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Divergent evolution of terrestrial 
locomotor abilities in extant 
crocodylia
John R. Hutchinson  1*, Dean felkler1, Kati Houston2, Yu-Mei chang3, John Brueggen2, 
David Kledzik2 & Kent A. Vliet2,4

extant crocodylia are exceptional because they employ almost the full range of quadrupedal footfall 
patterns (“gaits”) used by mammals; including asymmetrical gaits such as galloping and bounding. 
perhaps this capacity evolved in stem crocodylomorpha, during the triassic when taxa were smaller, 
terrestrial, and long-legged. However, confusion about which crocodylia use asymmetrical gaits and 
why persists, impeding reconstructions of locomotor evolution. our experimental gait analysis of 
locomotor kinematics across 42 individuals from 15 species of Crocodylia obtained 184 data points for 
a wide velocity range (0.15–4.35 ms−1). our results suggest either that asymmetrical gaits are ancestral 
for crocodylia and lost in the alligator lineage, or that asymmetrical gaits evolved within crocodylia 
at the base of the crocodile line. Regardless, we recorded usage of asymmetrical gaits in 7 species of 
Crocodyloidea (crocodiles); including novel documentation of these behaviours in 5 species (3 critically 
endangered). Larger crocodylia use relatively less extreme gait kinematics consistent with steeply 
decreasing athletic ability with size. We found differences between asymmetrical and symmetrical gaits 
in crocodylia: asymmetrical gaits involved greater size-normalized stride frequencies and smaller duty 
factors (relative ground contact times), consistent with increased mechanical demands. Remarkably, 
these gaits did not differ in maximal velocities obtained: whether in Alligatoroidea or Crocodyloidea, 
trotting or bounding achieved similar velocities, revealing that the alligator lineage is capable of 
hitherto unappreciated extreme locomotor performance despite a lack of asymmetrical gait usage. 
Hence asymmetrical gaits have benefits other than velocity capacity that explain their prevalence in 
crocodyloidea and absence in Alligatoroidea—and their broader evolution.

Extant Crocodylia have long been known to use almost all forms of walking and running locomotor modes 
(e.g., footfall patterns) present in quadrupedal mammals. These gaits include symmetrical (e.g., lateral/diagonal 
sequence walks; walking and running trots vide1,2) and asymmetrical (e.g., galloping, bounds and half-bounds) 
footfall patterns. Nevertheless, the diversity, scaling (body size correlations), and underlying mechanisms of this 
impressive locomotor repertoire are based only on a few studies of select species from the >23 extant members 
of Crocodylia. Symmetrical walking gaits have been fairly well studied for Crocodylia, mainly in alligatoroids 
such as Alligator mississippiensis (also Caiman crocodilus) [3–20 and see below]. There have been speculations 
or anatomical hints of divergent abilities in the “alligator lineage” (Alligatoroidea) vs. “crocodile lineage” 
(Crocodyloidea)21–24, but empirical evidence of any differences in locomotor abilities remains absent. Charig’s25 
anecdote of sustained bipedal running in a crocodile (repeated in more recent studies; e.g.26) is highly specious, 
never having been reliably documented in that or any subsequent studies.

Bounding (synchronized left-right forelimb and hindlimb motions separated by an aerial phase) and galloping 
(slightly asynchronous left-right motions; essentially a slower version of bounding) gaits have been described 
for some Crocodylus species, especially C. johnstoni27,28, C. porosus29 and C. niloticus30,31. It is often misquoted in 
general media or natural history accounts that C. johnstoni is the only crocodylian known to gallop or bound; 
some27 wondered if its bounding ability was “unique” but it is clear that this capacity is more broadly distributed 
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within Crocodylia. There is a brief report of putative asymmetrical gaits in juvenile Gavialis5,32, and anecdotes of 
these gaits in C. palustris, C. novaeguineae and Osteolaemus tetraspis33. It thus is poorly documented what species 
do use asymmetrical gaits — popular reviews of crocodylian biology often lament this gap in knowledge or recite 
old misinformation34–36.

In Alligatoroidea, studied velocities are almost exclusively slow, sustained walking <<2 ms−1 3–20. When asym-
metrical gaits are used by Crocodylia, they involve the fastest velocities that those species can attain on land, 
although few accurate measurements exist. Zug29 alleged bounding in C. porosus at up to 18 ms−1, which is faster 
than most land animals37; this was an error and ~1.8 ms−1 was intended27. Bornhauser and Ziswiler31 obtained 
similar velocities (0.4 to 2.0 ms−1) for a galloping C. niloticus. Velocities faster than 5 ms−1 have never been 
recorded for Crocodylia — up to 4.7 ms−1 maximal velocities were measured for C. johnstoni27,28, with similar 
estimates for C. niloticus30. Considering that bounding tends to be 2–4 times faster than trotting in C. johnstoni27, 
can species that do not use a gait faster than a relatively rapid, symmetrical trot (i.e. diagonal limbs in phase) only 
move 2–4 times slower than those that can use asymmetrical gaits?

The kinematics of asymmetrical gaits have been noted to be highly variable within and among Crocodylia, 
covering almost all possible footfall combinations1,38 and disparate correlations of velocity and kinematic param-
eters such as stride length or frequency27–29. Some of this variation appears size-related — Zug29 noted that only 
young C. porosus <2 m total length bound or gallop, and Webb and Gans27 claimed such gaits to occur “only in 
juveniles” of similar size. This apparent size bias has been speculated to be a biomechanical constraint22,39. Yet the 
dearth of empirical studies of asymmetrical gaits impairs broader understanding. Indeed, it remains uncertain 
what enables or constrains asymmetrical gait usage in Crocodylia. Complex interplay between vertebrae, oste-
oderms, connective tissue, skin and muscle39–42 as well as flexibility and stiffness of the intervertebral joints43,44 
may be critical elements. This complexity is augmented by the fact that the axial column switches from its plesio-
morphic function of lateral undulation to a derived dorsoventral undulatory motion in bounding and galloping 
Crocodylia28,31. The amount of lateral undulation was presumably reduced in more erect stem archosaurs and 
then increased back to near-ancestral levels in later Crocodylomorpha [e.g.15,31].

Despite intense study of locomotion in alligatoroids, at least at slow velocities, no members of this lineage have 
been clearly shown to truly bound or gallop21. Studies have also noted (sometimes subtle) differences in exercise 
physiology45, foot form and resulting tracks46, track-making kinematics47, pectoral girdle and humerus shape48, 
limb musculature and its allometry22 and limb or vertebral proportions23,24 that might relate to differences in 
locomotor function or even behavior among crocodylian lineages. Small A. mississippiensis “attempted to gal-
lop”11 but a full stride was not achieved, and alligators “could not be induced to gallop”9. Numerous studies have 
proposed that asymmetrical gaits are ancestral for Crocodylia21,27,39,49, inherited from more terrestrial ancestors 
in Crocodylomorpha (or even Archosauria). Given that most prior data were based on studies of C. johnstoni and 
C. porosus, what can a broader sample of locomotor data from Crocodylia tell us about the evolution of asymmet-
rical gaits? Is there clear evidence for an ancestral capacity for bounding and galloping gaits in Crocodylia and do 
all lineages, at least at small body sizes, retain this ability?

Here we report our study of crocodylian locomotor dynamics that includes video documentation of gait usage 
in 15 species from a variety of body sizes within the range expected to move quickly (≤2 m total length; ≤50 kg 
body mass). First, we reconstruct the evolutionary history of asymmetrical gaits, which have been speculated 
to only be restricted to a few species. Using basic phylogenetic theory, we test the hypothesis (H1) that routine 
asymmetrical gait usage is homologous for all Crocodylia (i.e., present in Alligatoroidea and Crocodyloidea). 
Second, we quantify biomechanical constraints on gait usage in Crocodylia, especially the scaling of asymmet-
rical gait kinematics. We test the hypothesis (H2) that capacity for asymmetrical gaits declines with increasing 
body mass (i.e., negatively allometric scaling), for key kinematic parameters such as maximal velocity (absolute 
and size-normalized), minimal duty factor (relative ground contact time per stride; correlated with peak limb 
force50); and maximal relative stride frequency. Third, if we do find differences in gait usage (via H1 being falsi-
fied) between the lineages of Alligatoroidea and Crocodyloidea, we test the hypotheses that (H3) gait kinematics 
are different between asymmetrical and symmetrical gaits in the two clades; and (H4) asymmetrical gaits in 
Crocodyloidea are faster than symmetrical gaits in Alligatoroidea.

Methods
We studied 42 individuals of 15 species of Crocodylia (body mass range 0.5 kg to 43 kg; Supplementary 
Dataset S1) at the St. Augustine Alligator Farm Zoological Park (Florida), outdoors during the daytime at mean 
summer temperatures ~30 °C (±2 °C approximately). An additional 14 individual Crocodylia (26 attempted tri-
als; 12 species, including three not in the final dataset: Paleosuchus trigonatus, Caiman jacare and Melanosuchus 
niger) were studied but did not provide useful data and were excluded from the study; whereas 7 of our 42 individ-
uals were measured twice in separate data collection sessions on different years (and here are treated as the same 
individual where relevant for statistical analyses). Crocodylians were caught from their enclosures, weighed and 
measured, and marked with white poster paint or infrared-reflective motion capture markers (1–2 cm diameter) 
around their joint centres of rotation. The animals were allowed to rest and recover from capture to minimize 
fatigue. Rest times between capture and between trials varied depending on keeper assessments of the condition 
of animals, and data collection sessions terminated when animals showed clear signs of fatigue or reluctance to 
locomote. Due to diverse constraints on available time for staff, experiments and animals, these rest times could 
not be standardized; nor could periodic cloacal temperature or blood lactate tests be performed.

For data collection, crocodylians were released at one end of a ~5 m long, 1–1.5 m wide runway on level 
ground, with its left central side facing a lateral view camera(s) and a second camera for dorsal view footage 
suspended above the central region. Animals were encouraged to move across the runway by simple release, 
auditory/visual cues, gentle prodding, and/or placement of refugia (bushes/water) at the end of the runway. The 
techniques used varied based on keepers’ advice customized to the individual animal and situation. The central 
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runway flooring was either a force platform with top plate (force data not presented here), solid wooden board, 
or woodchips, depending on accessible space during the three years of data collection sessions (see below). 
Crocodylians were not harmed for the purposes of this study. The experimental protocol was reviewed and 
approved by the Royal Veterinary College’s Ethics and Welfare Committee; approval number URN 2012 1187 R. 
All experiments were performed in accordance with relevant guidelines and regulations.

The above methods were consistently used, but as we collected data during three different years (2002, 2004, 
2005), the hardware and software used to collect and analyse the kinematic data varied. Video footage of trials was 
recorded in 2002 at 200 Hz (720 × 480 pixels), in 2004 at 60 Hz (720 × 480 pixels), and in 2005 at 50 Hz (720 × 576 
pixels). All video data were then digitally captured (Ulead Visual Studio 9.0; Ulead Systems, Taipei, Taiwan) as 
video files trimmed down to individual trials for initial analysis in Virtual Dub software (http://www.virtualdub.
org/), in which foot touchdown/liftoff timings (from video fields) were recorded for each visible limb for all com-
plete strides (cycle of footfalls). We classified footfall patterns using the limb phases1,2,28,38 as a fraction of a stride 
between foot touchdown events; with the left hindlimb as the “0” reference. These limb phases corresponded to 
categories of footfall patterns (“gaits”) coded as trot (1), lateral sequence (2), diagonal sequence (3), rotary gallop 
(4), transverse gallop (5), half-bound (6), and bound (7); codes 1–3 were symmetrical gaits and 4–7 asymmetrical. 
We also calculated stance phase duration (time from touchdown to liftoff) and swing phase duration (time from 
liftoff to touchdown) for each limb, stride duration (mean stance + swing phase durations for all limbs), stride 
frequency (SF; inverse of stride duration; as Hz), and duty factor (DF; stance phase duration as a fraction of stride 
duration; as mean of all limbs) as kinematic parameters used in our statistical analyses.

In Matlab software (The MathWorks, Inc., Natick, MA), we digitized hip and shoulder markers from videos to 
calculate mean forward velocities (u) across a stride, using objects of known scale in the field of view to calibrate 
from pixels to meters of distance. In the 2005 data collection session, we also had four motion capture cameras 
(MCU 500; Qualisys AB, Göteborg, Sweden) arranged around the runway area; instead of a lateral view camera. 
These cameras were used to record (at 240 Hz) the 3D positions of the infrared markers around the body and limb 
joints of subjects, replacing the 50 Hz videos for velocity but not footfall analysis in that dataset. Only trials that 
were deemed to involve relatively straight-ahead, steady-state locomotion were used for kinematic analysis. Yet 
as crocodylians did not normally move quickly in a true steady state (e.g., >10% velocity change within a stride), 
we used a rough subjective criterion for “steady”, erring on the side of maximal inclusivity to favor natural – and 
near-maximal, where feasible – locomotor patterns (inevitably including variation that would introduce noise 
into our dataset). All valid occurrences of different gaits within that final dataset were recorded for characterizing 
which species used each locomotor mode.

To facilitate comparisons between Crocodylia of different sizes moving with comparable relative kinematics 
(i.e. more dynamically similar51,52), we normalized kinematic parameters. Relative stride frequency (RSF) was 
computed using g = 9.81 ms−2 and h = extended hindlimb length to tip of third digit (in m):

= ⋅ ⋅ − − .RSF SF g h( ) (1)1 0 5

Dimensionless velocity (û); or the square root of the Froude number; was:

= ⋅ ⋅ − .u u g h( ) (2)0 5ˆ

Statistical analyses were conducted using SPSS Statistics software version 25 (IBM Corp., Armonk, NY). 
Phylogenetic statistics were not conducted as we had already split our sample into the lineages Crocodyloidea and 
Alligatoroidea and judged our sample inappropriate for available methods in this context. Linear models (LM) or 
linear mixed effects (LME) models (accounting for repeated measures from the same individuals using random 
effects) were used to assess hypotheses H2, H3 and H4. Residual variances were allowed to vary depending on the 
camera recording frequency (Hz) in both LM and LME models, because the higher frame rate and thus temporal 
precision of the 2002 (and 2004) datasets vs. 2005 might introduce non-systematic biases. Normality of the resid-
uals was assessed visually and data were log-transformed where necessary. We analyzed three datasets: (1) all data 
for all velocities and gaits pooled (n = 42 individuals; 8 Alligatoroidea); (2) all “running” data obtained, where 
running was identified based on DF < 0.50 and an asymmetrical gait (n = 12 individuals, 36 strides); and (3) the 
single fastest stride (for û values ≥0.90) per individual (n = 22 Crocodyloidea; 5 Alligatoroidea), as follows.

