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Highlights

e Tuberculosis (TB) area prevalence was the most important classifier in England.
e A recently-resolved confirmed incident was the most frequent classifier overall.
e TB risk factors and their inter-relationships vary in areas of different incidence.

e Decision tree “if-else” scenarios provide decision-making tools to aid control.

e C(lassification tree models can successfully inform logistic regression models.

Abstract

Identifying and understanding the risk factors for endemic bovine tuberculosis (TB) in cattle
herds is critical for the control of this disease. Exploratory machine learning techniques can
uncover complex non-linear relationships and interactions within disease causation webs, and
enhance our knowledge of TB risk factors and how they are interrelated. Classification tree
analysis was used to reveal associations between predictors of TB in England and each of the
three surveillance risk areas (High Risk, Edge, and Low Risk) in 2016, identifying the highest
risk herds. The main classifying predictor for farms in England overall related to the TB
prevalence in the 100 nearest cattle herds. In the High Risk and Edge areas it was the number
of slaughterhouse destinations and in the Low Risk area it was the number of cattle tested in
surveillance tests. How long ago the last confirmed incident was resolved was the most frequent
classifier in trees; if within two years, leading to the highest risk group of herds in the High
Risk and Low Risk areas. At least two different slaughterhouse destinations led to the highest
risk group of herds in England, whereas in the Edge area it was a combination of no contiguous
low-risk neighbours (i.e. in a 1 km radius) and a minimum proportion of 6-23 month-old cattle

in November. A threshold value of prevalence in 100 nearest neighbours increased the risk in
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all areas, although the value was specific to each area. Having low-risk contiguous neighbours
reduced the risk in the Edge and High Risk areas, whereas high-risk ones increased the risk in
England overall and in the Edge area specifically. The best classification tree models informed
multivariable binomial logistic regression models in each area, adding statistical inference
outputs. These two approaches showed similar predictive performance although there were
some disparities regarding what constituted high-risk predictors. Decision tree machine
learning approaches can identify risk factors from webs of causation: information which may

then be used to inform decision making for disease control purposes.

Keywords: Bovine tuberculosis, risk factors, machine learning, logistic regression,

classification tree, England.

1. Introduction

Bovine tuberculosis (TB: infection of cattle with Mycobacterium bovis) is the most pressing
animal health problem in the UK (Defra, 2014). A total of 33,238 cattle were slaughtered in
England in 2017 as part of the TB eradication strategy (Defra, 2018a), at a cost of around £100
million per year (Defra, 2018b). The aim of the strategy is to eradicate the disease by 2038 in
the whole of England (Defra, 2014). More effective disease control strategies could be applied
if we understood better the influence of risk factors in this disease of complex epidemiology;
likely to vary between herds and areas (Broughan et al., 2016; Skuce et al., 2012). Three
different TB management zones have been established according to TB risk (Figure 1): a High
Risk area (HRA), a Low Risk area (LRA) and an Edge area (EDGE) as a buffer between the

two (Defra, 2014).
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To control and eradicate TB is necessary to secure a downward incidence trend in the High
Risk area (HRA) of England, where the vast majority of new herd incidents occur (84% of
3,306 in 2018). The Low Risk area (LRA), although nearly double the geographical area size
of the HRA, has proportionally over twenty times less TB incidence per 100 herd-years at risk
(APHA, 2019).

Non-parametric machine learning is used to model and understand complex databases,
incorporating developments from computer science. Tree-based methods partition the predictor
space successively into regions using splitting rules that are summarized in a tree (James et al.,
2014; Therneau and Atkinson, 2018). The underlying algorithm does not make distributional
assumptions (Breiman et al., 1984), can deal with different levels of measurements in variables
(Fei et al., 2017; Lewis, 2000), is robust against extreme biases in observations and does not
have restrictions on the number of predictors (Frisman et al., 2008; Strobl, 2010).

Decision trees have been applied to veterinary, medical, environmental and economic areas,
producing models that are easy to interpret (Kuhnert and Venables, 2005; Saegerman et al.,
2011) and which can be useful as an initial exploratory tool to identify important variables and
their interactions (James et al., 2014; Kuhnert and Venables, 2005). In this study we aimed to
classify cattle herds with regards to the risk of having a TB incident or not (binary outcome) in
2016 using Classification and Regression Tree Analyses (CART).

This paper demonstrates the application of decision trees to enhance the knowledge about risk
factors for a herd TB incident in England as a whole and within each of the three surveillance

risk areas.
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2. Methods

2.1 Source datasets

APHA-held and other data on potential herd-level predictors for herds active in England in
2016 was used, ranging from demographic herd characteristics and TB-related variables (e.g.
past TB history from as early as January 2000) from the Sam TB management system, to cattle
movements from the Cattle Tracing System, climate (Met_Office, 2017), badger density (Judge

et al., 2017) and land class data (Bunce et al., 2007).

2.2 Data preparation

Proximity variables to bovine and non-bovine incidents were created using the near table tool
in ArcMap (ESRI). Summary measures of climate variables (mean, maximum and minimum
across the most recent four-year period available) and land class were extracted at herd level

using ArcMap (ESRI) extraction tool.

2.2.1 Data reduction
Non-eligible herds were excluded:

e Being a government-approved finishing unit (i.e. Approved Finishing Unit, Licensed
Finishing Unit and Exempt Finishing Unit). These are restricted biosecure finishing
units licensed and monitored by the government that can receive cattle from TB-
restricted premises (first two) (APHA, 2018a, 2017a) and from premises that have not
had their required pre-movement test in the latter case (APHA, 2018b) but can only
send cattle to slaughter. Movements to these represent a deferred slaughter possibly

beyond the study year;
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e Not having a value for herd size, a key predictor based on previous studies (Broughan
et al., 2016; Skuce et al., 2012), and
e Not having a chance of an incident being detected in 2016 due to absence of active

(surveillance testing) and passive (slaughterhouse) surveillance.

2.3 Data analysis

2.3.1 Descriptive data analysis

The initial dataset used for analysis was made up of the outcome variable (i.e. incident or not
in 2016) and 141 predictors (supplementary materials S1). The presence of missing values was
assessed and dealt with by removing herds with any missing observations (6.12% herds
removed) (complete-case analysis, CC) (Hayes et al., 2015; Maimon and Rokach, 2010;
Pedersen et al., 2017) and by substituting missing values using multiple imputation (MI) (Afifi
et al., 2011; Maimon and Rokach, 2010; Pedersen et al., 2017) with chained equations (van
Buuren, 2011). Numerical variables were not categorized. The relative proportions of incident
and non-incident herds in England, High Risk area (HRA), Edge area (EDGE) and Low Risk

area (LRA) were also evaluated (Figure 1).

2.3.2 Variable selection

To improve the speed and performance of the decision tree algorithm, non-important variables
were removed (Guyon and Elisseeff, 2003; Jain and Singh, 2018; Maimon and Rokach, 2010)
in three steps. First, univariable logistic regression analyses were carried out to reveal
associations between each individual predictor and the outcome, removing non-significant
variables (p>0.1) (Hilbe, 2017). Second, the presence of highly-correlated variables was

determined by a correlation coefficient above 0.79 in absolute value (Campbell and Swinscow,
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2009). Among highly-correlated pairs of numerical variables (detected using the Spearman
test), the one with the lowest mean correlation between this predictor and all other ones was
selected (Kuhn, 2008). Categorical variables were assessed using the Cramer’s V test (Cramer,
1946), followed by the manual selection of certain variables within highly-correlated pairs,
based on practical criteria. Selected highly-correlated and non-highly correlated variables
entered the next step of the variable selection process. Third, predictors with near-zero variation
(i.e. the ratio of the number of unique values relative to the total number of observations is less
than 20% and the ratio of the most frequent value to the second most frequent one is greater
than 20) were removed (Kuhn, 2008). A final check for the presence of linear dependencies

was also carried out using QR matrix decomposition (Kuhn, 2008).

2.3.3 Classification tree analysis

Classification tree models using the CART algorithm (Breiman et al., 1984; Therneau and
Atkinson, 2018) were developed using the training datasets, resulting from the random split of
the original datasets into training and testing ones using a 80:20 (training: testing) random split
(Feiet al., 2017; Kassambara, 2018; Kawamura et al., 2012; Yang et al., 2016). The algorithm
repeatedly allocates herds into the most homogeneous groups by outcome class, choosing the
best combination of variable and cut-off point each time among all possible ones (Bruce, P;
Bruce, 2017; James et al., 2014). The terminal node after the last split predicts the majority
incident class from the relative frequencies of herds (Strobl, 2010). Interactions are present if
each branch coming out of the same node has different subsequent splitting predictors
(Wilkinson, 1992). A further splitting node with the same variable but a different cut-off point
represents a nonlinear step function (Hayes et al., 2015). The gini or purity index (G) used as

the splitting criteria is defined as:
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G = Y emy Pre(L = Pru),

were P, represents the proportion of observations in the m™ region that are in a particular
outcome class (k™) (James et al., 2014). The split producing the greatest reduction in impurity
is selected each time. Variable importance is the sum of the heterogeneity reductions in the
splits within the tree’s internal nodes; whether they are present in the final tree or only used in
its construction (Breiman et al., 1984; Therneau and Atkinson, 2018).

Fully-grown trees were then pruned to prevent overfitting (Breiman et al., 1984) using cost-
complexity pruning with 10-fold cross-validation to get a cross-validated error rate. The
complexity parameter within one standard-error of the minimum cross-validated error rate was
chosen to prune the tree (Frisman et al., 2008; Kuhnert et al., 2000; Therneau and Atkinson,
2018). To alleviate the problem of imbalanced class proportions of the outcome in the training
algorithm, the analyses were repeated using a down-sampling approach within the training
datasets, independent of the cross-validation process. Downsampled datasets were created by
selecting a random sample of non-incident herds matching the number of incident ones (Chawla
et al., 2002; Garcia et al., 2010; Mostafizur Rahman and Davies, 2013).

All models were validated by assessing their predictive performance on the testing datasets
(data not seen by the developed models) (Kuhn et al., 2014) using: accuracy, sensitivity,
specificity, positive and negative predictive values, balanced accuracy and area under the
Receiver Operating Characteristic curve (AUC) (Fei et al., 2017). The models with the highest
balanced accuracy (i.e. average between sensitivity and specificity) were chosen in each area

to inform multivariable logistic regression analyses.
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2.3.4 Multivariable logistic regression

Variables with a non-zero importance value in the best classification tree models - using
downsampled training datasets with multiple imputation of missing values- in England and the
surveillance risk areas entered the multivariable logistic regression models for each area (i.e.
full models). Non-significant variables were removed from the full models using the likelihood
ratio test (a=0.05) to create the reduced ones. The variables removed were then added back to
the reduced models one-by-one, with the ones causing >20% coefficient change in at least one
of the remaining variables being reintroduced to create the preliminary main effects models
(Hosmer et al., 2013).

