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Abstract
Purpose of Review Osteoporosis is an age-related disorder characterized by bone loss and increased fracture susceptibility.
Whether this is due to reduced loading in less active elderly individuals or inherent modifications in bone cells is uncertain.
We suppose that osteoporosis is nonetheless prima facie evidence for impaired mechanoadaptation; either capacity to accrue new
bone declines, or the stimulus for such accrual is absent/can no longer be triggered in the aged. Herein, we provide only sufficient
background to enable a focus on recent advances which seek to address such dilemmas.
Recent Findings Recent advances from innovative high-impact loading regimes emphasize the priming of mechanoadaptation in
the aged, such that low-to-moderate intensity loading becomes beneficial. These new findings lead us to speculate that aged bone
mechanoadaptation is not driven solely by strain magnitude but is instead sensitive to high strain gradients.
Summary Impaired mechanoadaptation is a feature of the aged skeleton. Recent advances indicate that novel interventional
loading regimes can restore mechanoadaptive capacity, enabling new approaches for retaining bone health in the aged. Innovative
exercise paradigms appear to be capable of “hacking” into the osteogenic signal produced by exercise such that low-to-moderate
intensity activities may also become more beneficial. Deciphering the underpinning mechanism(s) will also enable new phar-
macological intervention for retaining bone health in the aged.
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Introduction

Osteoporosis is most frequently an age-related skeletal disor-
der. It is characterized by the failure to retain bonemass and by
deterioration in bone microarchitecture, which together re-
duces bone strength and increases susceptibility to fracture.
In the USA, over 1.5 million osteoporotic fractures occur an-
nually [1]. The majority of fractures occur in the latter decades
of life when rates of bone loss and microarchitectural deterio-
ration are at their greatest [2]. This intimate link between bone
aging processes and the pathogenesis of osteoporosis has led
to increased basic, clinical, observational, and translational
research in recent years on the mechanisms underpinning both
age-related bone loss and fragility fractures [3, 4]. Population
aging is expected to escalate the prevalence of osteoporosis

over the next decades. A better grasp of these mechanisms is
crucial if new effective treatments to combat or indeed reverse
this age-related decline are to be pinpointed [5].

This goal is centered upon the dynamic, “regenerative”
quality of bones that secures its many roles. Bones are not
only essential for locomotion, support, and protection of
internal structures but is crucial as a reservoir for phos-
phorus and calcium, important for glucose metabolism,
houses the hematopoietic system, and is essential for the
function of renal and reproductive systems. To fulfill
these mechanical and homeostatic functions, bone must
undergo a continual self-regeneration process called re-
modeling which removes old bones and replaces it with
new. This regenerative process plays out on bone surfaces
within basic multicellular units (BMUs) [6]. Within each
BMU, bone formation by osteoblasts and resorption by
osteoclasts are coupled tightly in a delicate balance to
maintain mass and strength in the healthy skeleton. This
balance in remodeling is known to shift toward less bone
formation and greater resorption with aging to culminate
in reduced bone strength, osteoporosis, and fractures; can
this potential to shift the BMU balance be exploited to
find effective and targeted treatments?
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Aging is also linked to compositional, architectural, mate-
rial, and metabolic alterations in both trabecular and cortical
compartments. Cancellous bone aging is associated with a
reduction in trabecular number, increased spacing, and unaf-
fected or decreased thickness [89, 90]. Aging is also linked to
both endocortical resorption and periosteal bone formation,
leading to cortical thinning and marrow cavity expansion. In
humans, bone mineral density (BMD) thus peaks between 10
and 19 years, with the continued increase in bone mineral
content until 30–35 years of age [7]. Although often consid-
ered a period during which there is neither net gain nor loss of
bone mass, aging processes likely begin soon after the cessa-
tion of growth. BMD decreases at the spine and proximal
femur in women even before menopause, and bones are in-
deed lost during early adult years in both men and in women
due to the emergence of a negative BMU balance as early as
the third decade. This negative balance is due to the combina-
tion of intrinsic changes with extrinsic factors.

Intrinsic changes include aging-related modifications in
hormone status, gene expression, cell components, and bio-
chemical and vasculature changes. Aging leads to reduced
levels of circulating hormones [8–12], basal cell function
[13–18], proliferation, and differentiation of stem cells into
osteoblasts, as well as diminished osteoblast function and in-
creased apoptosis [19–23]). Aging is also linked to the greater
number and activity of osteoclasts in both humans [24] and
mice [25, 26]. Bone lining cells and osteocyte density (and
lacunar density) diminish with age [27–29], as does osteocyte
canaliculi number [30]. Of note, aging may contribute by
compromising bones’ regenerative potential, evidenced in
the age-related decline in osteogenic progenitor cell numbers
in animal models and human samples, and within the bone
marrow of adult versus younger animals. Indeed, declining
osteogenic cell number coupled with impaired blood vessel
formation is considered responsible for the failure in bone
regeneration observed in elderly individuals [31]. This may
be in keeping with our recent report showing that vascular
density is indeed reduced in regions of the aging tibial cortices
[32]. It is evident that a multitude of intrinsic factors contrib-
utes to age-related osteoporosis and that any combination may
represent a target for reversing the effects of aging on
mechanoadaptation.

Extrinsic factors include nutrition, comorbid medical con-
ditions, drugs, and of vital significance here an impaired adap-
tive bone response to loading [33]. Whether age-related bone
loss is an adaptation to the reduced loading experienced in less
active, elderly individuals or is instead the product of a re-
duced basal osteoblast or increased osteoclast lifespan, or ab-
normal osteocyte mechanical signaling is uncertain. Given
that the culminating effect is bone loss and increased fracture
risk [2], we and others have supposed that age-related osteo-
porosis is prima facie evidence for impaired response to load-
ing at some level. Thus, either the skeleton’s ability to accrue

new bone declines inevitably with aging or the appropriate
stimulus for such accrual is absent or can no longer be trig-
gered in the aged skeleton. Herein, we focus on recent (< 3
years) advances that address such dilemmas in age-related
bone mechanoadaptive responses.

Bone Mechanoadaptation

Bones adapt their architecture during life to ensure they are
robust enough to withstand the habitual levels of loading to
which they are subjected, without accumulation of excessive
microdamage or fracture [34]. This functional adaptation,
achieved by the processes of (re)modeling induced by load-
ing, leads to modifications in mass as well as architecture to
best tailor bone structure to its prevailing mechanical environ-
ment [35]. Many clinical studies have confirmed this connec-
tion between the mechanical environment and bone structure,
mainly in high impact sports [36, 37] and bed rest [38]. These
are echoed in animal experiments which exploit externally
applied loads [39–44] or unloading [45–47], and in vitro stud-
ies where bone cells are challenged by mechanical stimuli or
by fluid flow [48–50]. Thus, a lack of weight-bearing due
either to prolonged spaceflight or bed-rest leads to decreased
bone mass [51–55], while mechanical loading of the skeleton
through various types of exercise results in increased bone
mass [56–59]. In humans, it has been observed that high im-
pact exercise, such as weight-lifting and gymnastic, generates
greater BMD particularly at weight-bearing sites (versus non-
athletic age-matched controls). Moreover, professional ath-
letes such as tennis players exhibit a greater BMD in their
dominant compared with their contralateral forearm [60, 61].
These human studies add support to the vast range of data
from animal experiments which have shown that mechanical
loading promotes bone accrual [62, 42, 63–65] while
unloading promotes bone loss in vivo [66–68, 47]. Together,
these studies establish that the bone’s mechanoadaptive re-
sponse operates at most life-course stages to match bone ar-
chitecture to its load-bearing function. The extent to which
this occurs in the elderly phase of life is debatable.

Failure of Mechanoadaptation with Aging

The promotion of exercise-related increases in bone mass in
adults [69, 70] is thus somewhat at odds with previous clinical
trials in which bone accrual was hardly, if at all, apparent in the
elderly [71, 72]. This age-related diminut ion in
mechanoadaptive capacity has been confirmed in animal stud-
ies [73–75]. These observations are however open to alterna-
tive interpretations: Are they due to inherent age-related
changes in bone formation and resorption activities or drifting
bone cell behavior, an impairment in the ability of bone cells
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to transduce mechanical stimuli into biochemical signals or
due to modified local microenvironmental cues? Might this
failure be underpinned by micro-structural changes such as
modified osteocyte lacunar organization or directional orien-
tation, or changes in the number/length of inter-canniculular
connecting dendrites [76, 77]? Irrespective of its basis, many
have proposed that this failure in functional adaptation is re-
sponsible for the osteoporosis which develops in the aged
skeleton [78, 16, 79–81, 34, 82, 83, 63, 84].