H1 was tested qualitatively based on footfall patterns; the absence of asymmetrical gaits in Alligatoroidea (or 
Crocodyloidea) would falsify it. We tested H2 using datasets 2 and 3 (comparing patterns for our fastest vs. any 
running trials), with log body mass as the predictor and log u, log û, DF, and RSF as the outcome variables. LME 
was used for analysis of all running trials (dataset 2), and LM was used for the analysis of each single fastest stride 
(dataset 3).

For testing H3, we used dataset 1 (all data), processed using LME as above; but comparing symmetrical gaits 
in Alligatoroidea with symmetrical and asymmetrical gaits in Crocodyloidea (i.e., three groups) to test for differ-
ences in adjusted means for log u, log û, DF, and RSF between the three groups.

We tested H4 only with dataset 3 (fastest trial per individual with û ≥ 0.90), using LM, where only symmetri-
cal gaits of Alligatoroidea were compared with asymmetrical gaits of Crocodyloidea.

All data including the videos of trials analyzed, and statistical code and analysis outputs, are available on 
Figshare [http://figshare.com/articles/Video_data_Crocodylian_locomotor_kinematics/11322035]. Additional 
kinematic changes with speed are described, using nonlinear regression analyses, in the Supplementary text S1, 
Supplementary Figs. S1–S3, and Supplementary Tables S1–S3.
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Results
We obtained 184 useable trials from slow to near-maximal velocities (0.15–4.4 ms−1). 42 trials involved asym-
metrical gaits, from 17 of our 42 individual subjects (Supplementary Dataset S2). Supplementary Movies S1–S10 
illustrate the diverse range of rapid symmetrical and asymmetrical gait performance that we recorded across 
Crocodylia. We found that Crocodyloidea and Alligatoroidea used different gaits — the former adopted a wide 
range of asymmetrical gaits (normally a bound at their fastest velocity28), whereas the latter only employed sym-
metrical gaits (and normally a trot at their fastest velocities). No Alligatoroidea ever galloped or bounded; thus 
our Hypothesis 1 (H1) was not supported (Fig. 1).

We recorded the first documentation of asymmetrical gaits in the critically endangered Philippine crocodile 
Crocodylus mindorensis — all four of the juveniles studied were remarkably adept at the full range of crocody-
lian gaits (e.g., Supplementary Movie S6). Likewise, we obtained data for asymmetrical gaits (1 subject, 2 tri-
als; rotary gallop at 2.36 ms−1 and bounding at 2.98 ms−1) in the critically endangered African slender-snouted 
crocodile Mecistops cataphractus. Additionally, we recorded the only published dataset for asymmetrical gait 
usage in C. rhombifer (Supplementary Movie S8), C. acutus and (in quantitative detail; cf. Cott, 1961; Bornhauser 
and Ziswiler, 1983) C. niloticus (Supplementary Movie S7); plus one instance of a very rapid symmetrical gait 
(3.1 ms−1 trotting) in C. siamensis. Previous evidence for terrestrial locomotor behavior in these taxa was anec-
dotal at best. We also confirmed purported bounding and galloping ability in Osteolaemus tetraspis (Whitaker 
and Andrews, 1988), providing the only quantitative data on asymmetrical gaits in this unusual dwarf crocodile, 
such as bounding at up to 2.98 ms−1 (Supplementary Movie S9). Our data for the more well-studied C. johnstoni 
contributed new quantitative information on gaits of adult individuals, augmenting a detailed study of small juve-
niles28, although our adults did not reach the most rapid velocities of those animals or the field study subjects27.

Our study’s measurements of high speed locomotion in alligatoroids are novel. For example, the fastest pub-
lished, reliably recorded velocities are 0.62 ms−1 for fast trotting in juvenile A. mississippiensis, with duty factors 
(DF) ~0.7010,14. In contrast, the maximal velocities and minimal DF we obtained were >3 ms−1 and <0.50 DF for 
alligatoroids, with our fastest young A. mississippiensis trotting at 2.0 ms−1 and 0.50 DF (Supplementary Movie S1).

Body mass did not have a significant correlation with maximal velocity (u; in ms−1) although our subjects’ size 
range, despite spanning two orders of magnitude (0.5–43.2 kg), was restricted to smaller, presumably faster individ-
uals (~2 m total length or less) under 50 kg body mass, far from the >500 kg mass that some of our study species can 
reach (Fig. 2). However, we found body mass effects on size-normalized kinematics across our subjects that indi-
cated a decline in dimensionless locomotor performance — at the maximal velocities measured (dataset 3), heavier 
Crocodylia had slower relative velocities (û) and greater DF (p = 0.026, 0.013). Thus smaller Crocodylia were more 
athletic, with greater capacity for asymmetrical gaits as per our H2. As dataset 3 was a limited sample size (n = 10 
individual Crocodyloidea using asymmetrical gaits at their maximal u), we checked if these results were still upheld 
with our dataset for all Crocodyloidea using fast asymmetrical gaits (dataset 2; n = 12 individuals, 36 trials), which 
produced congruent correlations; additionally emphasizing that RSF decreased weakly with body mass (p = 0.014; 
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Figure 1. Distribution of asymmetrical gaits within Crocodylia. Examples of asymmetrical and symmetrical gaits 
(single frames from videos) from our analysis, mapped onto a phylogeny of Crocodylia (composite from67–71); for 
testing our H1. Taxa in bold font are known to use asymmetrical gaits. *Indicates taxa with recorded asymmetrical 
gaits in prior studies and this one; **Indicates taxa with new discoveries of asymmetrical gaits in this study. Line 
drawings on the right side (by Scott Hartman) are outlines from screen captures from experimental videos of the 
fastest strides of representative individuals from dataset 3, taken from visible hindfoot-off timings and emphasizing 
symmetrical gaits for Alligatoroidea vs. bounding asymmetrical gaits for Crocodyloidea. Overhead views of 
Crocodylus mindorensis and Mecistops cataphractus were reversed so that all are facing left. Not to scale.
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Table 1). These findings are robust support for our Hypothesis 2 (H2) that the capacity for asymmetrical gaits 
declines with increasing body mass (i.e., negatively allometric scaling) within Crocodylia; particularly 
Crocodyloidea.

Considering that our H1 was falsified, we inspected what kinematic parameters differentiated Crocodyloidea 
and Alligatoroidea for all velocities and gaits (dataset 1; symmetrical and asymmetrical gaits). Our analysis 
(Fig. 3) supported Hypothesis 3, that symmetrical vs. asymmetrical gait kinematics differ between the two major 
clades of Crocodylia (p < 0.0001; Table 1). Velocities in ms−1 were only different within Crocodyloidea: asymmet-
rical gaits tended to be faster than symmetrical gaits; but across all trials and subjects Crocodyloidea was no faster 
than Alligatoroidea. This same pattern was reproduced when we inspected û. Yet asymmetrical gaits had greater 
RSF and smaller DF than symmetrical gaits (e.g., trotting), both within Crocodyloidea and for Crocodyloidea vs. 
Alligatoroidea; a trend that was also observable within individuals (Supplementary Dataset S2). Symmetrical 
gaits, in contrast, did not differ between the two clades of Crocodylia. Other aspects of basic locomotor kinemat-
ics were indistinguishable between the two major lineages of Crocodylia, although there was high variability 
(Fig. 3; Supplementary Figs. S1–S3).

Our Hypothesis 4 posited that asymmetrical gaits are faster than symmetrical gaits (from dataset 3). The max-
imal velocities (u) and û in each individual studied for Alligatoroidea vs. Crocodyloidea (Fig. 4) showed unex-
pected differences: in particular, Crocodyloidea was ~30–50% slower than Alligatoroidea (p = 0.030, 0.031; 
Table 2). However, given the small sample sizes and high variation we are wary of accepting that inference, leaving 
our H4 open to interpretation but certainly disfavouring slower absolute or relative velocities for Alligatoroidea. 
Notably, we obtained a maximal u of 3.7 and 4.4 ms−1 for our fastest individuals from these two clades 
(Supplementary Dataset S2); respectively Caiman crocodilus, trotting (Supplementary Movie S3); and Crocodylus 
acutus, using a diagonal sequence running gait (Supplementary Movie S2). We also did not find any prominent 
differences between DF or RSF for Alligatoroidea vs. Crocodyloidea, although DF was weakly smaller (by 0.07 or 
~14% vs. Alligatoroidea) in the latter clade (p = 0.075).

Figure 2. Bivariate plots from analyses using linear mixed effects models (a,b) and linear models (c,d), 
depicting the relationships of kinematic y-variables with body mass, based on only Crocodyloidea and 
asymmetrical gait data. (a,b): dataset 3 (fastest running stride per individual); (c,d): dataset 2; all “running” 
strides (DF < 0.50), accounting for repeated measures per individual. See Table 1 for adjusted means and 
standard errors of the coefficients.
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Test + data log(u) log(û) DF RSF

H2: dataset 3 −0.06 ± 0.03 −0.19 ± 0.03 0.07 ± 0.01 −0.01 ± 0.02

maximal u (p = 0.180) (p = 0.026) (p = 0.013) (p = 0.417)

H2: dataset 2 0.01 ± 0.05 −0.12 ± 0.04 0.02 ± 0.01 −0.02 ± 0.01

running (DF < 0.50) (p = 0.806) (p = 0.044) (p = 0.029) (p = 0.014)

H3: Alli-symm 0.05 ± 0.21ab −0.41 ± 0.22ab 0.57 ± 0.03a 0.30 ± 0.03a

H3: Crocs-symm −0.05 ± 0.11a −0.48 ± 0.12a 0.56 ± 0.02a 0.30 ± 0.02a

H3: Crocs-asymm 0.46 ± 0.14b 0.04 ± 0.14b 0.46 ± 0.02b 0.41 ± 0.02b

H3: Overall p-value <0.0001 <0.0001 <0.0001 <0.0001

Table 1. Results from tests of H2 and H3, from a linear mixed effects model analysis (see Methods), focusing on 
four kinematic parameters: log velocity (u), log Froude0.5 (û), duty factor (DF) and relative stride frequency 
(RSF). Residual variances were allowed to vary depending on the recording frequency (Hz). Bold font 
emphasizes where p < 0.05. For H2, relationships with log(body mass) are based only on Crocodyloidea and 
asymmetrical gait data. Adjusted regression coefficients (i.e. slope of the regression line) ± standard errors are 
shown. Results from dataset 3 are compared with those from dataset 2, in which the model accounted for 
repeated measures from the same subjects. For H3, we present a comparison of three groups (“alli-
symm” = Alligatoroidea symmetrical gaits; “crocs-symm” = Crocodyloidea symmetrical gaits; “crocs-
asymm” = Crocodyloidea asymmetrical gaits), using dataset 1 (all valid strides), focusing on adjusted 
means ± standard errors. Individual number was used as a random effect in the analysis. There was no statistical 
difference between groups sharing the same letters (superscript a or b).

