxia interactome with patient
medical records reveals a relationship between macular degenera-
tion and ataxia. Hum Mol Genet. 2011;20(3):510-27. https://doi.
org/10.1093/hmg/ddq496.

Ghiassian SD, Menche J, Barabasi AL. A DIseAse MOdule detec-
tion (DIAMOnD) algorithm derived from a systematic analysis of
connectivity patterns of disease proteins in the human interactome.
PLoS Comput Biol. 2015;11(4):e1004120. https://doi.org/10.1371/
journal.pcbi.1004120.

Langfelder P, Horvath S. WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics. 2008;9:559.
https://doi.org/10.1186/1471-2105-9-559.

Ferrari R, Forabosco P, Vandrovcova J, Botia JA, Guelfi S, Warren
D, et al. Frontotemporal dementia: insights into the biological un-
derpinnings of disease through gene co-expression network analy-
sis. Mol Neurodegener. 2016;11:21. https://doi.org/10.1186/
$13024-016-0085-4.

Gilman SR, lossifov I, Levy D, Ronemus M, Wigler M, Vitkup D.
Rare de novo variants associated with autism implicate a large
functional network of genes involved in formation and function of

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

synapses. Neuron. 2011;70(5):898-907. https://doi.org/10.1016/j.
neuron.2011.05.021.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter
DJ, et al. Finding the missing heritability of complex diseases. Nature.
2009;461(7265):747-53. https://doi.org/10.1038/nature08494.

Nica AC, Dermitzakis ET. Expression quantitative trait loci: present
and future. Philos Trans R Soc Lond Ser B Biol Sci.
2013;368(1620):20120362. https://doi.org/10.1098/rstb.2012.0362.
Brynedal B, Choi J, Raj T, Bjomnson R, Stranger BE, Neale BM, et al.
Large-scale trans-eQTLs affect hundreds of transcripts and mediate
patterns of transcriptional co-regulation. Am J Hum Genet.
2017;100(4):581-91. https://doi.org/10.1016/j.ajhg.2017.02.004.
Clyde D. Disease genomics: transitioning from association to cau-
sation with eQTLs. Nat Rev Genet. 2017;18(5):271. https://doi.org/
10.1038/nrg.2017.22.

Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C,
Kettunen J, et al. Systematic identification of trans eQTLs as puta-
tive drivers of known disease associations. Nat Genet. 2013;45(10):
1238-43. https://doi.org/10.1038/ng.2756.

Zeng B, Lloyd-Jones LR, Holloway A, Marigorta UM, Metspalu A,
Montgomery GW, et al. Constraints on eQTL fine mapping in the
presence of multisite local regulation of gene expression. G3
(Bethesda). 2017;7(8):2533—44. https://doi.org/10.1534/g3.117.
043752.

Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al.
Transcriptomic analysis of autistic brain reveals convergent molec-
ular pathology. Nature. 2011;474(7351):380-4. https://doi.org/10.
1038/nature10110.

Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM,
Yin L, et al. A multi-network approach identifies protein-specific
co-expression in asymptomatic and symptomatic Alzheimer’s dis-
ease. Cell Syst. 2017;4(1):60-72 e4. https://doi.org/10.1016/j.cels.
2016.11.006.

Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ.
Next-generation machine learning for biological networks. Cell.
2018;173(7):1581-92. https://doi.org/10.1016/j.cell.2018.05.015.
Xu C, Jackson SA. Machine learning and complex biological data.
Genome Biol. 2019;20(1):76. https://doi.org/10.1186/s13059-019-
1689-0.

Oyelade J, Isewon I, Oladipupo F, Aromolaran O, Uwoghiren E,
Ameh F, et al. Clustering algorithms: their application to gene ex-
pression data. Bioinform Biol Insights. 2016;10:237-53. https://
doi.org/10.4137/BBI.S38316.

Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton
HC, et al. An integrated approach to uncover drivers of cancer. Cell.
2010;143(6):1005-17. https://doi.org/10.1016/j.cell.2010.11.013.
Ghanat Bari M, Ung CY, Zhang C, Zhu S, Li H. Machine learning-
assisted network inference approach to identify a new class of genes
that coordinate the functionality of cancer networks. Sci Rep.
2017;7(1):6993. https://doi.org/10.1038/s41598-017-07481-5.
Chen KH, Wang TF, Hu YJ. Protein-protein interaction prediction
using a hybrid feature representation and a stacked generalization
scheme. BMC Bioinformatics. 2019;20(1):308. https://doi.org/10.
1186/s12859-019-2907-1.

Bassett DS, Sporns O. Network neuroscience. Nat Neurosci.
2017;20(3):353-64. https://doi.org/10.1038/nn.4502 Comprehensive
review on integration of neurobiology knowledge using network
neuroscience, particularly interesting for the discussion on the
current frontiers in network neuroscience research, unmet needs
and future directions.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1016/j.neurobiolaging.2019.02.006
https://doi.org/10.1016/j.neurobiolaging.2019.02.006
https://doi.org/10.1038/s41467-018-05958-z
https://doi.org/10.1038/s41467-018-05958-z
https://doi.org/10.1093/hmg/ddx179
https://doi.org/10.1042/BCJ20180248
https://doi.org/10.1042/BCJ20180248
https://doi.org/10.1002/cpns.81
https://doi.org/10.1002/cpns.81
https://doi.org/10.1186/s12864-018-4804-9
https://doi.org/10.1186/s12864-018-4804-9
https://doi.org/10.1021/acs.jproteome.6b00934
https://doi.org/10.1021/acs.jproteome.6b00934
https://doi.org/10.1038/s41598-018-32902-4
https://doi.org/10.1038/s41598-018-32902-4
https://doi.org/10.1186/s13024-019-0313-9
https://doi.org/10.1186/s13195-017-0252-z
https://doi.org/10.1186/s13195-017-0252-z
https://doi.org/10.1093/hmg/ddq496
https://doi.org/10.1093/hmg/ddq496
https://doi.org/10.1371/journal.pcbi.1004120
https://doi.org/10.1371/journal.pcbi.1004120
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/s13024-016-0085-4
https://doi.org/10.1186/s13024-016-0085-4
https://doi.org/10.1016/j.neuron.2011.05.021
https://doi.org/10.1016/j.neuron.2011.05.021
https://doi.org/10.1038/nature08494
https://doi.org/10.1098/rstb.2012.0362
https://doi.org/10.1016/j.ajhg.2017.02.004
https://doi.org/10.1038/nrg.2017.22
https://doi.org/10.1038/nrg.2017.22
https://doi.org/10.1038/ng.2756
https://doi.org/10.1534/g3.117.043752
https://doi.org/10.1534/g3.117.043752
https://doi.org/10.1038/nature10110
https://doi.org/10.1038/nature10110
https://doi.org/10.1016/j.cels.2016.11.006
https://doi.org/10.1016/j.cels.2016.11.006
https://doi.org/10.1016/j.cell.2018.05.015
https://doi.org/10.1186/s13059-019-1689-0
https://doi.org/10.1186/s13059-019-1689-0
https://doi.org/10.4137/BBI.S38316
https://doi.org/10.4137/BBI.S38316
https://doi.org/10.1016/j.cell.2010.11.013
https://doi.org/10.1038/s41598-017-07481-5
https://doi.org/10.1186/s12859-019-2907-1
https://doi.org/10.1186/s12859-019-2907-1
https://doi.org/10.1038/nn.4502

	Network Analysis for Complex Neurodegenerative Diseases
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Complex Neurodegeneration and Network Analysis
	Complex Neurodegenerative Diseases: Too Many Genes
	Inferring Disease Genes from the Genetic Architecture of Risk
	Future Directions
	Conclusions
	References
	Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance



