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Minimalist analogue robot discovers animal-like walking gaits 1 

 2 

Benjamin J. H. Smith and James R. Usherwood 3 

Royal Veterinary College, London, UK 4 

 5 

Abstract: 6 

Robots based on simplified or abstracted biomechanical concepts can be a useful tool for investigating 7 

how and why animals move the way they do. In this paper we present an extremely simple quadruped 8 

robot, which is able to walk with no form of software or controller. Instead, individual leg movements 9 

are triggered directly by switches on each leg which detect leg loading and unloading. As the robot 10 

progresses, pitching and rolling movements of its body result in a gait emerging with a consistent leg 11 

movement order, despite variations in stride and stance time. This gait has similarities to the gaits used 12 

by walking primates and grazing livestock, and is close to the gait which was recently theorised to derive 13 

from animal body geometry. As well as presenting the design and construction of the robot, we present 14 

experimental measurements of the robot’s gait kinematics and ground reaction forces determined using 15 

high speed video and a pressure mat, and compare these to gait parameters of animals taken from 16 

literature. Our results support the theory that body geometry is a key determinant of animal gait at low 17 

speeds, and also demonstrate that steady state locomotion can be achieved with little to no active 18 

control. 19 

1. Introduction: 20 

The gaits that quadrupedal animals use have been a source of fascination for researchers for centuries, 21 

both from the perspective of biology and legged robotics. Understanding why animals use the gaits they 22 

do can reveal what parameters are selected for in legged locomotion, and may therefore lead to better 23 
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treatments for gait disorders due to age or pathologies, and enable more robust and efficient walking 24 

and running robots. 25 

A gait cycle is divided into the stance phase, where a foot is in contact with the ground, and the swing 26 

phase, where the foot is lifted and moved to the next position. Following Hildebrand [1], gaits can be 27 

categorised into symmetric, where the left and right feet of a pair move alternately (e.g. walking or 28 

trotting), and asymmetric, where the left and right feet move at approximately the same time (e.g. 29 

galloping or bounding). Symmetric gaits can be described using two quantities: duty factor; the 30 

proportion of the stride for which each foot is on the ground, and phase; the timing of the beginning of 31 

stance of a forefoot relative to the beginning of stance of the hind foot on the same side. For example, 32 

in a running trot the duty factor is < 0.5 (since the animal is completely off the ground for a proportion 33 

of the stride), and the stance and swing phases of diagonal pairs of legs are synchronised so the phase is 34 

50%. .  It is generally agreed that gaits are linked to speed; typically, quadrupeds walk at low speeds, and 35 

transition to a trot and finally a gallop as their speed increases [2]. However, the mechanisms which 36 

determine which gaits are used in a particular situation, and how and why animals transition between 37 

gaits, are still poorly understood. Some animals, such as small rodents which use a running walk 38 

throughout most of their speed range [3], do not appear to have a strong relationship between their 39 

speed and their gait. Some species use rare or alternative gaits, such as camelids which pace at speeds 40 

where most animals might trot [4], or primates which use diagonal sequence walks where most animals 41 

would use a lateral sequence walk [5].  Conversely, some animals appear to avoid particular types of 42 

gait, such as gnu which transition directly from walking to cantering [6].  Some animals even use 43 

different gaits at different points in their lives, such as macaques, which have been observed to use 44 

lateral sequence walks when young, and shift to diagonal sequence as they age [7]. 45 
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Both physical and neurological mechanisms have been proposed for why gaits are selected and how 46 

animals transition between gaits [8][9]. One of the most popular theories is that quadrupedal animals 47 

select the gait which is energetically optimal at a given speed [10]; energy cost for a gait changes in a 48 

curvilinear way with speed, thus animals will switch gaits at the speeds where the energy curves for 49 

different gaits intersect, moving to whichever gait will minimise energetic cost. Recently, an energetic 50 

explanation has also been proposed for the phases used by walking quadrupeds[11]; the duty factor 51 

used by the animal determines the relative directions of the centre of mass velocity and the limb forces, 52 

and hence whether it is more economical to reduce vertical centre of mass velocity by distributing 53 

footfalls evenly through time (i.e. a phase of 25% or 75%) or to increase vertical centre of mass velocity 54 

with footfalls that occur close together (i.e. a phase closer to 50%). This is in contrast to previous 55 

stability based explanations for leg phasing during walking, which suggested that quadrupeds attempt to 56 

optimise their support polygon by avoiding situations where they would only be supported by two limbs 57 

[12]. As with bipeds, inverted pendulum dynamics impose an upper limit on the speed quadrupeds can 58 

walk before switching to a running gait [13]. Unlike bipeds, however, many quadrupeds exhibit a second 59 

gait transition from trotting to cantering or galloping; it has been suggested that this is because animals 60 

select the gait which minimises peak forces on the musculoskeletal system, and thus reduce the chance 61 

of injury [14]; peak forces tend to increase with speed in running, however there is a discontinuous drop 62 

in peak force when a quadruped switches from a trot to a gallop[15].  Recently, an alternative theory has 63 

been proposed for the trot-canter transition [16]; animals select gaits to avoid energetically 64 

disadvantageous pitching motions about their centre of mass.  65 

As well as these mechanical explanations, a number of researchers[17][18][19] have also proposed that 66 

gaits can be modelled in terms of oscillator dynamics, with limb phasing and transitions between gaits 67 

emerging from the neural or software interactions of the oscillators. The biological basis for this model 68 

comes from work by Brown [20], who found that hindlimb rhythmic motor activity does not require 69 
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sensory input. Later work by Grillner [21] found that sensory input can tune Central Pattern Generators 70 

(CPGs), but does not necessarily drive them, while Duysens and Pearson [22]found that applying a load 71 

to a leg can prolong the stance phase for an indeterminate length of time. One example of how this 72 

model can be implemented is given by Fukuoka, Habu and Fukui [23], using a computer model of a 73 

quadruped robot with a CPG controlling each leg. These CPGs were connected by fixed couplings which 74 

had been tuned to achieve a steady trot; however, the CPGs could be adapted with feedback from force 75 

sensors on the model’s feet, which inhibited the leg from transitioning from stance to swing phase while 76 

the leg was loaded. This model was able to exhibit a range of gaits at different speeds, including walking, 77 

trotting and galloping, and transitions between the gaits. The researchers concluded that the pitch and 78 

roll of the body caused a difference in load between the legs of a diagonal pair; specific gaits are caused 79 

by a particular combination of body posture and speed. A similar principle was used by Maufroy, 80 

Nishikawa and Kimura [24] to control both locomotion and posture in both a modelled and real 81 

quadruped robot; each leg had its own independent CPG based controller, which set the leg into the 82 

stance phase when it was loaded, and into the swing phase when it was unloaded. Using identical 83 

parameters for all the legs resulted in a pace gait, where ipsilateral front and rear legs moved at the 84 

same time; incorporating a delay into the fore leg controllers resulted in a diagonal sequence walk, 85 

where a contralateral forefoot moved after a hind foot. Although the robot was originally designed with 86 

no interleg co-ordination, it was found to be sensitive to lateral perturbations, so an ascending co-87 

ordination mechanism was implemented. The combination of CPGs and sensor inputs has also been 88 

used to improve robustness, with sensor inputs acting as reflexes which tuned the CPG to adapt to 89 

different situations; such as [25], where reflexes were used to tune a CPG to prevent stumbling over 90 

obstacles, and rolling on slopes. 91 

Owaki et al. [26] showed that the couplings between oscillators do not have to be encoded in the 92 

controller, and can instead be physical connections due to the body of an animal or robot, which they 93 

Page 4 of 22AUTHOR SUBMITTED MANUSCRIPT - BB-101823.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



described as ‘physical communication’. They constructed a quadruped robot controlled using a central 94 

pattern generator (CPG) formed by four decoupled oscillators, one on each leg. A force sensor on each 95 

leg provided feedback to the oscillator, which was used to determine its phase. This robot, and its 96 

subsequent developments, was able to move with animal-like gaits, and carry out speed dependent gait 97 

transitions, despite the lack of centralised control [27]. As well as demonstrating that physical 98 

communication could be used to produce a quadruped gait in the absence of neurological coupling, 99 

these robots were also able to adapt to different loading configurations which changed the position of 100 

the centre of mass, by using different gaits, such as switching from lateral sequence to diagonal 101 

sequence walking. This suggests that body geometry plays a role in which gait is used. More recent 102 

research has found that the interdependence of body geometry and gait also extends to body bending; 103 

optimal gaits were discovered in a salamander-like robot when body flexion and leg occur in 104 

synchronisation[28]. The roles of other physical properties of a robot’s structure in determining gait 105 

have also been investigated, in particular compliance. The goal in [29] was to achieve fast stable 106 

locomotion via open loop compliant stabilization; this was achieved by adapting limb stiffness to speed 107 

in real time to follow the Spring Loaded Inverted Pendulum (SLIP) model, where minimum leg length 108 

was at midstance. This allowed the robot ‘Cheetah-cub’ to run stably at 6.9 body lengths per seconds, 109 

and traverse discontinuous terrain without needing any direct adaptation of its CPG controller. A similar 110 

concept known as ‘embodied computing’ was used in[30] to simplify the control of a quadruped robot; 111 

control signals were directly related to sensor inputs, via non-linear transforms which the robot learned 112 

in real time, and control was outsourced to compliant structural elements rather than a processor. This 113 

enabled the robot to discover stable trotting and walking gaits within a few strides.  114 

The system presented here takes the principle of body structure affecting gait and extends it to a system 115 

in which gait is determined purely by body geometry, with no controlling oscillators or CPG. This is based 116 

on a recent paper which proposed that animals such as horses and sheep use a specific ‘grazing gait’ 117 
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while foraging, with a footfall timing which emerges naturally from their body geometry [31]. The 118 

locomotion used during grazing differs from normal walking in that it has a duty factor approaching 1, 119 

rather than around 0.65, and a phase close to (but not exactly) 50%, rather than 25%. The intermittent 120 

nature of grazing requires the animal to move between postures that are statically stable (i.e. with at 121 

least three feet on the ground so that the centre of mass falls within the polygon of support), whereas 122 

the more dynamic nature of continuous gaits allows the animal to support itself on only two or one legs. 123 

Very slow walking, with a duty factor > 0.75, can achieve this stability requirement by moving a forefoot 124 

immediately after the ipsilateral hindfoot; however, this results in discontinuities in weight support, 125 

which may require corrections which are disadvantageous in terms of energy or stability. Instead, 126 

grazing animals move a foot when it is maximally unloaded; a gait which represents a local, rather than 127 

global minimum in terms of work, but which also minimises any disruption in weight support. 128 

The grazing gait may be of interest to engineers interested in designing robots for moving intermittently 129 

over large areas, for example when surveying for minerals, or minesweeping; if low level locomotion 130 

control can be achieved with little to no computational effort then more processing power will be 131 

available for sensing and path planning. In a more general sense it adds further information to the 132 

discussion about the extents to which animal gaits are determined by neurological or mechanical 133 

structures.  134 

2. Methods: 135 

2.1 Robot design: 136 

In order to replicate the model in [31] as closely as possible, the robot structure should meet the 137 

following assumptions: firstly, the hip and shoulder should vault from low to high then back to low again 138 

over the course of a stance; this requires constant leg length during the stance phase (i.e. no knee or 139 

ankle joints). Secondly, the shoulders and hips should be connected with a rigid, table top like linkage, 140 
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which resists bending and twisting. The robot therefore consists of a rectangular body and four legs, 141 

each with one degree of freedom. Figure 1(a) shows a photo of the robot; it is 93mm long, 92mm wide 142 

(including the legs), stands 102mm tall and weighs 220.1g. More detailed mechanical and electronic 143 

plans can be found in the supplementary information S1.1 and S1.2. 144 

 145 

Figure 1: Robot design. (a): A photograph of the completed robot. Each of the legs is fitted with a hard 146 

rubber foot to aid traction. (b): Simplified leg circuit. The switch SF determines the direction the motor M 147 

rotates, the switches S1 and S2 are limit switches, and the speed of rotation is determined by the output 148 

of the voltage regulator Vreg, which is a function of the values of R, R1 and R2. 149 

In order to demonstrate that biologically plausible locomotion can emerge primarily from the 150 

mechanical configuration of an animal with little to no neurological input, it was decided to build an 151 

analogue robot, controlled using analogue electronics rather than a digital microprocessor. Analogue 152 

robots include BEAM (Biology, Electronics, Aesthetics and Mechanics), or Biomorphic robots [32], which 153 
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attempt to achieve biological- like reactions to stimuli using simple analogue circuits, and Braitenberg 154 

vehicles [33] which produce apparently complex behaviours such as exploring based purely on sensor 155 

inputs. These types of systems were particularly popular in the early days of robotics, when the size of 156 

computers made more complex on board controllers unfeasible; however, the close links between 157 

sensors and actuators with minimal interposition of software also makes them an interesting model of 158 

low level biological control.  Still and Tilden demonstrated an analogue quadruped robot which was able 159 

to walk with no software [34]. Instead, control was provided using a ring of four coupled oscillators, 160 

each implemented using an inverter and a resistor-capacitor (RC) high pass filter. This network produced 161 

two different modes of oscillation, which translated to two different gaits: a walk like gait and a trot like 162 

gait; however, since the robot was only actuated by two motors its ability to mimic biological gaits was 163 

limited. Shaikh, Hallam and Christensen-Dalsgaard [35] used a Braitenberg vehicle to replicate lizard 164 

phonotaxis in a two wheeled robot; two microphones, filtered using their ear model, were coupled 165 

directly to the contralateral motor inputs. The output level from the ‘ear’ directly determined the speed 166 

of the motor, so that the robot would rotate to face, and then move towards, a stimulus of the correct 167 

frequency. This enabled continuous control of the robot’s motion, an improvement over the step 168 

control which resulted from having to make decisions at discrete intervals. 169 

In the robot presented here, the analogue approach was carried out by using mechanical components 170 

such as switches, rather than encoders, and only analogue, rather than digital, components, so that the 171 

system moved purely on reflexes rather than logic, and the total number of electronic components was 172 

kept as low as possible. Each leg is controlled using an identical circuit (shown in 1(b)): actuation is 173 

provided by a 3V brushed DC motor with an integrated gearbox with a high gear ratio (RS Pro 951D 174 

series) resulting in low speed, low power movements most closely analogous to the grazing gait, and low 175 

backdrivability and thus low compliance to better approximate the model. The DPDT switch SF (Knitter 176 

MPBS-42H01-F14) is used to change the direction of leg movement; when it is depressed (i.e. when the 177 
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leg is in stance), the leg moves backwards, and when it is released (i.e. when the leg is in swing) the leg 178 

moves forwards. The microswitches S1 and S2 (Omron D2F-FL3) on either side of the motor limit the 179 

distance the leg can move in either direction. Unloaded legs therefore move forward until either they 180 

reach the front limit, when they remain at the extreme forward position, or until they are loaded, when 181 

they move backwards until they either reach the rear limit, where they remain at the extreme backward 182 

position, or until they are unloaded. Power to all four legs is provided using a 9V PP3 battery, due to its 183 

compact size. A step-down voltage regulator (ON Semiconductor LM2575TV-ADJG) is used to provide 184 

consistent voltage and current to the motor; the output voltage           
  

  
 , where Vref is the 185 

battery output and R1 and R2 are as shown in Figure 1(b). By connecting the resistor Rv across one side of 186 

the SF switch, it changes between being connected in parallel across R1 or R2 when SF toggles. This makes 187 

it possible to change the effective value of the ratio 
  

  
  for each different state of SF, and thus achieve 188 

different output voltages from the regulator depending on whether the switch is depressed or not. This 189 

results in faster movements when the leg is unloaded, minimising the swing time, while allowing for 190 

slower, higher torque movements in stance. However, as there is no feedback control, the 191 

instantaneous speed of the motors is dependent on motor mechanical load. 192 

The body and legs were designed in Siemens SolidEdge and 3D printed in PLA using a MakerBot 193 

Replicator 2. Each leg shares a similar basic design; however, the ‘shoulders’ which contact the limit 194 

switches are asymmetric such that the forward reach of the front limb is mirrored in the backwards 195 

reach of the ipsilateral rear limb, and the backwards reach of the front limb is mirrored in the forwards 196 

reach of the ipsilateral rear limb. This prevents the feet colliding during walking. A large portion of each 197 

leg is made up of SF which acts as a contact sensor; these switches were modified from an off the shelf 198 

model to have a softer and shorter spring that would be deflected by the relatively low mass of the 199 

robot, and to reduce the travel of the switch so as to minimise leg compliance which would diverge from 200 
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the idealised ‘toppling table’ model. The length of the legs was also designed to prevent collisions, and 201 

also to ensure that the ‘toppling’ motion caused large enough vertical displacements to unload or load 202 

the switches at the start or end of stance. 203 

2.2 Experimental protocol and data analysis:  204 

A VH3 Walkway pressure mat (Tekscan Inc., Boston, MA, USA) was used to determine the forces exerted 205 

by all four of the robot’s feet concurrently, while a Basler acA2000-165umNIR high speed camera (Basler 206 

AG, Ahrensburg, Germany) was used to video each trial. A push switch connected to a USB-6008 DAQ 207 

(National Instruments, Austin, TX, USA), which sent a pulse to both instruments, was used to trigger 208 

simultaneous data collection via Tekscan Walkway software v7.70 in the case of the pressure mat, and 209 

custom LabView code in the case of the camera; both sets of data were collected at 100Hz. The robot 210 

was placed at one end of the walkway, slightly before the edge of the sensing area. Recording was 211 

triggered when the robot reached the recording area, and stopped when the robot reached the end of 212 

the mat or stopped moving (e.g. because it toppled over). The best 25 videos were used for analysis. 213 

Initially the robot was too light to produce usable data from the pressure mat, so 50g of wheel balance 214 

weights were fixed to the underside of the body, as close to the centre as possible. 215 

3. Results and discussion: 216 

Tekscan Walkway software v7.70 was used to segment the pressure mat output into individual footfalls 217 

and calculate vertical ground reaction forces (GRF), Kinovea 0.8.15 was used to digitise the high speed 218 

videos and MATLAB was used to analyse the digitised data. Stride time for each leg was defined as the 219 

time between two consecutive touchdowns. Duty factor was calculated for each leg as the duration of 220 

contact divided by the stride time. Phase was calculated for left and right sides separately as the interval 221 

between hind and fore foot touchdown times divided by median stride time for that side. Since strides 222 

did not always start with the same foot, phases were converted to radians and transformed using the 223 
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MATLAB function ‘wrapTo2Pi’, for analysis; normalised values are reported here for ease of 224 

comprehension.  225 

Figure 2(a) shows an example of the trajectories taken by the robot’s feet; hind and forelegs display very 226 

different trajectories. The foreleg trajectories are asymmetric, initially with little vertical displacement, 227 

then lifting higher towards the end of the swing. Conversely, the hind leg trajectories are more 228 

symmetric, but with very little vertical displacement. Further examples of the robot’s motion can be 229 

found in videos S2.1-2.3 in the supplementary information, along with corresponding pressure mat 230 

output. The order in which the feet move is very consistent; 82.8% of the foot transitions are from either 231 

hind foot to ipsilateral forefoot, or forefoot to contralateral hind foot, the same as in the lateral 232 

sequence walk used by most quadrupedal animals. In contrast, the stance and stride times, and hence 233 

the duty factors, display a lot of variation; average means and standard deviations are shown in Table 1 234 

below. 235 

 LH LF RH RF 

Stance time (s) 0.82±0.18 0.82±0.36 0.88±0.23 0.65±0.25 

Stride time (s) 1.51±0.24 1.23±0.33 1.51±0.20 1.31±0.42 

Duty factor 0.54±0.10 0.64±0.15 0.60±0.11 0.49±0.12 

Table 1: Mean and standard deviations of stance time, stride time and duty factor for each of the legs 236 

 237 

 238 

 239 

 240 
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 241 

 242 

 243 

 244 

Figure 2: Exemplar kinematics for the robot’s gait. (a) High speed video frame showing trajectories of the 245 

robot’s feet throughout a stride, tracked using Kinovea. (b): Gait diagrams showing how the robot’s walk 246 

changes with duty factor. (i) a duty factor of 0.45m and a phase of 0.43, (ii) a duty factor of 0.75 and a 247 

phase of 0.53.  248 
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249 
Figure 3: The relationship between phase and duty factor (calculated as described above) in walking 250 

animals and the robot. (a): Phase for left and right sides plotted against median duty factor for that side, 251 

for individual strides. Values for animals and group labels are taken from [11]; group 1 animals are slow 252 

or small and use high duty factors (e.g. hippo, mouse), while group 2 animals are more upright and use 253 

lower duty factors (e.g. horse, dog). (b): Rose plots of phases binned by duty factor, DF, illustrating how 254 

phases rotate around counterclockwise as duty factor increases 255 

This variation in foot timings is likely a consequence of the lack of active control making the robot very 256 

sensitive to initial conditions. The robot is lifted so that all four feet are unloaded and return to their 257 

extreme forward position, then it is placed on the mat with all four feet making contact almost 258 

simultaneously; despite this, slight variations in foot loading or relative leg position occur at the start of 259 

a trial, which then propagate through the walk cycles. Since there is no feedback control in the motors, 260 

neither the speed of leg movements, nor the speed of the whole robot is constant throughout, or 261 

between strides. The fact that the same foot order is used in almost every transition, despite these 262 

variations, suggests that it is not dependent on stance kinematics or overall body speed, and is 263 

conversant with the model presented in [11] and [31], where the relationship between phase and duty 264 
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factor is independent of absolute speed. However, one effect of the changes in timings is that while the 265 

order of leg movements is the same, the relative phase of the leg movements changes with duty factor, 266 

as shown in Figure 3(a). This means that at duty factors up to 0.6 the phase is mostly below 0.5, 267 

however as duty factor increases the phase also increases. This can be seen more clearly when the data 268 

is binned by duty factor and plotted as rose plots (Figure 3(b)); as duty factor increases the distributions 269 

rotate counter clockwise from the upper quadrants to the lower left quadrant, with a modal phase of 270 

0.43 at duty factors less than 0.5, to a modal phase of 0.53 at duty factors higher than 0.7. Gait diagrams 271 

for these two cases are illustrated in Figure 2(b). The overall trajectory of the duty factor – phase plot 272 

follows that of the animals presented in [11], but shifted so that phases are higher for a given duty 273 

factor. Towards the higher end of duty factor and phase it begins to extend into the region occupied by 274 

primates (which typically use a diagonal sequence walk close to 0.75 phase); however, diagonal 275 

transitions (i.e. from hind to contralateral fore, or fore to ipsilateral hind) only comprised 7.4% of the 276 

total number of the robot’s foot movements. The gait used by the robot is more similar to the grazing 277 

gait defined in [31], to the extent that it has a conserved footfall pattern with variations in stance time, 278 

and phases close to 0.5, although these characteristics are also displayed at duty factors much lower 279 

than 1, and the phases do not appear to be converging on 0.5, instead overshooting, particularly at 280 

higher duty factors. Unlike the grazing gait, the robot’s gait is not truly intermittent; while some legs 281 

achieve high duty factors above 0.8 and others achieve low duty factors below 0.5, this is typically due 282 

to high levels of rolling to one side or the other, rather than pauses where all four legs are on the ground 283 

for high duty factors, or aerial phases for low duty factors. If the robot entered either of these states it 284 

would likely signal the end of the trial, either because it would remain stationary, or because it would tip 285 

over (depending on whether the positions of the feet enclosed the projection of the centre of mass to 286 

the floor when they were all loaded). This tendency to roll may also explain why the phases did not 287 

converge on 50%; the simplified model of the grazing gait considered only displacement of the body and 288 
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feet in two dimensions – vertical and front-rear; however, the rolling moment also produces lateral 289 

movement of the centre of mass (c.f. [36]). At the moment of foot transition in a pure 50% phase gait, 290 

the feet on one side of the robot are at their point of closest separation, while the feet on the other side 291 

are at their furthest separation. This means that the robot is particularly vulnerable to excessive rolling, 292 

and potentially tipping over sideways, resulting in a failed stride which was therefore not included in the 293 

analysis.   294 

 295 

Figure 4: Forces exerted by the robot’s feet, thresholded to remove noise (a): Mean forces for hind and 296 

fore feet plotted against phase. (b): Peak (maximum) rate of change for hind and fore feet plotted 297 
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against phase. (c): An example force trace for all four legs: LH denotes left hind foot, RH denotes right 298 

hind, LF denotes left fore and RF denotes right fore. Discontinuities can be observed at the point of touch 299 

down in the traces for the fore feet. 300 

Figures 4(a) and 4(b) show mean force, and peak rate of change of force throughout stance plotted 301 

against phase for fore and hind legs.  A threshold of 25mN was applied to remove noise; this level was 302 

