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Abstract 

Extracellular pyrophosphate (ePPi) was first identified as a key endogenous inhibitor of mineralisation in 

the 1960‟s by Fleisch and colleagues. The main source of ePPi seems to be extracellular ATP which is 

continually released from cells in a controlled way. ATP is rapidly broken down by enzymes including 

ecto-nucleotide pyrophosphastase /phosphodiesterases to produce ePPi. The major function of ePPi is to 

directly inhibit hydroxyapatite formation and growth meaning that this simple molecule acts as the body‟s 

own “water softener”. However, studies have also shown that ePPi can influence gene expression and 

regulate its own production and breakdown. This review will summarise our current knowledge of ePPi 

metabolism and how it acts to prevent pathological soft tissue calcification and regulate physiological bone 

mineralisation. 



 

 

 

Introduction 
3- 

Inorganic pyrophosphate (PPi) is a simple molecule comprised of two inorganic phosphates (PO4 or Pi) 
joined by a hydrolysable ester bond. Intracellular PPi is a by-product of over 200 different enzyme 

reactions and its hydrolysis plays a major role in driving fundamental biochemical reactions [1]. Every day 

large amounts of PPi are produced within cells, particularly during the generation of nucleic acids, proteins, 

lipids and carbohydrates from their smaller precursors. Most of this PPi remains within cells where it is 

hydrolysed by intracellular pyrophosphatases. In contrast, extracellular PPi (ePPi) is separately regulated 

and its levels are determined by the coordinated actions of several proteins. For further information about 

the biochemistry and biology of PPi in nature the reader is referred to the 2001 monograph by Heinonen 

[2]. 

Body fluids are supersaturated with calcium and Pi which means that, in the presence of nucleating agents 

such as collagen, mineralisation can occur. It is important to note here that mineralisation is a complex 

process and the events that regulate its initiation and propagation are not fully understood. However, since 

most tissues do not readily mineralise under physiological conditions there must be inhibitors present. It 

was the pioneering studies by Fleisch and colleagues in the 1960‟s that first discovered ePPi acts as a key 

inhibitor of biomineralisation [3-7].  They found that ePPi potently antagonises the ability of calcium to 

crystallise with Pi to form hydroxyapatite (Ca10(PO4)(OH2)) [4, 6, 8]. ePPi also binds strongly to the surface 

of hydroxyapatite and prevents further crystal growth [9]. This initial work helped to establish the concept 

that ePPi is the body‟s own “water softener” that acts to control mineralisation processes [6, 9]. 

These discoveries by Fleisch, Neuman, Bisaz, Russell and colleagues have laid the foundations for 

understanding the fundamental role of ePPi in mineralisation. This article will summarise our current 

knowledge of how this simple molecule acts to regulate physiological bone mineralisation and prevent 

harmful soft tissue calcification. It will also discuss how the discovery of ePPi and its role in bone 

contributed to the development of the widely used bisphosphonate drugs. 

 

The generation and regulation of ePPi 

In vivo a balance between the rate of generation and hydrolysis ensures levels of ePPi are carefully 

controlled (see Figure 1). Extracellular nucleotides such as adenosine triphosphate (ATP) represent an 

important source of ePPi outside of cells. In particular, ATP and UTP are hydrolysed by ecto-nucleotide 

pyrophosphatase/phosphodiesterases (NPPs) to produce the corresponding monophosphate and ePPi. 

The NPP enzymes are widely expressed and highly conserved between species. In humans, there are 7 

members of the NPP family, each with different substrate specificity and expression patterns [10].  Of 

these, NPP1 (or PC-1), NPP2 (autotaxin) and NPP3 (B10) have been particularly well characterised with 

regard to their roles in ePPi generation. 