Predictor assumptions’ were then addressed: minimum expected and observed frequencies in
the contingency table for categorical predictors (Josephat and Ame, 2018) and linearity with
the logit of the outcome for numerical ones (Hosmer et al., 2013). Non-linear numerical
variables were identified using the Box-Tidwell test (Box and Tidwell, 1962; Fogarty, 2018)
and then categorized to facilitate interpretation (Hilbe, 2017). First-order two-way interaction
terms from the best classification trees (root and first nodes, left and right) were then added to
the models if they were significant, using the likelihood ratio test (a=0.05) (Hosmer et al.,
2013), as proposed final models. Predictors that exhibited multi-collinearity with variance
inflation factor (in LRA) or adjusted generalized variance inflation factor (in all other areas)
above five (Fox and Monette, 1992; Fox and Weisberg, 2019) were removed, as well as any
influential observations (standardized residual over three) (Kassambara, 2018). We also
ensured that at least ten in the LRA and EDGE (Peduzzi et al., 1996) or 50 in England and the
HRA (Josephat and Ame, 2018) cases per estimated parameter were present; before formulating

the final model for each area and evaluating their predictive performance on the testing datasets.
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A comparison between the final model and the full model in the EDGE was carried out using
the Akaike’s Information Criteria (AIC) (Akaike, 1973).
Statistical analyses were performed using the R statistical software version 3.6.0. and

manipulation of spatial data was carried out in ESRI ArcMap 10.6.1.

3. Results

3.1 Data Preparation and Descriptive Data Analysis

There were 52,668 cattle active herds in England in 2016 from which 392 government-
approved finishing units, 109 cattle herds without a value of herd size and 11,983 herds without
a chance of an incident detected were removed, leaving 40,184 herds to be included in the
analysis. The highest percentage of missing herd values per variable was 2.42. Nine percent of
herds without a missing value in England (3,561 out of 37,723 in CC and 3,639 out of 40,184
in MI datasets) had had a new incident in 2016: 86% of them were in the HRA, ten percent in
the EDGE and four percent in the LRA. These proportions mimic the proportions reported for
2016 in all active herds, although HRA herds are over-represented due to data reduction

(APHA, 2017b).

3.2 Variable selection

Sixty-five of the 141 predictors remained in the analysis following removal at every stage
except the final check on linear dependencies (none detected) (Figure 2). The manual selection
of categorical variables in highly-correlated pairs was carried out prioritising ease of extraction
(Movement on 2014-2016 preferred over Movement on 2012-2016, Incident in 2015 chosen

over Reactors at incident disclosure in 2015 and Surveillance risk area over County) and
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information value (and Time since last confirmed incident over Previous confirmed incident
resolved (yes/no) and Previous confirmed incident). Eight near-zero variance variables were
removed, two categorical binary (most frequent class in 99% and 98% of observations,
respectively) and six numerical (ratio of most frequent to second most frequent value ranging

from 23.25 to 232.5).

3.3 Classification tree analysis

The best classification tree models (i.e. highest balanced accuracy) were the ones developed
using downsampled datasets with multiple imputation of missing values (0.76-0.81 balanced
accuracy). Models with non-downsampled datasets showed a 22-30% reduction in balanced
accuracy compared to downsampled ones. Among these, there was a one to seven percentage
reduction in balanced accuracy with complete-case datasets compared to multiple imputation
ones in all areas except the LRA (21% reduction) (Table 1). Looking at the best models, Time
since the last confirmed incident was resolved and Prevalence in 100 nearest neighbours
appeared in tress in all areas, the first one being the most frequent variable present overall and
appearing with the same cut-off (0 to 2 years) in all trees (Table 2). This variable was also the
only one within the top six variables in the variable importance ranking in all areas
(supplementary materials S2). Prevalence in 100 nearest neighbours was within the top six
variables in England, EDGE and LRA (the eight in the HRA) ; Number of slaughterhouse
destinations, Number of deaths and High-risk neighbours within 1 km radius (i.e. risk score 4
or 5 adapted from Adkin et al.2016) was so in England, HRA and EDGE and 36 month-old or
over cattle in November was within the top six variables in the HRA, EDGE and LRA (the
seventh in England). Outputs from tree models using alternative datasets are additionally

presented (supplementary materials S3).
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3.3.1 England

The best classification tree for experiencing a TB incident in 2016 in England had 13 nodes;
seven of them terminal, with the depth of the tree being five (Figure 3). The highest-risk group
(80% of incidents in 2,686 herds) had a Prevalence in 100 nearest neighbours of at least five —
most important classifier- (56" percentile) and at least two slaughterhouse destinations (67
percentile) (Figure 3). However, if the prevalence in the area was under five the second high-
risk group of herds (76% incidents) had a recently-resolved confirmed TB incident (within last

two years).

3.3.2 High Risk area

The classification tree for the HRA had 19 nodes, ten of them terminal, and a depth of six
(Figure 4). A Number of slaughterhouse destinations of at least two (67™ percentile) was the
most important classifier in the HRA, together with Time since last confirmed breakdown was
resolved within the last two years — most frequent classifier-, leading to the highest group of
herds (81% of incidents in 1,734 herds) (Figure 4). Not having a confirmed incident resolved
in the last two years required, in addition to at least one low-risk neighbour (risk score 1, 2 or
3 adapted from Adkin et al. 2016), a TB prevalence in nearest 100 neighbours of at least nine
(43" percentile) and at least 113 36 month-old or over cattle (88™ percentile) to lead to a similar
80% incident group. Having a confirmed incident resolved in the last two years was involved
in another high-risk pathway one slaughterhouse destination, provided there were no incidents

in 2015 (79% incidents group).
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3.3.3 Edge area

The classification tree for the EDGE had 23 nodes, 12 of them terminal, and a depth of seven
(Figure 5). At least two different slaughterhouse destinations- most important classifier- (721
percentile), no low-risk neighbours and a minimum proportion of 6-23 month-old cattle in
November of 54% (71% percentile) or over, led to the highest risk group (90% of incidents in
155 herds) (Figure 5). Low-risk neighbours and at least one inconclusive reactor (in absence of
reactors) in a surveillance test led to a similarly high-risk group (89% incidents). Having under
two slaughterhouse destinations but high-risk neighbour/s was involved in a similar risk
pathway (85% of incidents), provided a minimum mean daily rainfall of five (66" percentile),
which is fulfilled by the vast majority of herds in the HRA but less so in the EDGE and LRA

(supplementary materials S4).

3.3.4 Low Risk area

The classification tree for the LRA had 15 nodes, eight of them terminal, and a depth of five
(Figure 6). The most important classifier in the LRA tree (Figure 6) was Surveillance tests with
at least eight cattle tested (63th percentile). Less than that and a confirmed incident resolved
within two years led to the highest-risk group of herds (100% of incidents in nine herds). If at
least eight cattle were tested, high-risk groups related to having a Prevalence in 100 nearest
neighbours of at least 1 (95th percentile) (86% incidents) or less than that but a Proportion of

6-23 month-old cattle in November < 24% (20th percentile at least 24%) (94% incidents).

3.4 Multivariable logistic regression analysis
Fifteen variables from the classification tree variable importance list in England, 18 in the HRA,

29 in the EDGE and 24 in the LRA were included in the full logistic regression model for each
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area (Figure 2). Three out of four variables removed to create the reduced model were
reintroduced in England, four out of four in the HRA, one out of 20 in the EDGE and three out
of 15 in the LRA. There was no justification to use the full model compared to the reduced one
in England, HRA and LRA (p= 0.21, 0.13 and 0.27, respectively), but there was a significant
difference between the two models in the EDGE (p= 0.01). However, the same model building
strategy was used here to find a more parsimonious model with an adequate fitting. Time since
the last confirmed incident was resolved had levels collapsed in the HRA, EDGE and LRA
models to meet categorical variables’ assumptions whereas Inconclusive reactors only in
surveillance tests binary variables (i.e. this year and in 2015) were removed in the LRA due to
a lack of observations with inconclusive reactors detected and no incidents in 2016. Numerical
variables not meeting the linearity assumption were categorized: four in England, three in the
HRA and one in the EDGE. One out of two first-order two-way interaction terms were added
to the England and EDGE area models: Prevalence in 100 nearest neighbours with Time since
last confirmed incident was resolved (Figure 3) and Number of slaughterhouse destinations
with High-risk neighbours in a I km radius (Figure 5), respectively. No variables exhibited
multi-collinearity and no influential observations were detected. The predictive performance of
the regression models was in line with that of the best classification trees, with a maximum
difference in balanced accuracy of one centesimal point, but regression models were superior
to classification tree ones in the EDGE and LRA (Table 1). In the EDGE, the final model was
better than the full and reduced ones: AIC of 558.33 compared to 585.15 and 581.20,
respectively. The predicted probability of an incident (PPI) for individual predictors that
matched tree nodes in England, HRA, EDGE and LRA were compared by area, while keeping

the others constant (Table 3).

Decision tree statistical learning M. Pilar Romero 14



3.4.1. England

The Prevalence in 100 nearest neighbours was highly significant and increased the PPI by eight
percent per unit increase if no previous resolved confirmed incident, all other predictors held
constant. In the presence of a resolved confirmed incident within the last two years for a value
of area prevalence of five (cut-off values in tree), the PPI increased by 632 percent. Having
High-risk continuous neighbours -also highly significant- increased the PPI by 35 percent, other

predictors held constant.

3.4.2. High Risk Area

The Number of slaughterhouse destinations (categorized) was highly significant and two
unique destinations increased the PPI 316 percent, compared to none or one, other predictors
held constant. Having an incident in 2015 was also highly significant but protective, reducing

the PPI by 56 percent compared to not having one.

3.4.3. Edge

The Number of slaughterhouse destinations (categorized) in the absence of high-risk
contiguous neighbours increased PPI by 332 percent if there were two unique destinations
compared to none or one, other factors held constant. In the presence of one high-risk
contiguous neighbour, there was a 31 percent reduction in PPI for two different slaughterhouse
destinations. However, there was a 75 percent increase in PPI if there were three different
slaughterhouse destinations and one high-risk contiguous neighbours compared to none or one,
other factors held constant. Detecting inconclusive reactors only increased the PPI by 462%,

with all predictors mentioned being highly significant.
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3.4.4. Low Risk Area

Surveillance tests was just not significant in the logistic regression model (p=0.05) and did not
have an effect on the PPI (OR=1.00). TB Prevalence in 100 nearest neighbours was not
significant either; however, a confirmed incident resolved increased the PPI by 2,393% and

was highly significant.