determined by recording data from the unloaded pressure mat, with the threshold set to one standard 303 

deviation above the mean noise value. Mean forces are similar for fore and hind feet across phases, with 304 

a decrease in peak force as phase increases, particularly in the fore limbs, which is likely due to the 305 

corresponding increase in duty factor[37].  However, rate of change of force is much higher for fore 306 

limbs; this corresponds to the trajectories shown in Figure 2(a), where the vertical displacement in the 307 

forelimbs changes much more sharply than in the hind limbs. For both hind and fore limbs peak rates of 308 

change of force decrease with increasing phase. Figure 4(c) shows a typical force trace over a stride for 309 

each of the legs, and demonstrates that the high rate of change of force in the forelegs is due to a large, 310 

but transient, spike in force at the beginning of stance.  This corresponds to the discontinuities identified 311 

in[31]; the reduction of these discontinuities at higher duty factors and phases supports the theory that 312 

the grazing gait is used to minimise disruptions in weight support, and although the order of foot 313 

movements is not the same as primates, it also suggests that using higher phases may be a way to 314 

reduce discontinuities which would be undesirable when walking on branches. The relative timings of 315 

fore and hindfoot movements also support leg loading over the stability theory; if the legs were moving 316 

in a way that maximised stability margin, then a hindfoot movement would be followed immediately 317 

with a forefoot movement, while the fore-hind transition would have a longer interval. This would result 318 

in the feet forming a parallelogram of support. However, the mean time interval between fore-hind foot 319 

movements 0.62±0.33s, much shorter than the mean interval of 1.01±0.44s between hind-fore 320 
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movements, and much closer to the grazing gait where the hind limb moves directly after the forelimb, 321 

forming isosceles trapeziums of support. 322 

4. Conclusions: 323 

In this paper we have demonstrated that it is possible to achieve quadrupedal walking using only 324 

reflexes responding directly to sensor inputs, without any form of directed software controller. 325 

Furthermore, we have found that this gait is similar in a number of ways to gaits found in nature; the 326 

lateral sequence walk used by most animals at lower duty factors, and the ‘grazing gait’ used by many 327 

ungulates while feeding at higher duty factors. These results provide some empirical support for the 328 

theory proposed in [31]: that the grazing gait develops spontaneously from an animal’s body geometry, 329 

with the timing and order of foot movements determined by leg loading rather than attempting to 330 

maximise stability. It was also suggested in [31] that the ‘toppling table’ model could also be applied to 331 

primate gaits which have evolved in response to the challenges on moving on an arboreal substrate; 332 

higher phases may be a tactic to ensure that any discontinuities in force occur at hind limb placement 333 

(when the limb contacts substrate that has already been tested) rather than forelimb placement (when 334 

the limb contacts new substrate). The results presented here may also support this hypothesis, by 335 

revealing that higher phases can reduce discontinuities in force.  Future manipulations, such as changing 336 

the position of the robot’s centre of mass, or changing the ratio of leg to body length, could be used to 337 

test how well the ‘toppling table’ theory holds for more specific body morphologies, such as humped 338 

animals like camels. 339 

The similarities with the model in [31] occur despite the fact that it was impossible to reproduce the 340 

model’s motion exactly. For example, there is no swing phase in the model, legs simply disappear at the 341 

end of stance and reappear at the beginning of the next stance; the feet of the model remain stationary 342 

during stance, whereas in the robot there is some slipping; the limbs in the model move at a constant 343 
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speed, whereas in the robot the speed is dependent on limb loading; and the model reacts to changes in 344 

loading instantaneously, whereas the robot’s reactions are limited by the physical delays inherent in its 345 

mechanical and electronic components. Although these factors may be the cause of the variations 346 

observed in stance and swing times, they did not prevent the robot reproducing the gait used by the 347 

model, suggesting that geometry dominates over them in terms of determining the robot’s gait.   348 

From a robotics perspective, our results contribute to the literature on walking robots with distributed, 349 

embodied or reflexive control schemes by showing that consistent walking gaits do not need to be 350 

encoded using CPGs or oscillators, and can instead emerge purely from body geometry and hardware 351 

dynamics. While some controller oversight would be necessary for speed and direction control and 352 

perturbation rejection, the computational load would be significantly reduced by removing the need for 353 

continual step to step control. 354 
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