The intracellular concentration of ATP is between 2-5mM. Following membrane damage all cells can 

release ATP into the extracellular environment; however, controlled release has been reported from 

numerous cell types including neurons [11], bone cells [12, 13], vascular smooth muscle cells [14] and 

endothelial/epithelial cells [15, 16]. Once released, ATP can act via cell surface P2 receptors to regulate 

cell proliferation, differentiation and function [17]. The rapid hydrolysis of extracellular nucleotides by ecto- 

nucleotidases (including NPPs) means that autocrine/paracrine actions of ATP are limited to cells with 

close proximity of the release site. To date, a number of processes have been implicated in mediating 

ATP release (e.g. the P2X7 receptor, connexin/pannexin hemichannels), however, vesicular exocytosis 

appears to be the predominant mechanism (see review [18]). The level of cellular ATP release can be 

influenced by external factors such as mechanical stress [19, 20], hypoxia [21, 22] and vitamin D [23]. 

Extracellular nucleotides can also act via a positive feedback to further promote ATP release [15, 24, 25]. 

Since ATP hydrolysis is a key source of ePPi, any factors which regulate ATP release may also indirectly 

ePPi levels. Currently, the relationship between controlled ATP release and ePPi levels is poorly 

investigated and represents an exciting area for future research. 

Alkaline phosphatases (ALP) are broad spectrum ecto-nucleotidases that hydrolyse numerous phosphate 

containing molecules [10]. In particular, ALP displays pyrophosphatase activity and so will breakdown 

ePPi to two Pi molecules. Whilst normally assayed under alkaline conditions, at physiological pH the Km 

for substrates like PPi is very low and therefore these enzymes can „completely‟ hydrolyse ePPi [10]. 

There are four different ALP enzymes some of which are tissue specific; the most widely expressed is the 

tissue non-specific form (TNSALP) which is found in the kidney, liver and bone. 



 

 

ANK (progressive ankyloses or ANKH) is a membrane protein though to facilitate the transport of PPi from 

the intra-to-extracellular environment [26]. However, since the intracellular PPi concentration is in the 

micromolar range the relative contribution of ANK to ePPi levels is likely to be less than the breakdown of 

ATP by NPPs [27]. Many tissues including bone, kidney, cartilage, brain, muscle and the vasculature 

have been reported to express Ank [26]. 

 

Biological mineralisation 

In the literature, the terms “mineralisation” and “calcification” are often used interchangeably. 

Nevertheless, in journal articles mineralisation is most commonly used in the context of bone and refers to 

the process of laying down minerals within the organic matrix. Calcification, by definition, describes the 

accumulation of calcium salts in a tissue or material and is frequently used in papers to describe the 

pathological processes that can occur in soft tissues. The extracellular concentrations of calcium and Pi 

are major determinants of biomineralisation within both the skeleton (cartilage and bone) and soft tissues. 

In clinical conditions such as vitamin D deficiency, bone mineralisation is impaired by low calcium and Pi 

levels [28]. Conversely, ectopic calcification can occur when calcium or Pi levels are high, as seen in renal 

failure. Plasma Pi levels vary over a wider physiological range than calcium and are effected by dietary 

intake and renal excretion [29]. Numerous factors such as FGF23, Parathyroid hormone (PTH) and 

growth hormone regulate kidney function and therefore indirectly modulate Pi levels [29]. 

 

ePPi as an inhibitor of bone mineralisation 

The seminal work by Fleisch and colleagues in the 1960‟s has resulted in extensive research into the 

inhibitory actions of ePPi on bone mineralisation. It is now accepted that the ePPi-to-Pi ratio within the 

bone microenvironment is a fundamental regulator of skeletal mineralisation (see reviews [30, 31]). 

Osteoblasts express at least 3 members of the NPP family (NPP1, NPP2, NPP3), whilst NPP1 expression 

has been reported in osteocytes and osteoclasts [32-35]. Abundant evidence suggests that NPP1 is 

crucial for ePPi generation, whilst TNSALP, which plays a central role in driving mineralisation processes, 

is the key enzyme involved in ePPi breakdown [30, 32-35]. Thus the opposing actions of NPP1 and 

TNSALP are critical in determining local ePPi and Pi levels [27, 33]. 

NPP1 

Studies using three different mouse models have highlighted the importance of NPP1 in ePPi generation 
and bone mineralisation. These are (1) the naturally occurring NPP1 “knockout” referred to as the tip-toe 

walking (ttw/ttw) mouse; (2) the genetically altered NPP1 knockout (Enpp1
-/-

) and (3) the alternative 

Enpp1
asj 

knockout. Of these, the Enpp1
-/- 

model has been most widely studied; these mice display 
aberrant calcification of the spine, joints, tendons and other collagen rich soft tissues which progressively 
worsens with age and is associated with altered gait and reduced movement [32, 34, 36, 37]. In keeping 

-/- 

with reduced ePPi levels, cultured osteoblasts isolated from Enpp1 mice display an increased ability to 

mineralise matrix in vitro [38]. However, somewhat surprisingly, given these in vitro observations, Enpp1
-/-

 

animals exhibit decreased levels of trabecular and cortical bone and reduced bone strength in the 

femur/tibia [34, 37, 39].  High resolution analysis of the cortical bone showed that these mice also display 

a reduction in the number and size of their blood vessel channels and osteocyte lacunae [34]. This failure 

to maintain lacunar size was attributed to the inability of Enpp1
-/-  

osteocytes to hydrolyse constitutively 

released ATP to generate ePPi [34]. Increased levels of sclerostin (an inhibitor of bone formation) and 

FGF-23 (a regulator of phosphate metabolism) have also been reported in Enpp1
-/- 

mice [34, 37].  Thus 

the unexpected in vivo skeletal phenotype of these animals is most likely a consequence of changes 

and/or defects in multiple tissues. 

Enpp1
asj 

(ages with stiffened joints) mice are on a different genetic background to the Enpp1
-/- 

animals, 

however, they display many of the same phenotypic characteristics including widespread soft tissue 

calcification [40, 41]. They also exhibit inflammation and ectopic calcification of the middle ear which 

leads to hearing impairment [42]. Ttw/ttw mice, which have a phenotype similar to the disease OPLL 

(ossification of the posterior ligament of the spine), display ossification of the spinal ligaments, articular 

cartilage calcification and peripheral joint hyperstosis [43]. 

TNSALP 

TNSALP has long been used as a marker of osteoblast differentiation and measurements of enzyme 

activity are widely used in skeletal research. The phenotype of TNSALP knockout mice is evident within a 

few days of birth and includes smaller body size, defective bone mineralisation, skeletal deformations and 



 

 

spontaneous fractures. The animals also develop epileptic seizures usually dying before weaning [44-46]. 

Osteoblasts isolated from knockout animals differentiate normally but fail to mineralise the deposited 

matrix because of the increased ePPi levels; this further illustrates the importance of TNSALP in regulating 

ePPi levels [47]. 

The central role of NPP1 and TNSALP in skeletal mineralisation is also highlighted by the human diseases 

which arise due to deletion or inactivation of one of these enzymes (see reviews [30, 48]). Patients with 

hypophosphatasia have missense mutations in the TNSALP gene that results in impaired or, in severe 

cases, no enzyme activity. This leads to increased ePPi levels and impaired bone mineralisation [49-51]. 

In contrast, the disease OPLL, which is characterised by ectopic calcification of spinal ligaments, is 

caused by a mutation in NPP1 and reduced enzyme activity [43]. Recent advances in enzyme 

replacement therapy have led to the development of Asfotase Alfa, a life changing drug for patients with 

hypophosphatasia [52]. Whilst treatment of OPLL remains challenging, a recent preclinical study using 

ttw/ttw mice found that coadministration of the  TNSALP inhibitor, levamisole, and ePPi slowed the 

progression of spinal ligament calcification without exerting negative effects on bone [53]. 

ANK 

The role of ANK in bone mineralisation has been studied using the ank/ank model; these mice have a 

mutation in the C-terminal cytosolic domain of the protein which reduces PPi transport to the extracellular 

environment [26]. Consistent with reduced ePPi levels, ank/ank animals display joint calcification and 

destruction, vertebral fusion characteristic of ankylosing spondylitis and altered gait [26]. A comparative 

study of Enpp1
-/-  

and ank/ank mice reported that the ectopic calcification was worse in the Enpp1
-/-

 

animals suggesting that NPP1 is more important in ePPi generation than ANK [27]. 

ePPi and bone cell function 

In vitro ePPi inhibits bone mineralisation in the low micromolar range (≥1M) with a complete abolition at 

100M [35] (Figure 2). Whilst restricted to only a few studies, there is some evidence to suggest that 

ePPi can also act directly on bone cells to regulate function.  Work using osteoblast-like cells has shown 

that ePPi can promote differentiation [54] and act via the MAP-kinase pathway to increase the expression 
of the mineralisation inhibitor, osteopontin [55]. Furthermore, both Enpp1

-/-  
and ank/ank mice display 

reduced osteoblast expression of osteopontin and lower serum levels of the protein [27, 36]. 

