RVC OPEN ACCESS REPOSITORY – COPYRIGHT NOTICE

This is the author's accepted manuscript. The final publication is available in *Nature Food*: <u>https://doi.org/10.1038/s43016-019-0003-3</u>.

The full details of the article are as follows:

TITLE: A future workforce of food-system analysts

AUTHORS: John Ingram, Raquel Ajates, Alex Arnall, Lauren Blake, Rosina Borrelli, Rosemary Collier, Annabel de Frece, Barbara Häsler, Tim Lang, Harley Pope, Kelly Reed, Roger Sykes, Rebecca Wells & Rebecca White

JOURNAL TITLE: Nature Food

PUBLICATION DATE: 16 December 2019

PUBLISHER: Nature Publishing Group

DOI: 10.1038/s43016-019-0003-3

[TITLE:] A future workforce of 'Food System Analysts'

John Ingram, Raquel Ajates Gonzalez, Alex Arnall, Lauren Blake, Rosina Borrelli, Rosemary Collier, Annabel de Frece, Barbara Häsler, Tim Lang, Harley Pope, Kelly Reed, Roger Sykes, Rebecca Wells and Rebecca White

A programme developed across five UK universities aims to equip graduate professionals with the skills, tools and capabilities to better understand and manage food system complexity for food security, for the environment and for enterprise.

Food systems have evolved dramatically over recent decades to feed billions of people. However, the 'triple burden' of malnutrition (hunger, insufficient nutrients, and overweight and obesity) is increasing and is recognised as the 'new normal' ¹⁻³. The food sector is responsible for about 30% of all anthropogenic greenhouse gas emissions ⁴, decreased biodiversity ⁵, water pollution and soil degradation ⁶. Current technologies are degrading the natural resource base that underpins our food security at an alarming rate ⁷ and environmental change will hit the most marginalised soonest and hardest. At the same time, we are wasting about a third of all food produced ⁸. Food systems are, however, a major source of livelihoods and a driver for innumerable businesses and enterprises ⁹. In the UK, for instance, food is the biggest manufacturing sector, contributing £28.2bn to the economy annually and employing 400,000 people ¹⁰. Worldwide, however, employment in food production, manufacturing and service is some of the lowest paid. Inequality underpins many aspects of the food system, and is often an outcome driven by the system itself ¹¹.

These problems are all interconnected, and hence tend to have no clear solution or line of responsibility. Solutions and improvements in the functioning of food systems are often expected to derive from technological – and especially agricultural – innovations. Yet, we cannot look to these alone to address all the challenges. New approaches based on 'food systems thinking' are required, drawing on innovative types of learning, analysis and institutional arrangements, coupled with greater collaboration between economists, agriculturalists, policy makers, ecologists, engineers, food and crop scientists, and business among many others ¹².

The systems thinking approach

Food systems are socio-ecological, complex adaptive systems ¹³ encompassing interactions by multiple actors and institutions with numerous positive and negative feedback loops which are difficult to capture. Food systems are often characterised by lack of knowledge and data, and have high levels of complexity that is not sufficiently accommodated for in current financial, economic, political, legal and social structures and processes. 'Systems thinking' provides a framework and range of methodologies for steering policy and practice away from conventional foci on linear and distinct food system elements, and toward modes of working that account for complex and dynamic linkages and emergent properties. It is founded on building collaborative relations, drawing on a variety of skills and experience and applying multi-criteria analysis rather than more conventional single-cause analyses. As such, we believe a systems thinking approach holds the potential for guiding the development of more effective interventions for food security, health, environment and enterprise over the medium- to long-term; there is an urgent need for people and institutions skilled

in its use and application. We therefore recognise the need to connect food systems perspectives, people and systems thinking to generate a new generation of food systems thinkers. This will lead to not just new approaches to analysis, but also different ways of working. The Interdisciplinary Food Systems Teaching and Learning programme (IFSTAL) was developed to build this capability within the food sector ¹⁴.

Training food systems analysts

IFSTAL was launched in October 2015 led by the University of Oxford and in partnership with City University, University of Reading, University of Warwick and the Leverhulme Centre for Integrative Research on Agriculture and Health (comprising the London School of Hygiene and Tropical Medicine, Royal Veterinary College and School of Oriental and African Studies). IFSTAL received core funding from the Higher Education Funding Council for England and in-kind support from the partner institutions. This allowed IFSTAL Educational Coordinators at the partner institutions to be recruited to work across departments as diverse as economics, health sciences, business and law schools, and agricultural sciences to help students engage in the programme. It also covered the costs of delivering all IFSTAL activities.

Based on the conceptual model developed by the 'Global Environmental Change and Food Systems' project ¹⁵, IFSTAL offers any post-graduate student enrolled in the partner institutions a training programme on food systems and contextualisation of their chosen discipline within the broader concept. IFSTAL thereby enables students to perceive the connections between disciplines and provides them with the knowledge, skills and capability to address food systems challenges after completing their studies.

IFSTAL is voluntary and not assessed. Its delivery is based on a flipped-classroom approach ¹⁶ with interactive face-to-face learning supported by an on-line virtual learning environment. There are four core units delivered over the academic year: food systems concepts, systems thinking, food systems methods, and intervention for food systems change. After studying each unit's material on-line, students from across the partnership meet for an away-day workshop to discuss the content and engage with peers, faculty and representatives from public, private and third sector workplaces. The training also includes a series of workplace interactions, webinars and public facing events including live-streamed lectures and symposia. The year culminates in a highly-interactive summer school where interdisciplinary groups of students from across the partnership work on real-world problems. An alumni network supports the active creation of a dynamic knowledge exchange and learning network where members can continue to interact with each other. IFSTAL is building a self-sustaining network of 'food system analysts'.

Interdisciplinarity is the capacity to integrate knowledge of two or more disciplines and is known to facilitate cognitive advancement in ways that would have been impossible or unlikely through single disciplinary means ¹⁷. IFSTAL's multi-institutional, interdisciplinary and problem-based learning approach has brought valuable interdisciplinary learning to students. It thus addresses the urgent challenge in educational settings of how to provide students with the tools to analyse the multiple issues, find and develop innovative interventions, and work across disciplinary boundaries ¹⁸. Moreover, addressing systemic problems across the food sector not only needs people skilled in

systems thinking, but also equipped with soft skills to allow them to be capable within an oftenchallenging and increasingly demanding working environment ¹⁹. Soft skills (such as effective communication, recognising different personality types and team working) therefore form a core component of IFSTAL's away-days and summer schools, and are included in IFSTAL's learning objectives (Fig. 1).

Since launching, IFSTAL has enabled over 1500 students from 45 different university departments gain a better understanding of food systems and how to address some of the complexities therein. The interdisciplinary focus is strongly encouraged; students in a recent cohort came from over 100 different masters and PhD programmes. IFSTAL has also facilitated cross-sector ways of working and has collaborated with over 100 public, private, non-governmental and civil society organisations in the food sector to shape and drive IFSTAL's content and approaches, and many workplace professionals have interacted with students throughout the year. We know that at least 350 students who engaged in IFSTAL during its first three years have moved into food systems-related employment within a wide range of organisations. They are forming a powerful alumni network encouraged to support each other in their careers, bringing about change in the food system. A recent development is a reach into Europe via the European Union's 'EIT Food' (European Institute of Innovation and Technology) with the universities of Hohenheim and Turin. Further afield, two intensive 1-week courses have been delivered in Ghana and another in Indonesia, and others are planned for East Africa and the Pacific. While activities in the United Kingdom are restricted to students, these 1-week courses include both students and early career professionals, and feedback of having this combination has been very positive. There is also interest in establishing IFSTAL analogues in Australia and Canada.

For several years there has been a clear recognition that food systems need to be understood and managed from different and multiple perspectives, and there is a growing need for people skilled in food systems thinking across the sector. IFSTAL has been, to our knowledge, a pioneering experiment in what is widely agreed to be needed. IFSTAL's interactive, interdisciplinary programme is providing an environment that facilitates the necessary learning and cross-sector working, all delivered on top of existing regulated and approved Masters level and above, teaching and learning. Learning through practical, interactive and problem-based methods results in an ability to plan and implement better options for both addressing food system problems and seizing opportunities. We believe that IFSTAL is changing how we think, work and act in the food system.