Figure 3. Box-and-whisker plots comparing four kinematic parameters (a–d) for three categories of locomotor 
data from Crocodylia (“alli symm” = Alligatoroidea symmetrical gaits; “crocs asymm” = Crocodyloidea 
asymmetrical gaits; “crocs symm” = Crocodyloidea symmetrical gaits), based on dataset 1 (all gait data). See 
Table 1 for adjusted means and standard errors from the linear mixed effects modeling analyses.
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Furthermore, 25 individuals of 13 species (87 trials in our broader dataset 2; including symmetrical gait data) 
achieved relatively rapid running gaits with aerial phases (mean DF < 0.5), with 5 and 4 of these individuals and 
species (~25% of our sample) being from Alligatoroidea. We often found that, within individual crocodiles using 
both symmetrical and asymmetrical running gaits, both gait categories could reach similar velocities (e.g., 17 
individuals used asymmetrical gaits but it was their fastest gait in only 10 of them; Supplementary Dataset S2). For 
example, one 0.5 kg C. mindorensis used a diagonal sequence symmetrical gait at 2.44 ms−1 and a transverse gallop 
at 2.41 ms−1; its two fastest trials; in addition to a lateral sequence symmetrical gait at 1.99 ms−1 and a half-bound 
at 1.87 ms−1. Crocodyloidea that bounded, nonetheless, usually used it as their fastest gait.

Discussion
First, we have shown that only members of Crocodyloidea in our sample used asymmetrical gaits, falsifying our 
H1. Second, our H2 was supported, that capacity for asymmetrical gait usage declines with increasing body mass 
(from 0.5 to 43 kg; two orders of magnitude in scaling) in crocodiles. Third, we demonstrated that there are no 
clear differences between the symmetrical gait kinematics of Alligatoroidea and Crocodyloidea, but that asym-
metrical gaits in crocodiles involve greater relative stride frequencies and smaller duty factors than symmetrical 
gaits in either lineage (supporting H3). Finally, our H4 was falsified — Alligatoroidea and Crocodyloidea can 
reach similar speeds even though only the latter uses asymmetrical gaits to achieve them. We now explore the 
implications of each hypothesis test.

Our data establish that small representatives of Crocodyloidea, whether immature members of large-bodied 
species or adult members of dwarf species (e.g., Osteolaemus), can bound and gallop, and this capacity seems 
to be ancestral at least for this lineage. Most studies have concluded that asymmetrical gaits were ancestral for 
Crocodylia, based on the functional morphology of fossil Crocodylomorpha [39–41,49 but see44]. We concur that 
the morphofunctional evidence renders this the most plausible hypothesis. If that scenario is correct, then ances-
tral Alligatoroidea lost this ability (or do not express it). Conversely, an alternative hypothesis that the common 
ancestor of Crocodylia lacked the capacity for asymmetrical gaits and Crocodyloidea uniquely evolved it still 
deserves examination; a possibility that is almost never acknowledged. The reported presence of asymmetrical 
gaits in young Gavialis5,32 is important because if that taxon lies outside of Crocodyloidea + Alligatoroidea (Fig. 1) 
then this would bolster the inference that asymmetrical gaits are ancestral for Crocodylia. The locomotion of its 
purported sister taxon in Crocodyloidea, Tomistoma, remains unstudied to our knowledge. Indeed, asymmet-
rical gaits in Gavialis are not documented with concrete photo or video imagery and hence deserve empirical 
examination.

Figure 4. Box-and-whisker plots comparing four kinematic parameters (a–d) for two clades of Crocodylia 
(“alli symm” = Alligatoroidea symmetrical gaits; “crocs asymm” = Crocodyloidea asymmetrical gaits) based on 
dataset 3 (fastest running stride per individual). See Table 2 for adjusted means and standard errors from the 
linear modeling analyses.