Information regarding any direct functional effects on osteoclasts is even more limited. However, earlier 
-/- 

work has shown that ePPi  can promote apoptosis [56] and Enpp1 mice display increased osteoclast 

activity in vivo [37]. Whilst there are no studies describing direct effects of ePPi on osteocytes, earlier 

work has shown that osteocytes-derived from Enpp1
-/- 

mice display increased sclerostin expression [34]. 

This raises the possibility that ePPi could also modulate osteocyte function and represents an interesting 

area for future study. 

Controlling the levels of ePPi in bone 

In order to prevent hyper- or hypomineralisation it is essential that expression and activity of NPP1, 

TNSALP and ANK is regulated. Numerous factors have been shown to influence ePPi levels via actions 

on these proteins including Pi [57], extracellular nucleotides [35, 58], neurofibromin [59], acidosis [38, 60], 

hypoxia-inducible factor proteins [61], vitamin D [62] and FGF2 [63, 64]. Additionally and perhaps most 

interestingly, is the apparent ability of ePPi to regulate its own production and hydrolysis. Previous work 

has shown that ePPi can downregulate Enpp1 and Ank expression in osteoblasts [27, 35]. Extracellular 

nucleotides (ATP/UTP) also inhibit Enpp1 expression, however, it is unclear whether this is due to an 

NPP1-mediated increase in ePPi or because of purinergic signalling [35]. It has also been reported that 

ePPi can increase TNSALP activity in osteoblast-like cells [54]. Taken together these findings suggest the 

presence of a negative feedback pathway by which ePPi can regulate the expression/activity of the 

enzymes involved in its metabolism. It is unknown how ePPi exerts these actions or the effects on bone 

cell function described above. However, its size and charge means that ePPi cannot passively cross the 

cell membrane. This therefore raises the exciting possibility of a cell surface receptor or sensor for ePPi. 

 

The regulation of soft tissue calcification by ePPi 

Under normal conditions there are robust regulatory mechanisms in place to prevent pathological soft 

tissue calcification. Numerous studies have shown that NPP1 is particularly important in generating the 

ePPi needed to prevent unwanted calcification [34, 37, 65]. High resolution in vivo micro-computed x-ray 

tomography scanning of Enpp1
-/- 

mice illustrates how widespread the effects of reduced ePP levels are i 
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(Figure 3). These images show the calcification of tissues including ear pinna, trachea, whisker vibrissae, 

eye, cartilage and tendons. They also show abnormal bone formation (Figure 3). 

ePPi and cartilage mineralisation 

Joints contain both unmineralised articular cartilage and calcified cartilage, which forms the interface 

between the articular cartilage and the underlying subchondral bone. To maintain joint integrity and 

health, cartilage calcification must be tightly regulated and restricted to specific regions. The cells found in 

cartilage, chondrocytes, have been shown to constitutively release ATP [66], express NPP1 and are able 

to generate large amounts of ePPi [67, 68]. Osteoarthritis (OA) is a degenerative joint disease associated 

with articular cartilage calcification [69]. Patients with severe OA are reported to have lower NPP1 levels 

[70] and Enpp1 polymorphisms have been associated with hand OA [71]. In addition, OA-like changes 

and pathological calcification have been described in the articular cartilage of ttw/ttw mice [70, 72]. More 

recently, decreased Ank expression has been associated with cartilage endplate calcification in 

intervertebral disc degeneration [73]. Taken together these findings suggest that ePPi plays an important 

yet not fully defined role in preventing cartilage calcification. 