The mechanisms underpinning this age-related decline in
mechanoadaptation have been the subject of numerous re-
cent studies. Galea et al. (2017) explored the transcriptomic
changes linked with this age-related impairment to find a
down-regulation of genes with enrichment in MAPK, Wnt,
and cell cycle pathways and closest association with down-
regulation of the E2F1 transcription factor, which also ex-
hibited diminished levels of protein expression in osteocytes
with aging. On the other hand, aged bones exhibited up-
regulation of genes enriched for carbohydrate metabolism
and for TNFα and TGFβ superfamily components.
Evaluation of transcriptomic changes induced by applied
mechanical loading revealed rapid and sustained, yet dis-
tinct transcriptional responses in young and old bones, char-
acterized by up-regulation of genes predominantly related to
proliferation in the young and their down-regulation by
loading in the aged; conversely, genes linked closely with
bioenergetic pathways were down- and up-regulated in the
young and aged, respectively. The authors concluded that
loading engenders a more sustained gene response in the
young [85]. In line with the aforementioned age-related
down-regulation of Wnt pathway genes, previous studies
had described load-induced Wnt pathway activation as well
as a reduction in its negative inhibitor, Sclerostin (product of
Sost gene), in response to in vivo loading in younger mice
[86••, 44]. Together these data suggest that aging is accom-
panied by less robust or aberrant activation patterns for load-
related pathways with known mechanoadaptive function.

A recent study by Holguin et al. (2016) reported that tissue-
level indices of bone formation, observed after only 1 or 5
days of loading, are also less pronounced in the aged.
Likewise, 3–5 days of loading produced a smaller up-
regulation of bone formation-related genes (e.g., Col1a1) in
the old than in young-adult mice. This was supported by ex-
periments showing a failure to elicit the prototypical Sost
down-regulation in response to repetitive bouts of loading in
aged mice, which accompany the load-related osteogenic re-
sponse observed in young counterparts. This study addition-
ally found that early and sustained load-induced up-regulation
of Wnt1/7b in the bones of young-adult mice was much less
robust upon aging. The authors concluded that the reduced
bone anabolic response to loading in aged mice includes a
failure to sustainWnt activity [87••], attributing this to a lower
sensitivity to repeat loading in the aged.

This notion of an age-related reduction in load sensi-
tivity appears to be confirmed by two recent studies in-
vestigating combined in vivo mechanical loading and
pharmacotherapy. Meakin et al. (2017) reported accrual
of the cortical bone in response to intermittent PTH treat-
ment (iPTH), which additionally generated positive load-
related osteogenic interactions in young mice. Aged mice,
in contrast, exhibited no positive load-iPTH interaction in
the cortical compartment [88] suggesting that aged bones
have reduced sensitivity to pharmacotherapy and mechan-
ical loading. With view to better ascertain the role of
osteoclasts in aged bones, Naruse et al. (2016) compared
the efficacy of alendronate as a means of restricting bone
loss in aged female rats, which were sedentary, estrogen-
deficient, or both. Rats were either restrained in a sitting
position or allowed free cage activity, with or without
alendronate administration for 8 weeks after a 5-week-
long preceding period after ovariectomy or sham surgery.
They found that alendronate failed to protect against a
lowering of bone breaking stress engendered by “sitting”,
irrespective of prior ovariectomy, and that “sitting” also
increased the mineral-to-matrix and carbonate-to-
phosphate ratios, also seen in aged bones, which results
in fragility-related deficits in both the quality and geom-
etry of the cor t ical bone. They concluded that
bisphosphonates may provide therapy best suited to oste-
oporotic aged individuals whose daily activity is not lim-
ited [89]. These data also imply that some protection
a f f o r d ed by t he an t i - o s t e oc l a s t i c a c t i v i t y o f
bisphosphonates in aging may require simultaneous inter-
action with a load-derived stimulus.