Data log(u) log(û) DF RSF

Alli-symm 1.02 ± 0.10 0.60 ± 0.10 0.49 ± 0.03 0.47 ± 0.03

Crocs-asymm 0.72 ± 0.07 0.28 ± 0.08 0.42 ± 0.02 0.45 ± 0.02

H4: Overall p-value 0.030 0.031 0.075 0.437

Table 2. Results from tests of H4, from a linear mixed effects model analysis (see Methods), focusing on four 
kinematic parameters: log velocity (u), log Froude0.5 (û), duty factor (DF) and relative stride frequency (RSF) 
from dataset 3 (fastest running stride per individual); comparing the adjusted means ± standard errors for two 
groups (“alli-symm” = Alligatoroidea symmetrical gaits; “crocs-asymm” = Crocodyloidea asymmetrical gaits); 
with p values (bold font for < 0.05). Residual variances were allowed to vary depending on the recording 
frequency (Hz).

https://doi.org/10.1038/s41598-019-55768-6


8Scientific RepoRtS |         (2019) 9:19302  | https://doi.org/10.1038/s41598-019-55768-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Why alligatoroids do not bound or gallop remains uncertain. Some candidate explanations such as muscle 
leverage or exercise physiology are not known to be appreciably different for these clades but have not been deeply 
investigated. Habitats frequented by these lineages of Crocodylia differ, with some Alligatoroidea ranging into 
more temperate climes. Here, we studied all of our Crocodylia at about the same ambient “field” temperature, 
which they had been acclimatized to in captivity, so this variable was removed in our experimental design but 
body temperature was not explicitly controlled.

We have also made discoveries and confirmed anecdotes about previously obscure behaviors of Crocodylia: 
featuring the first documented evidence of asymmetrical gaits in Crocodylus mindorensis, C. rhombifer, C. acutus, 
Mecistops cataphractus and Osteolaemus tetraspis (Fig. 1; Supplementary Movies S6, S8, S9). These records are 
important given the critically endangered status of the first three taxa. Anecdotes of asymmetrical gait usage in  
C. palustris and C. novaeguineae33 are now plausible in light of the prevalence of these gaits in other Crocodyloidea. 
We were unable to obtain more than symmetrical gaits from these two taxa; respectively only 2 and 3 valid 
trials each. Together, our new observations of asymmetrical gaits and our broader dataset on locomotor kine-
matics spanning the clade Crocodylia considerably expand our knowledge of their behaviours and natural his-
tory. Importantly, this combined evidence strongly refutes the popular notion that only a few crocodiles (mainly  
C. johnstoni; also C. porosus) use asymmetrical gaits.

Webb and Gans27 noted that smaller Crocodylus johnstoni used greater stride frequencies than larger individ-
uals, but these freshwater crocodiles were capable of increasing maximal velocities across a snout-vent length 
range of ~20–85 cm, consistent with positive allometry of absolute athletic performance (albeit within less than 
one order of body size range). As DF in our analysis would have a strong inverse correlation with ground reaction 
forces incurred by the limbs50, our observation of increased DF in larger Crocodyloidea (across two orders of 
magnitude of body mass range) is consistent with data from muscle architecture, demonstrating negative allom-
etry of the relative capacity to generate muscular forces in proportion to body weight22. This pattern of reduced 
relative athletic capacity is strongly reinforced by the negative allometry of û and RSF—larger crocodiles moved 
more slowly relative to their size using fewer strides per unit time. At some body mass beyond the range of our 
subjects’, true running gaits with DF < 0.50 should become impossible.

Interestingly, symmetrical gait kinematics did not differ between Crocodyloidea and Alligatoroidea in our sam-
ple, but asymmetrical gaits had smaller DF and greater RSF; hence involving more extreme kinematics at a given 
speed. This result (from H3, focusing on dataset 1) was somewhat reflected at maximal speeds (H4; dataset 3; Table 2 
for DF) although differences were marginal. Overall, our data for Crocodyloidea correspond well with the few 
detailed records for bounding and galloping kinematics. In particular, for Crocodylus johnstoni, Renous  
et al.28 obtained minimal DF ~0.2 and maximal û >1.0, with SF > 2.5 Hz, and their individuals used asymmetrical 
gaits between 0.4–4 ms−1, only bounding past 2.0 ms−1, and generally maintaining forelimb greater than hindlimb 
DF values; matching general kinematic patterns in this study (e.g., Supplementary Text S1; Supplementary Figs. S1–
S3; Supplementary Tables S1–S3).

In addition to their importance for basic understanding of maximal performance in Crocodylia, these find-
ings have implications for bone safety factors (ratios of failure stress to peak in vivo stress). Past experimen-
tal assessment of bone safety factors10 has made important contributions towards understanding crocodylian 
functional design but may have underestimated safety factors at maximal performance and, thus, deserves some 
re-evaluation. Perhaps the limb bones of Crocodylia are not as “overbuilt” as previously inferred10 because those 
calculations were based on locomotor speeds and gaits that impose lower stresses on the bones, thereby reflecting 
local maximum bone stresses of that given speed/gait rather than the absolute maximum (‘peak’) stresses for a 
species/individual. The extreme minimal DF values presented here, close to 0.40 (vs. 0.70 in prior studies), imply 
that peak limb forces (and thus tissue stresses) should be ~1.75 times greater than prior measurements10, which 
would lead to proportionately reduced safety factors (e.g., from mean values respectively for the femur and tibia 
of 6.7 and 2.7 to 3.8 and 1.5). However, Blob and Biewener10 also calculated “worst case” values of 3.2 and 1.3, 
which our data suggest reducing to 1.8 and 0.74 (with the caveat that these are purely theoretical values). The 
revised estimates suggested here, while making the assumption that limb angular kinematics (and thus moments) 
do not change with speed or gait, nonetheless fall near the ~2–4 range of safety factors estimated for birds and 
mammals53.