Although ePPi can act to prevent unwanted cartilage mineralisation, in excess it may be detrimental 

because it can promote calcium pyrophosphate dehydrate (CPPD) crystal formation and the development 

of chondrocalcinosis. This condition is very common in ageing populations where it can lead to significant 

morbidity [74]. Previous work has suggested that the excessive ePPi levels could involve ANK since 

activating mutations in Ankh have been associated with familial forms of chondrocalcinosis and protein 

expression is increased in patients with CPPD deposits [75, 76]. 

ePPi and vascular calcification 

Vascular calcification is a common consequence of chronic kidney disease, diabetes, atherosclerosis and 

ageing. It is characterised by the pathological deposition of calcium phosphate mineral, most often as 

hydroxyapatite, in the intimal and/or medial layer of the arteries and heart valves. Arterial medial 

calcification (AMC) is the calcification which develops within the tunica media of blood vessels and its 

development a complex, cell-mediated process which is thought to share some similarities with 

physiological bone mineralisation. Vascular smooth muscle cells (VSMC) are the predominant cell type 

driving AMC and in calcifying conditions these cells undergo phenotypic changes to take on some limited 

osteoblast-like characteristics [77]. 

ePPi is well established as an inhibitor of AMC and valve calcification [65, 78, 79]. In vitro, ePPi inhibits 

VSMC calcification in the low micromolar range [80, 81] (Figure 2). It also acts to reduce apoptosis in 

calcifying VSMCs, an effect which is most likely a direct consequence of the physiochemical inhibition of 

calcification [80]. Similar to osteoblasts, ePPi can increase VSMC TNSALP activity suggesting the 

presence of feedback mechanisms to regulate extracellular levels [80]. 

The importance of NPP1 in preventing AMC has been shown by numerous studies. In vitro work has 

shown that by hydrolysing released ATP, NPP1 is a key source of ePPi in VSMC cultures [14, 81]. 

Furthermore, the inhibitory effects of ATP and UTP on AMC are mediated via both purinergic signalling 

and the non-receptor mediated breakdown to produce ePP [80].  Both Enpp1
-/-

 and Enpp1 asj mice display 

AMC in vivo and Enpp1
-/- 

VSMCs have a reduced ability to generate ePP from ATP leading to increased 

calcification  in vitro  [37,  40, 82].  Enpp1
-/-   

VSMCs  also  exhibit  higher  expression of  osteoblast  and 

osteocyte marker genes [83]. ANK may also contribute to the ePPi levels needed to prevent AMC however 

evidence suggests it is less important than NPP1 [14, 82]. Interestingly, a recent study reported that Wnt1 

can inhibit AMC by upregulating Ank and increasing ePPi levels [84]. 

Mutations in the Enpp1 gene are associated with a very rare autosomal recessive condition called 

generalised arterial calcification of infancy (GACI) [85, 86].   Children with GACI usually die in infancy 

because of substantial vascular calcification. However, recent work has shown that treatment with 

bisphosphonates can increase the life expectancy of infants with GACI [87, 88]. The Enpp1
asj 

mouse is 
widely used as a preclinical model for GACI [40] and has been used in several studies investigating 

treatments for this disorder. Subcutaneous administration of an NPP1 fusion protein (ENPP1-FC) can 

prevent the mortality and AMC in Enpp1
asj 

animals [89]. Whilst more recently, NPP1 enzyme replacement 
therapy was shown to have beneficial effects on AMC in this experimental model [90]. 

In patients with advanced chronic kidney disease, AMC is inversely correlated with circulating ePPi levels 

[65, 78, 91].  Evidence from pre-clinical studies has shown that AMC can be inhibited by daily injections of 

ePPi without adversely affecting the bone [92, 93]. Together this work suggests a potential therapeutic 

use for ePP in treating AMC. 
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Pseudoxanthoma elasticum (PXE) and ePPi 

PXE is an autosomal recessive condition characterised by decreased plasma ePPi levels and 

progressively worsening calcification of the skin, arteries and eyes [94, 95]. The primary cause of the 

condition is inactivating mutations in the gene encoding the ATP-binding cassette subfamily C member 6 

(ABCC6) [96]. However, polymorphism in the NPP1, TNAP and ANK genes have also been identified as 

risk factors for developing PXE [97]. 