These studies align with earlier findings indicating that
cells in aged bones acquire a reduced mechanosensitivity
and an attenuation of the strain signal derived from load-
ing due to increased stiffness, which may contribute to the
pathogenesis of age-related bone loss [78, 90–96]. These
studies also found that mechanoadaptive responses, most
likely coordinated by osteocytes, depend on load magni-
tude, frequency, and rate that are more effective in young
than in aged bones. These studies also report that perios-
teal surfaces are less load-responsive than those observed
endocortically and that the latter decline with aging.
However, many questions remain: Does the bone accumu-
late age-related history of loading? Are mechanoadaptive
responses coordinated solely by locally load-induced
maximum strains or by more complex integration of strain
patterns? Are mechanoadaptive responses interrupted
when the load stimulus is brought within a certain thresh-
old? How is bone formation coordinated to focus it direct-
ly to regions of high strain stimulus or elsewhere?
Answers will provide new paradigms for controlling bone
mass via interventional trials for the treatment of age-
related bone loss.
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Intervention Studies

Several interventional studies in animals and humans aimed at
interrogating the basis of this age-related failure of
mechanoadaptation and its potential priming. De Souza et al.
(2017) hypothesized that habitual load exposure underpins the
aged bone’s lower mechanoadaptive capacity. To test this,
they performed sciatic neurectomy in both aged mice and
adult mice that were allowed to age in order to induce disuse
(SN-disuse) prior to load application. They reported that (i) in
agreement with previous studies, load responses become de-
fective in aged mice and are restored by the potential priming
effect of short-term SN-related disuse; (ii) prolongation of
functional SN-disuse further augments load responses in cor-
tical bone but, (iii) blunts any rescue in the trabecular com-
partment elicited by short-term disuse. These findings indicate
that lengthening the disuse period more effectively primes
age-related mechanoadaptive responses in the cortical bone
but abolishes the beneficial effects of short-term SN-related
disuse in the trabecular compartment. In a follow-up study,
Piet et al. (2019) reported that the synergistic effect of SN
and loading in aged mice is likely due to increased number
of osteoclasts and osteoblasts on the endosteal surfaces [97].
These data point to the requirement for a combined approach
for restoring mechanoadaptive response in the bones of aged
mice [47]. In a more recent study, Cunningham et al. (2018)
examined whether aged rats would lose little if any bone with
disuse compared with adult rats and if so, whether aged rats
would exhibit diminished recovery following treadmill exer-
cise. Consistent with this notion, adult but not aged rats
showed a marked decrease in trabecular bone volume follow-
ing unloading—imposed through the hindlimb elevation.
They found however that aged bones were also less respon-
sive to reloading [98]. The different conclusions drawn in the
studies of de Souza et al. (2017) and Cunningham et al. (2018)
may be due to the distinct approaches to both the induction of
disuse (neurectomy vs hindlimb suspension) and the method
used to reload the skeletal elements (localized tibial loading vs
treadmill exercise).

Exercise is one of the primary modifiable factors linked to
bone health, such as improved bone mass and geometry [99].
However, the experimental evidence supporting influence of
exercise on bone structure and strength in older people is
scarce and somewhat conflicting. A previous meta-analysis
found no significant exercise effects on bone strength [100].
Since then, studies on middle-aged and older people have
found positive, site-specific effects on the proximal femoral
bone mass after impact training [101••] but no effects on the
mid-femoral or mid-tibial structure and strength after strength
training or combined strength and impact training [102, 103].
In this light, recent exercise interventions have implemented
varied types of exercise to restore (prime) the age-related de-
cline in bone mass. For example, Gombos et al. (2016)

examined serum bone turnover markers associated with ana-
bolic effects of exercise in response to a single session of
resistance exercise in aged participants with low bone mass.
Measurement of bone-specific alkaline phosphatase, carboxy-
terminal cross-linked type I collagen telopeptide (CTX), and
serum Sclerostin levels before and immediately after a single
exercise intervention revealed significant decreases only in
serum CTX levels, suggesting that such regimes can exert
direct bone mechanoadaptive responses in aged individuals
[104].