Thus more investigation of how peak “field” (non-laboratory) performance might impact conclusions drawn 
from safety factor analysis, or other characterizations of locomotion, is needed for Crocodylia. The grossly sim-
ilar morphology of limb bones across Crocodylia23 and the prevalence of asymmetrical gaits in Crocodyloidea, 
involving some faster speeds and smaller duty factors (hence even greater loads50), are further cause for caution. 
Prior studies of Alligatoroidea recorded maximal speeds of 0.62 ms−1 or less and DF ≥ 0.663–20. These are undeni-
ably valuable data on high walks/slow running trots at close to preferred or moderate speeds, but this study shows 
even the fastest prior data are far from maximal speeds or minimal duty factors.

We acknowledge challenging limitations to this study. It was difficult to motivate many individuals, hence 14 
from our initial sample were excluded, and the majority of these (nine total) were from Alligatoroidea. Indeed, we 
noticed that members of the alligator lineage seemed (qualitatively) more likely to sit and hiss, struggle, or fight 
rather than run away from stimuli or release from captivity, compared with Crocodyloidea. We speculate that 
this is a behavioral tendency that may partly underlie the divergent locomotor abilities within Crocodylia. Even 
so, our main sample was disproportionately represented by Crocodyloidea (34 vs. 8 Alligatoroidea individuals), 
which partly was by design. Intensive prior studies of the alligator lineage have failed to identify any asymmetrical 
gaits in this clade, so we focused on collecting data from under-sampled species (e.g., not Alligator mississippi-
ensis) and from individuals expected by keepers to be highly active—these constraints limited our sample of 
Alligatoroidea. Regardless, we found hitherto unreported extreme locomotor performance in this clade, albeit 
only using symmetrical gaits. Our conclusion that Alligatoroidea does not employ asymmetrical gaits could be 
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reinvestigated with a broader sample, but our study and existing literature on Crocodyloidea and Alligatoroidea 
strongly point toward a divergence in their gait usage.

Performance of individual Crocodylia varied tremendously, and surely was influenced by complex factors 
including not only motivation but also fatigue, body temperature, personnel, equipment, environment (e.g. sub-
strate stiffness) and more. Our statistical models took into account the main factors we could identify as likely 
confounding agents, and our experimental design attempted to maximally control these factors within the con-
straints of the setting, staff, and animals. As an additional check, we re-ran the LME analyses for H2 and H4 
(repeated measures) including the effects of stride and trial numbers within an individual as covariates in the 
models, to test if later strides or trials within our datasets had slower speeds. We found no such effect – indeed, 
where any effect was found it was a very slight increase of speed in later trials. Hence we conclude that animals 
did not suffer clear fatigue across trials.

The surprising result that maximal velocities did not differ between Alligatoroidea and Crocodyloidea (H4; 
Fig. 4, Table 2), or were sometimes even faster in Alligatoroidea, reveals that the key benefit of asymmetrical gaits 
in Crocodylia is not maximal speed capacity. Thus a vexing mystery is why Crocodyloidea bound or gallop, given 
that they tend to choose to do so at faster speeds, and why this capacity originated, if more deeply embedded 
within Crocodylomorpha. Allen et al.22 inferred that longer limb muscle fascicles correlate with asymmetrical 
gaits in Crocodylia (also see54). Webb and Gans27 postulated that asymmetrical gaits in Crocodylus johnstoni are 
useful for crossing rough terrain. A study of mouse gaits suggested that bounding might have benefits for stability 
against perturbations55, consistent with the latter notion and paralleling suggestions of stability/maneuverability 
tradeoffs in bounding and galloping C. johnstoni28. Reilly et al.56 also proposed benefits for velocity and energetics 
in bounding toads; aspects of metabolism related to fatigue or endurance remain unexplored candidate explana-
tions for asymmetrical gaits in Crocodylia.

Asymmetrical galloping and bounding gaits are recognized to have evolved multiple times in sarcopterygian 
vertebrates, including lungfish57, toads56, turtles54, and mammals [e.g.1,58] — and at least one spider and one 
insect use analogous mechanisms59,60. Thus these locomotor mechanisms are far from being restricted to curso-
rial mammals as some analyses imply [e.g.61–63]. Notably, as in prior studies27–31, all of our Crocodyloidea using 
asymmetrical gaits had a single extended period (e.g., Fig. 1) during their aerial phase (“suspension”), not a single 
gathered (“collected”) suspension or alternating gathered/extended suspensions as typify various mammals61,62. 
The reasons for this singular axial undulatory pattern remain obscure. The aforementioned cases of convergent 
evolution provide potential to understand the truly fundamental principles of these gait mechanisms vs. which 
patterns (e.g., axial undulatory motions) are divergent. Such understanding could test if stability or other benefits, 
such as circumventing breathing constraints64, broadly underlie the evolution of asymmetrical gaits, and could be 
useful in crocodylian-inspired robotic design [e.g.65,66].
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