John Ingram^{1*}, Raquel Ajates Gonzalez², Alex Arnall³, Lauren Blake⁵, Rosina Borrelli¹, Rosemary Collier⁴, Annabel de Frece², Barbara Häsler⁵, Tim Lang², Harley Pope³, Kelly Reed⁴, Roger Sykes¹, Rebecca Wells² and Rebecca White¹.

¹University of Oxford; ²City, University of London; ³University of Reading; ⁴University of Warwick; ⁵Royal Veterinary College, London Centre for Integrative Research for Agriculture and Health, University of London.

* address for correspondence: john.ingram@eci.ox.ac.uk

References

- 1 FAO, IFAD, UNICEF & WFP. The state of food security and nutrition in the world 2017. Rome: FAO. (2018).
- 2 Haddad, L. *et al.* The Global Nutrition Report 2014: actions and accountability to accelerate the world's progress on nutrition. *The Journal of nutrition* **145**, 663-671 (2015).
- 3 Fanzo, J. *et al.* 2018 Global Nutrition Report: Shining a light to spur action on nutrition. (2018).
- 4 Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? *Food policy* **36**, S23-S32 (2011).
- 5 Bélanger, J. & Pilling, D. The State of the World's Biodiversity for Food and Agriculture. *FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy*, 572 (2019).
- 6 Willett, W. *et al.* Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. *The Lancet* **393**, 447-492 (2019).
- 7 Westhoek, H., Ingram, J., van Berkum, S. & Hajer, M. *Food systems and natural resources*. (United Nations Environment Programme, 2016).
- 8 FAO. *Food Loss and Food Waste*, <http://www.fao.org/food-loss-and-food-waste/en/> (2019).
- 9 Kneafsey, M. *et al.* Short food supply chains and local food systems in the EU. A state of play of their socio-economic characteristics. *JRC scientific and policy reports* (2013).
- 10 Food and Drink Federation. *THE FOOD AND DRINK INDUSTRY; Economic contribution and growth opportunities,* https://www.fdf.org.uk/publicgeneral/FDF-GT-Exec-Summary.pdf (2018).
- 11 Holt-Giménez, E. Overcoming the barrier of racism in our capitalist food system. *Institute for food and development policy* **24**, 1-4 (2018).
- 12 Tu, C., Suweis, S. & D'Odorico, P. Impact of globalization on the resilience and sustainability of natural resources. *Nature Sustainability* **2**, 283-289, doi:10.1038/s41893-019-0260-z (2019).
- 13 Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. *Ecology and Society* **23** (2018).
- 14 Reed, K. *et al.* Training Future Actors in the Food System: A new collaborative crossinstitutional, interdisciplinary training programme for students. *Exchanges: The Interdisciplinary Research Journal* **4**, 201-218 (2017).
- 15 Ingram, J. A food systems approach to researching food security and its interactions with global environmental change. *Food Security* **3**, 417-431 (2011).
- 16 O'Flaherty, J. & Phillips, C. The use of flipped classrooms in higher education: A scoping review. *The Internet and Higher Education* **25**, 85-95, doi:https://doi.org/10.1016/j.iheduc.2015.02.002 (2015).
- 17 Spelt, E. J. H., Biemans, H. J. A., Tobi, H., Luning, P. A. & Mulder, M. Teaching and Learning in Interdisciplinary Higher Education: A Systematic Review. *Educational Psychology Review* **21**, 365, doi:10.1007/s10648-009-9113-z (2009).
- 18 Stentoft, D. From saying to doing interdisciplinary learning: Is problem-based learning the answer? *Active Learning in Higher Education* **18**, 51-61 (2017).
- 19 Wakeham, W. Wakeham review of STEM degree provision and graduate employability. Innovation and Skills: Department for Business. Retrieved from https://www. gov. uk/government/uploads/system/uploads/attachment_data/file/518582/ind-16-6-wakehamreview-stem-graduateemployability. pdf (2016).
- 20 Vitae-RDF. Vitae Researcher Development Framework <www.vitae.ac.uk/rdf> (2019).