Bolam et al. (2016) also sought to identify optimal exercise
strategies to counteract age-related bone loss. They examined
the scale of the osteogenic effect on BMD and evaluated safe-
ty and feasibility of a program of upper body resistance exer-
cise combined with either of two regimes of impact-loading
(high/moderate, 80/40 jumps/session) in middle-aged and
older men. The 9-month intervention involved 4 sessions/
week: 2 supervised clinic-based and 2 home-based. This study
reported significant shifts in total hip and trochanter BMD,
with a decline in control and moderate jumping groups but
preservation in hip BMD in the high loading group. These
data indicate that while impact-loading exercise can be safely
undertaken in middle-aged and older men to partly protect
against age-related bone loss, current recommended regimes
fail to elicit significant BMD improvements [105]. Another
study by Seidelin et al. (2017) showed however that 12 weeks
of twice-weekly floorball training induced superior perfor-
mance, leaner body mass, and greater total leg BMD in both
pre/recently postmenopausal women [106]. Together, these
new data indicate that novel exercise regimes are being devel-
oped that exploit our knowledge of bones’ load-related
mechanoadaptive responses in the aged.

In a randomized, controlled, 20-week-long high-intensity
strength and sprint training trial in middle-aged and old male
sprint athletes—an aged group likely to participate in this kind
of vigorous exercise–Suominen et al. (2017) reported signifi-
cant albeit modest improvements in the mid-tibial (not distal)
structure and strength, which were most pronounced in the
more compliant athletes. This indicates that novel, intensive
load-bearing, even of short duration can strengthen aging
bones, even in subjects with a long-term high-impact training
background [107••]. These data confirm a degree of
mechanoadaptability in aging bones and imply that very high
load stimuli may prime responses even in the aged [107••].
Further support for this notion comes from an examination of
a human calcaneal trabecular bone, which experiences ex-
treme repetitive forces during endurance running.
Accordingly, Best et al. (2017) recruited forefoot- and
rearfoot-striking runners, and non-runners and, having con-
firmed strike pattern using a motion capture system, reported
greatest mean trabecular thickness and BMD in forefoot run-
ners which correlated positively with weekly running distance
and “running years” and negatively with age at running onset.
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As trabecular thickness, BMD and BV/TV were highly corre-
lated with body mass in non-runners; adjustment for body
mass revealed that individuals exposed to the greatest summa-
tive load stimulus (from running) had the thickest trabeculae,
leading the authors to conclude that early adoption and years
of sustained running promotes trabecular bone accrual in the
posterior calcaneus [108]. This is supported by a more recent
study reporting that moderate-to-vigorous physical activity
protects against age-related decline in bone mass in a “dose”
and daily-pattern dependent manner [109]. Perhaps
mechanoadaptive responses can indeed exert effects on bone
mass and architecture, when primed appropriately, even in the
aged.

This proposition was addressed by Sundh et al. (2018) who
recruited 20 healthy and inactive postmenopausal women into
a 3-month-long exercise program of daily, one-legged, high-
impact jumps (“jump-loading”, contralateral control) after
which bone microarchitecture and mid-tibial bone material
strength index were measured with a handheld indentation
instrument. They reported that the material strength index in-
creased by 7% with jump-loading, relative to the control,
without affecting bone microstructure, geometry, or density
leading to a conclusion that unilateral high-impact mechanical
loading was indeed mechanoadaptive in the aged and could
rapidly improve bone material properties even before any
overt changes in bone mass or structure [110].

Clues to the precise quality of this high-impact stimu-
lus that is beneficial for aged bone may come from studies
linking bone biomechanical properties and physical
activity-related load history. Niinimäki et al. (2017), for
instance, studied bone properties including bending and
torsional strength, cortical area, direction of the major
axis (theta angle), and shape ratios in cross-sections of
the hip and proximal femur, collected by MRI from fe-
male Finnish athletes engaged in a range of sporting ac-
tivities (high-jump, triple-jump, endurance running, swim-
ming, power-lifting, soccer and squash and, a group of
active non-athletes). They found that triple-jumpers and

soccer and squash players had the greatest cortical tor-
sional strength, swimmers and non-athletes the smallest,
whereas high-jumpers, power-lifters, and endurance run-
ners exhibited interim values. This lead the authors to
conclude that extreme, directionally inconsistent loading
necessitate a more robust skeleton compared with
directionally consistent or non-impact loads [111]. The
work by Giarmatzis et al. (2017) indicated that the elderly
exhibit smaller stride length and hip adduction angle at
peak loading during both walking and running [112] and
suggests that an exercise regime initially aimed at revers-
ing these trends may be beneficial in preventing age-
related hip bone loss.