4. Discussion

Understanding the combination of risk factors that are most influential in, and specific to, a
particular area could help identify the multiple transmission pathways to target in disease
control strategies. The outputs from our classification tree analyses support this idea (even
adjusting for the different incident prevalence levels) as do the logistic regression models
informed by this approach; both methods showing excellent discrimination with AUC >0.80
(Hosmer et al., 2013) (Table 1).

The level of TB in contiguous and/or surrounding areas, approximated by the presence of high-
risk neighbours in a 1 km radius and the prevalence in 100 nearest neighbours, is one of the
most consistently-identified risk factor (Skuce et al, 2012). The number of High-risk
neighbours in a I km radius is within the six most important variables in trees in all areas except
the LRA, increasing the risk if at least one is present (and other rules are met) in tree outputs.
Although it doesn’t appear as a node in the HRA, not having low-risk neighbour increased the
risk in the tree outputs - looking at this node in isolation- and having a low-risk neighbour was
protective in regression outputs for this area, all other covariates held constant. The effect of
high-risk neighbours is modulated by the number of slaughterhouse destinations in the EDGE

area. Prevalence in 100 nearest neighbours, the top classifier in England, was present as a tree
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node in all areas and increased the risk if a minimum was achieved, providing any “if-then”
rules in the tree were met. In the logistic regression model, a unit increase in 100 closest
neighbours’ prevalence also increased the risk, particularly in the LRA area. However, its effect
was modulated by the Time since last confirmed incident was resolved in England, all other
predictors held constant.

Time since last confirmed incident was resolved within the last two years, the only variable
among the top six for importance in trees in all areas, relates to TB history. This is another of
the most consistently-identified risk factors (Broughan et al., 2016). Nearly 58% of new
incidents in the HRA and 53% in England were recurrent (i.e. followed a previous one within
the last three years) in 2016, whereas only 13% were so in the LRA (APHA, 2017b). Not having
a previous confirmed incident resolved or one resolved over two years ago led to low risk
groups (<50% incidents) in all occasions, except to a 57% probability group in the HRA.
However, having an incident the year before (i.e. 2015) was protective in this area. This could
be due to these herds still being under restriction in 2016 - incident duration of 185 (146-289)
days as median (25" and 75" percentile) in the HRA in 2016 (APHA, 2017b)- and/or the first
test after an incident (around six months from lifting restrictions (APHA, 2017¢)) not having
taken place by the end of 2016.

A Number of slaughterhouse destinations of at least two was the top classifier in the HRA and
EDGE classification trees — one of the second most important ones in England- but didn’t figure
in the LRA. This could be related to the slaughter of reactors from incident farms that are sent
to specific slaughterhouses under APHA contract and could therefore be different to the farm’s
usual one. However, it could also be related to enhanced possibilities of detection of incidents

by passive surveillance due to differing slaughterhouses’ performance (McKinley et al., 2018).
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Herd size is another of the most commonly-identified risk factors (Broughan et al., 2016; Skuce
et al., 2012) but Herd size and Average size were excluded in the correlation test. However, a
proxy for it, the number of cattle tested in surveillance tests, was the top classifier in the LRA
tree. The eligibility includes all breeding cattle but also any cattle purchased since the last test
that is intended to be kept for breeding. Around 60% of new incidents are originated by
purchasing cattle in this area in 2016 (APHA, 2017b) and 2017 (APHA, 2018c); fact that has
triggered compulsory post-movement testing since 2016 (Defra, 2016). More specific
demographic variables also appeared in the LRA and other trees referring to the number or
proportions of cattle or different age intervals out of two time points in dataset (i.e. 1 November
and 1 April).

In spite of general agreement between predictors present in tree nodes being significant terms
in logistic regression models, there were some inconsistencies; possibly due to analytical
limitations like the absence of higher-order interactions, among others. In the LRA, the
Inconclusive reactors only in surveillance tests binary categorical variables (i.e. in 2016 and in
2015) had to be removed from the logistic regression model as they provided complete
separation and perfect prediction of an incident if any inconclusive reactors were detected;
meaning there would have been numerical limitations at the time of calculating the odd ratios.
These are in the variable importance list for all classification trees, except the 2015 version in
England’s tree. Inconclusive reactors in 2016 (yes) is a tree node in the EDGE, leading to the
second-highest group of herds, and increasing the risk by 462% in the logistic regression model
for that area (other factors held constant). This supports literature evidence that inconclusive

reactors in the absence of reactors increase the risk (Brunton et al., 2018; Clegg et al., 2011a,
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2011b), which is being reduced in England by lifetime restrictions of cleared inconclusive
reactors since 2017 (APHA, 2017d).

While in England the four predictors in tree nodes were significant, the number of 36 month-
old or over cattle was not statistically significant (p=0.23) in the HRA and Surveillance tests
(the top classifier) was just not significant in the LRA (p=0.05). Some variables present in the
EDGE and LRA tree nodes were not present in the logistic model: five in the EDGE and four
in the LRA. Discrepancies were also found with the direction of risk, where a variable that leads
to a high-risk group of herds (if previous rules are met) in the trees doesn’t influence the
predictive probability of an incident in the regression model. This was seen in the LRA with
the Surveillance tests (top classifier)- just not significant-, although the actual cut-off of two
was not modelled.