ABCC6 is primarily expressed in the liver where it has be implicated in the controlled release of ATP from 

hepatocytes. The Abcc6
-/- 

mouse model displays the symptoms of PXE including a 40% decrease in 
plasma ePPi levels [95]. Mechanistic studies using these animals suggested that cells lacking ABCC6 

release less ATP, which results in a lack of substrate for NPP1 and consequently lower ePPi levels and 

the development of PXE [98]. In agreement, a recent investigation found that a deficiency in plasma ePPi 

is the major but not the sole cause of the ectopic calcification that occurs in the ABCC6 model of PXE [99]. 

Furthermore, treatment of Abcc6
-/-   

mice with daily injections of ePP had no effects on established 

calcification but prevented the development of further calcific lesions [100]. Inhibition of TNSALP also 

attenuates the formation of ectopic calcification in this mouse model [101, 102]. Taken together, this work 

serves to further illustrate the importance of circulating ePPi in preventing unwanted calcification. 

Hutchinson-Gilford progeria syndrome and ePPi 

The rare, premature ageing disease Hutchinson-Gilford progeria syndrome effects multiple organs and is 

characterised by high levels of atherosclerosis and AMC [103, 104]. It is caused by a mutation in the 

prolamin A gene that results in the production of progerin, a mutant form of the lamin A protein. 

Overexpression of progerin in a mouse model resulted in decreased circulating ePPi levels and AMC, 

effects attributed to increased TNSALP activity, reduced extracellular ATP levels [105] and lower ePPi 

generation from ATP [106]. Treatment with ePPi or ATP and ecto-nucleotidase inhibitors decreased the 

AMC that developed in these animals [105] and increased longevity [106]. 

ePPi in the circulation 
The concentration of ePPi in the plasma is reported to be in the range 1-6M/litre [107]. Early studies 

using 
32

P labelled PP in dogs suggested that the daily turnover of ePP was in the range of 100mg/day, a i i 

small amount compared to the many grams generated during intracellular biosynthetic reactions [108]. 

Furthermore, work by Russell et al [109] revealed that the ePPi in bodily fluids, including urine, is 

endogenous and does not come from dietary sources. They showed that feeding large amounts of PPi did 

not increase levels any more than giving the same level of Pi.   However, a recent study challenged this 
-/- 

idea by reporting that ePPi has bioavailability when administered orally [110].  Using ttw/ttw and Abcc6 
mice, Dedinszki et al showed that oral ePPi reduced the ectopic calcification that develops in these 

animals [110]. A low level of oral bioavailability (versus none) increases the potential for use of ePPi 

therapeutically and therefore this warrants further work to fully understand the pharmacology and kinetics 

involved. 

The tissue source of circulating ePPi is also an area of some debate. Whilst there is evidence to suggest 

that the skeleton may be an important source [32], more recent work has implicated the liver in this 

process [98].   Nonetheless, it has become evident that systemic ePPi  plays a key role in preventing 

pathological soft tissue calcification. This is illustrated by the observation that plasma ePPi is decreased in 

patients with AMC [78, 91]. Furthermore, it has been reported that transplanting Enpp1
-/- 

aortas into 

Enpp1
+/+ 

littermates stopped the development of AMC; conversely, if normal aortas were transplanted into 

Enpp1
-/- 

mice they began to calcify [65]. As a result it has been suggested that systemic ePP levels could 

represent a measureable risk factor for AMC [65]. 

Bisphosphonates and ePPi 

Bisphosphonates (BPs) are potent inhibitors of osteoclast activity that are widely used clinically to prevent 

the bone loss associated with conditions such as osteoporosis, metastatic bone disease and Paget‟s 

disease. They are chemically stable analogues of PPi, in which a carbon atom replaces the central oxygen 

to form a P-C-P moiety. The individual BPs are produced by differences in the R1 and R2 side chains off 

the central carbon atom [111]. Like PPi, BPs bind strongly to bone mineral and inhibit the formation and 

propagation of hydroxyapatite crystals [112]. However, the binding affinity of individual BPs and 

consequently their uptake and persistence is affected by the R1 and R2 groups [113]. 
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The ability of BPs to inhibit skeletal and soft tissue mineralisation was problematic with some of the early 