Priming to Restore Adaptive Responses

The origins of such priming events that restore bones’
mechanoadaptive response to loading in the aged skeleton
remain ill-defined. Whether they might be instigated by spe-
cific short-term modifications in the mechanical loading envi-
ronment remains almost entirely unexplored. Clues to the
identity of these mechanical priming events in the aged bone
may emerge from the elucidation of the mechanisms under-
pinning the response to specific loads engendered by high
impact exercise. To address whether mechanoadaptation fails
in aged mice due to a strain thresholding effect and whether
exceeding this threshold can act as a priming stimulus, a re-
cent study by Javaheri et al. (2018) explored whether imposi-
tion of a brief high-magnitude, load-priming regime might
restore mechanoadaptive responses in both cortical and tra-
becular bone of aged female mice. In addition, the authors
sought to identify the mechanisms involved by spatial corre-
lation with known regulators of bone accrual. The authors
reported that two bouts of additional high magnitude load,
producing local strains more than double of those capable of
eliciting a mechanoadaptive response in young mice (~ 5500
με), effectively primed a mechanoadaptive response in the

Fig. 1 We hypothesize that (1) bone formation in the cortex occurs in
regions of high strain gradients; (2) regions of high strain gradient are
absent in aged cortical bones; and that (3) aged cortical bone can be “kick-

started” for osteogenic activity by inducing regions of high strain gradi-
ent. It is presumed that trabecular bone may utilize similar mechanisms
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cortical but not the trabecular bone in agedmice to subsequent
lower magnitude loading bouts. This “priming” function was
implicated on the basis that these latter, low-magnitude load-
ing bouts engendered strains which only matched those which
the bone was otherwise unresponsive in other groups of aged
mice. Intriguingly, this load-priming of increased cortical
mechanoadaptive bone accrual in aged mice was regionally-
correlated with the down-regulation of osteocyte Sclerostin
expression, which serves as a proxy measure of osteocyte
response to load. These data suggest that the failure of aged
bone to adapt in response to loading is due to the evoking of an
insufficient mechanical stimulus and/or a dysfunctional
osteocyte-mediated mechanotransduction of this stimulus, ei-
ther of which can be reactivated in aged bones by short bursts
of high magnitude loading [86••].

New Concept

It, therefore, remains unclear whether aged bones lose
their responsiveness to mechanical loading due to a fail-
ure of the osteocytes to sense load, a failure of osteoblasts
to lay down new bone, or insufficient mechanical stimulus
to trigger a response. We and others have shown that
mechanoadaptive responses to load are deficient in the
aged bone (despite induction of relatively high strains)
but can be restored by the imposition of either disuse or
supra-physiological high-magnitude loads. These findings
imply that loading, which is clearly mechanoadaptive in
young bones, generates a divergent mechanical stimulus
in the aged bone, which fails to elicit a response. We
hypothesize that aged bone mechanoadaptation is not
driven solely by the magnitude of strain but is instead
sensitive to local high strain gradients. Deciphering the
factor(s) underpinning these shifts in mechanoadaptive
capacity will enable new approaches for retaining bone
health in the aged. Exercise is a commonly recommended
intervention for preventing bone fragility, and perhaps, its
enlightenment in light of these in vivo studies is now a
profound prospect.

Recent studies provide more guidance on the effectiveness
of exercise regimes to restore the age-related decline in bone
adaptive responses, emphasizing the notion that only high-
impact exercise regimes are osteogenic. Innovative exercise
paradigms appear to be capable of “hacking” into the osteo-
genic signal produced by exercise such that low-to-moderate
intensity activities may also become more beneficial. It is
tempting therefore for us to speculate that bone formation
occurs in regions of high strain gradients, that regions of high
strain gradient are absent in aged bones, and that aged bone
can be “kick-started” for osteogenic activity by the transient
induction of regions of high strain gradient (Fig. 1).

Conclusions

The growing skeleton experiences a diversity of mechanical
loads that modulate the accrual of bone mass and hence bone
strength. However, with increasing age, there is a failure to
maintain the balance between formation and resorption with
resultant, progressive net bone loss. Previous studies by us
and others have documented that the bone’s adaptive response
to anti-resorptive/anabolic stimulation by mechanical loading
is impaired and that innovative loading strategies have the
potential to prevent some of the deleterious effects of aging
on bones and restore the functionally-relevant structure in the
elderly to prevent age-related bone loss and osteoporosis.
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