Classification tree analyses converged without variable transformations even in relatively high
dimensional situations, like the LRA. It overcame difficulties encountered by parametric
analyses traditionally applied to TB (Adkin et al., 2016; Bessell et al., 2012; Johnston et al.,
2011, 2005; Karolemeas et al., 2011, 2010; McKinley et al., 2018; Ramirez-Villaescusa et al.,
2009; Reilly and Courtenay, 2007; Shittu et al., 2013; Winkler and Mathews, 2015; Wright et
al., 2015), providing new insights into the most important TB risk factors and how they are
interrelated to influence the occurrence of a TB incident in areas of different prevalence.
Moreover, it is unlikely that the higher-order interactions and precise cut-offs depicted in the
trees would have been arrived at using logistic regression alone.

This supports the use of non-parametric methods in their own right as well as a variable

selection tool to formulate regression models. However, classification and more generally
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decision trees lack the predictive ability of alternative non-parametric analyses, with their

nature being fundamentally explanatory.

5. Conclusion

This paper demonstrates the novel application of classification tree analysis to enhance the
understanding of TB as a complex and multifactorial disease and as a selection tool for
parametric models. The models created help explain how TB risk factors are inter-related and
have characterized high risk groups of herds with regards to their likelihood of an incident. The
nature of the analysis allows for a large dataset with several risk factors to be analysed together,
without making distributional assumptions nor transforming the variables. Different insights
were drawn from different surveillance risk areas using both types of models, justifying the
need for different disease control strategies and interventions applied. TB prevalence, incident
detection and TB history variables are important classifiers of herds and additional unsuspected
relationships with other predictors have been identified. While these analyses are exploratory
in nature, they have identified combinations of TB risk factors that could form the basis of a

future predictive model.

Tables

Table 1. Predictive performance indicators of models on the testing datasets. Classification tree models developed
using complete-case and multiple imputation datasets for original as well as downsampled datasets in England,
HRA and EDGE and for the LRA trees are presented in the top part of the table. The model with the highest

balanced accuracy in each area is shaded grey. The bottom part of the table shows the performance of the
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multivariable logistic regression models (developed using the downsampled multiple imputation datasets) in the

testing dataset of the same areas. CC= Complete-case, MI= Multiple Imputation, PPV=Positive Predictive Value,

NPV=Negative Predictive Value, AUC=Area Under the Receiver Operating Characteristic curve.

Classification tree Accuracy = Sensitivity =~ Specificity | PPV | NPV | Balanced | AUC
accuracy

England CC 0.92 0.35 0.98 0.63 | 0.93 | 0.66 0.71
England MI 0.92 0.30 0.98 0.60 | 0.93 | 0.64 0.71
England (downsampled CC) | 0.80 0.76 0.80 0.28 097 | 0.78 0.80
England (downsampled MI) | 0.77 0.86 0.76 0.27 |0.98 | 0.81 0.83
HRA CC 0.86 0.27 0.96 0.57 |0.88 | 0.62 0.76
HRA MI 0.86 0.27 0.97 0.62 | 0.88 | 0.62 0.77
HRA (downsampled CC) 0.72 0.84 0.70 0.34 | 096 | 0.77 0.80
HRA (downsampled MI) 0.75 0.83 0.73 0.36 | 0.96 | 0.78 0.83
EDGE CC 0.94 0.18 0.99 0.57 095 | 0.58 0.65
EDGE MI 0.94 0.16 0.99 041 |095 | 0.57 0.64
EDGE (downsampled CC) 0.70 0.75 0.69 0.14 1098 | 0.72 0.77
EDGE (downsampled MI) 0.76 0.78 0.76 0.17 | 098 | 0.77 0.82
LRA CC 0.99 0.08 1.00 0.67 |0.99 | 0.54 0.52
LRA MI 0.99 0.08 1.00 0.33 099 | 0.54 0.52
LRA (downsampled CC) 0.74 0.52 0.74 0.02 | 099 | 0.63 0.76
LRA (downsampled MI) 0.64 0.88 0.64 0.02 | 1.00 | 0.76 0.84
able og A g € PP P B ed A
mressiE 3 3
England (downsampled MI) | 0.73 0.89 0.72 0.24 099 | 0.80 0.88
HRA (downsampled MI) 0.69 0.89 0.66 0.32 | 097 |0.77 0.85
EDGE (downsampled MI) 0.75 0.82 0.74 0.16 | 099 | 0.78 0.86
LRA (downsampled MI) 0.77 0.77 0.77 0.03 | 1.00 | 0.77 0.84
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Table 2. Risk factor variables and their cut-off points in the best classification trees for each area. These trees were developed using downsampled training

datasets with multiple imputation of missing values. The presence of a predictor in the tree nodes is indicated by a number representing the total number of

occurrences by variable and cut-off point combination in each tree.