BPs such as etidronate. The newer BPs display a larger therapeutic window between the inhibition of 

bone resorption and mineralisation, meaning this is no longer a clinical problem. Several studies have 

shown that BPs inhibit bone mineralisation  in vitro [114, 115]. However, these actions may prove 

beneficial if BPs are to be used as potential treatments for treating conditions associated with unwanted 

calcification including AMC, PXE and GACI. Indeed there are now a several pre-clinical studies which 

report beneficial effects of BPs in mouse models of these conditions. In the Enpp1
asj 

model of GACI, 
treatment with etidronate and alendronate reduced ectopic soft tissue calcification and restored bone 

architecture [116].   Etidronate also decreased the development of ectopic calcification in the Abcc6
-/-

 

model of PXE, however it could not reverse existing mineralisation [117]. BP treatment has also been 

shown to extend the lifespan of children with GACI [87, 88]. A recently published study also reported 

beneficial effects of a novel BP compound (FYB-931) on VSMC calcification in vitro and in a rat model of 

AMC [118]. 

The ability of nitrogen containing BPs to inhibit protein prenylation means that they can have additional 

clinical effects. For example, in a mouse model of Hutchinson-Gilford progeria syndrome treatment with 

zoledronate and a statin lead to increased lifespan and an attenuation of many of the tissue ageing effects 

[119]. These data led to the use of this drug combination in patients with Hutchinson-Gilford progeria 

syndrome with encouraging results [120, 121]. 

Concluding remarks 
Understanding of how ePPi prevents pathological mineralisation has increased significantly since the initial 

seminal work describing its physicochemical effects on hydroxyapatite formation. It is now evident that 

several proteins are involved in the formation, transport and metabolism of ePPi and defects in any of 

these can have a major impact on the level of mineralisation. ATP hydrolysis appears to be the key 

source of ePPi and further work is required to determine whether alterations in controlled ATP release 

indirectly influence ePPi levels. Additional studies are also warranted to establish the mechanisms by 

which ePPi can induce intracellular signalling pathways and the potential therapeutic uses of this simple 

molecule. 
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Figure Legends 

Figure 1. The regulation of ePPi levels 

ATP is continually released from cells via controlled mechanisms such as vesicular exocytosis. Once 

outside the cell, ATP is rapidly hydrolysed by NPP1 to produce ePPi and AMP. The membrane protein 

ANK also contributes to ePPi levels by transporting it from the inside to the outside of the cell. TNSALP 

hydrolyses ePPi  to generate 2 x Pi  molecules. The main action of ePPi  is to prevent mineralisation 

/calcification by inhibiting hydroxyapatite crystal formation and growth. ePPi can also regulate gene 
expression suggesting the presence of an unidentified receptor/sensor. 
 

 
 
  



 

Figure 2. The effect of ePPi on bone mineralisation and VSMC calcification 

(A) Treatment with 1M ePPi inhibits bone mineralisation by 45% with complete inhibition of mineralisation 

at 100M ePPi. (B) ePPi (≥10M) decreases VSMC calcification by up to 90%. Data shown as box and 

whisker plots (min-to-max values) and is from 5 independent experiments; * = p<0.05, ** = p<0.01, *** = 

p<0.001. (C) Representative phase contrast, alizarin red stained images showing the inhibition of bone 

mineralisation and VSMC calcification by ePPi. The arrow indicates regions of unmineralised matrix in the 

osteoblast cultures. Scale bars: osteoblast = 200m, calcifying VSMC = 50m. 

 

 
 

  



 

Figure 3. Ectopic calcification in Enpp1
-/- 

mice 

In vivo microcomputed x-ray tomography scans showing the widespread ectopic calcification that 

develops in Enpp1
-/- 

knockout mice.  The arrows highlight the calcification of the whisker vibrissae, eye, 

ear pinna, trachea, ligaments and joints. The images are of 20 week-old animals at 9m resolution and 

were obtained with a SkyScan 1176 high resolution in vivo scanner (Bruker MicroCT, Kontich, Belgium). 
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