| Variable and cut-offpoint 'LRA  Total |

Time since last confirmed incident was resolved= 1 2 3 1 1 7
Incident in 2015= No 1 1
Inconclusive reactors only in surveillance tests=Yes 1 1
Surveillance tests>= 8§ 1 1
High-risk neighbours in 1 km radius>= 1 1 1 2
Low-risk neighbours in 1 km radius< 1 1 1 2
Prevalence in 100 nearest neighbours>= 1 1 1
Prevalence in 100 nearest neighbours>= 5 1 1
Prevalence in 100 nearest neighbours>= 9 1 1
Prevalence in 100 nearest neighbours>= 6 1 1
Under 6 month-old cattle in April>= 37 1 1
36 month-old or over cattle in November>= 113 1 1
36 month-old or over cattle in November>= 236 1 1
Proportion of 6-23 month-old cattle in November>= 54 1 1
Proportion of 6-23 month-old cattle in November< 24 1 1
Proportion 36 month-old or over cattle in April< 28 1 1
Number of slaughterhouse destinations>= 2 1 1 1 3
Number of slaughterhouse destinations>= 1 1 1 2
Number of low-risk destinations>= 6 1 1
Any movements on 2014-2016= No 1 1
Mean daily rainfall 2013-2016>= 5 1 1
Density habitat>= 2.57 1 1
Total 6 9 11 7
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Table 3. Classification tree variables in tree nodes, their variable importance, the highest-level occurrence’s “Yes” branch cut-off point and the proportion of
incidents in the region or herd subgroup arising from that branch. Logistic regression variable levels and cut-offs for categorical variables, p-values, odd ratios

(OR), and 95% confidence intervals (CI) with dependent variable 7B incident in 2016. Both models used downsampled datasets with multiple imputation of
missing values. Logistic regression additional details (Pseudo R2 used is McFadden): England: n = 5824, AIC= 4901.67, Pseudo R2=0.40; HRA: n = 5016,

AIC=4772.42, Pseudo R2= 0.32; EDGE': n = 600, AIC= 558.33, Pseudo R2= 0.38 and LRA: n = 210, AIC= 183.72, Pseudo R2= 0.44.

HYeSH
) e Prop.
ENGL[}ND' Clessititeniion | Vidim | loes Inciden | Logistic regression variable level and cut-off values
tree variable (cut-off ts
points)

Time since last confirmed | 1002.7 -~ 10.3

incident was resolved 5 Yes (=1) 0.76 T1 (between 0-2 years ago) 6 7 1533 |0
T2 (between 3-5 years ago) 1.46 | 0.92 2.32 0.11
T3 (between 6-10 years ago) 1.88 | 1.1 3.21 0.02
T4 (between 11-15 years ago) 0.64 | 0.24 1.73 0.38
T5 (over 15 years ago) ;1'0 0.24 516.86 | 0.22

I;““.‘ber. of - slaughterhouse | o¢6 13 | yeg (==2) | 0.80 DI (2) 3.06 (249 |3.76 |0

estinations

D2 (3) 498 | 3.91 6.33 0
D3 (4-5) 4.4 |3.46 5.6 0
D4 (6-24) 3.58 | 2.78 4.63 0

Pr§valence in 100 nearest 648.71 | Yes (>=5) | 0.66 Prevalence in 100 nearest neighbours 1.08 | 1.06 1.1 0

neighbours

High-risk neighbours in 1K | 535 38 | yes >=1) | 0.68 | High-risk neighbours in I km radius 135 | 124 | 146 |0
T1: Prevalence in 100 nearest neighbours 0.93 | 0.9 0.95 0
T2: Prevalence in 100 nearest neighbours 0.98 | 0.95 1.02 0.32
T3: Prevalence in 100 nearest neighbours 0.96 | 0.92 1 0.06
T4: Prevalence in 100 nearest neighbours 1.04 | 0.96 1.13 0.37
T5: Prevalence in 100 nearest neighbours 0.73 | 0.52 1.02 0.07

Prop. . p-
Inciden | LogReg Model Term = valu
ts e

HRA: Classification tree Varlm @ "Yes"

variable p branch
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(cut-off

points)
Number of slaughterhouse | 618.00 | Yes (>=2) | 0.68 D12 4.16 | 3.39 5.1 0
destinations )
D2 (3) 5.53 | 4.36 7 0
D3 (4) 6 4.58 7.88 0
D4 (5-24) 5.07 | 3.99 6.44 0
Time since last confirmed | 567.30 | Yes (=1) 0.81 7.23 | 5.81 9.01 0
incident was resolved T1 (between 0-2 years ago)
T2 (between 3-5 years ago) 1.35 | 1.09 1.67 0.01
T3 (between 6-10 years ago) 1.42 | 1.12 1.81 0
T4 (11 or over years ago) 0.93 | 0.62 1.39 0.71
36 month-old or over cattle 274.61 | Yes 0.80 36 month-old or over cattle 1 1 1 0.23
(>=113)
Low-risk neighbours in 1 km | 158.09 | Yes (<I) 0.69 Low-risk neighbours in 1 km radius 0.83 | 0.78 0.87 0
radius
Prevalence in 100 nearest | 155.97 | Yes (>=9) | 0.55 Prevalence in 100 nearest neighbours 1.05 | 1.03 1.06 0
neighbours
Incident in 2015 18.06 | Yes (=No) | 0.79 Incident in 2015 (yes) 0.44 | 0.34 0.57 0
P D
% 0 c€ ogReg Mod OR
D
; .
Prevalence in 100 nearest | 81.76 | Yes (>=6) | 0.74 Prevalence in 100 nearest neighbours 1.16 | 1.09 1.23 0
neighbours
Number of slaughterhouse | 78.43 | Yes (>=2) | 0.68 432 | 2.15 8.67 0
destinations D1(2)
D2 (3) ;1.6 5.34 2551 |0
D3 (4-6) 6.83 | 3.39 13.75 |0
D4 (7-17) 9.24 | 4.46 19.13 |0
Time since last confirmed | 71.29 | Yes (=1) 0.89 34 1.79 6.47 0
incident was resolved T1 (between 0-2 years ago)
T2 (between 3-5 years ago) 0.45 | 0.18 1.12 0.09
T3 (6 or over years ago) 0.56 | 0.21 1.47 0.24
36 month-old or over cattle 35.20 | Yes 0.75
(>=236)
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High-risk neighbours in 1 km | 27.24 | Yes >=1) | 0.58 High-risk neighbours in 1 km radius 7.13 |22 23.12 |0
radius
Inconclusive reactors only in | 18.89 | Yes (=Yes) | 0.89 Inconclusive reactors only in surveillance tests this | 5.62 | 2.83 11.17 |0
surveillance tests this year year (yes)
Proportion 6-23 month-old | 18.70 | Yes (>=54) | 0.9
cattle in November
Low-risk neighbours in 1 km | 15.51 | Yes (<1) 0.8 Low-risk neighbours in 1 km radius 0.8 | 0.67 0.95 0.01
radius
Density habitat 7.87 Yes 0.7
(>=2.57)
Movements on 2014-16 5.40 Yes (=No) | 0.58
Mean daily rainfall 2013-16 3.92 Yes (>=5) | 0.85
D1: High-risk neighbours in 1 km radius 0.16 | 0.04 0.72 0.02
D2: High-risk neighbours in 1 km radius 0.15 | 0.03 0.69 0.01
D3: High-risk neighbours in 1 km radius 0.1 0.03 0.35 0
D4: High-risk neighbours in 1 km radius 0.19 | 0.04 0.86 0.03
5 Pro
: 0 e > Reg Mod OR
O e
Prevalence in 100 nearest | 33.66 | Yes (>=1) | 0.86 Prevalence in 100 nearest neighbours 1.33 | 0.96 1.85 0.09
neighbours
Surveillance tests 24.62 | Yes (>=8) | 0.70 Surveillance tests 1 1 1.01 0.05
Time since last confirmed | 12.57 | Yes (=1) 1.00 T1 (Confirmed incident resolved=yes) 249 | 3.17 196.31 | 0
incident was resolved 3
Under six month-old cattle in | 5.50 Yes (>=37) | 0.71
April
Proportion  6-23 month-old | 5.50 Yes (<24) | 0.94
cattle in November
Proportion 36 month-old or | 3.06 Yes (<28) | 0.72
over cattle in April
Number of low-risk | 2.97 Yes (>=6) | 0.59
destinations
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Figure legends

Figure 1. Map of Great Britain showing TB surveillance risk areas that applied in England from
2013 to 2017 (inclusive). The geographical extent and distribution of the surveillance risk
areas is shown within England. Boxes framed in each area’s fill colour provide headline
figures.

Figure 2. Flow of predictor variables during variable selection and subsequent multivariable
logistic regression. Dimension reduction techniques prior to classification tree analysis are
shown in yellow, with the number of predictors removed at each stage framed with dashed
yellow lines. Model building stages during logistic regression are shown in green on the
right-hand side, starting with the full model created using purposeful selection of variables
from the best classification tree analysis models’ variable importance ranking in each area.

Figure 3. Classification tree for an incident in England in 2016 developed using the multiple
imputation downsampled dataset. Information is presented showing the predicted outcome
classes’ counts and proportions as well as overall proportion and number of herds or
observations, starting at the root node (top) through splitting nodes in hierarchical order
(middle) down to terminal nodes (bottom of diagram). Nodes in the path leading to the
highest risk groups of herds in 2016 are filled in with the colour of the probability of incident
in accordance to the scale underneath.

Figure 4. Classification tree for an incident in the High Risk Area (HRA) in 2016 developed using
the multiple imputation downsampled dataset. Information is presented showing the
predicted outcome classes’ counts and proportions as well as overall proportion and number

of’herds or observations, starting at the root node (top) through splitting nodes in hierarchical
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order (middle) down to terminal nodes (bottom of diagram). Nodes in the path leading to the
highest risk groups of herds in 2016 are filled in with the colour of the probability of incident
in accordance to the scale underneath.

Figure 5. Classification tree for an incident in 2016 in the Edge area (EDGE) developed using the
multiple imputation downsampled dataset. Information is presented showing the predicted
outcome classes’ counts and proportions as well as overall proportion and number of herds
or observations, starting at the root node (top) through splitting nodes in hierarchical order
(middle) down to terminal nodes (bottom of diagram). Nodes in the path leading to the
highest risk groups of herds in 2016 are filled in with the colour of the probability of incident
in accordance to the scale underneath.

Figure 6. Classification tree for an incident in 2016 in the Low Risk Area (LRA) developed using
the multiple imputation downsampled dataset. Information is presented showing the
predicted outcome classes’ counts and proportions as well as overall proportion and number
of herds or observations, starting at the root node (top) through splitting nodes in hierarchical
order (middle) down to terminal nodes (bottom of diagram). Nodes in the path leading to the
highest risk groups of herds in 2016 are filled in with the colour of the probability of incident

in accordance to the scale underneath.
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EDGE:

- Surface: 22 sq. km

- Proportion of herds: 16%

- Proportion of incidents: 10%

HRA:

- Surface: 39 sq. km

- Proportion of herds: 51%

- Proportion of incidents: 86%

LRA:

- Surface: 72 sq. km

- Proportion of herds: 33%

- Proportion of incidents: 4%

0 2550 100 150 200
O s Kilometers

Figure 1.
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