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Hyperfibrinolysis 1 

Abstract 2 

The fibrinolytic system is activated concurrently with coagulation, it regulates haemostasis and prevents 3 

thrombosis by restricting clot formation to the area of vascular injury and dismantling the clot as healing 4 

occurs. Dysregulation of the fibrinolytic system resulting in hyperfibrinolysis may manifest as clinically 5 

significant haemorrhage. Hyperfibrinolysis occurs in both cats and dogs secondary to a variety of 6 

congenital and acquired disorders. It has been described in cats and dogs with conditions commonly 7 

encountered in primary care practice such as trauma, cavitary effusions, liver disease and Angiostrongylus 8 

vasorum. In addition, delayed haemorrhage reported in Greyhounds following trauma and routine surgical 9 

procedures has been attributed to a hyperfibrinolytic disorder that has yet to be characterised.  10 

 11 

Diagnosis of hyperfibrinolysis is challenging, and until recently has relied on techniques that are not 12 

readily available outside of a referral hospital setting.  With the recent development of point of care 13 

viscoelastic techniques, assessment of fibrinolysis is now possible within primary care practice. This will 14 

provide veterinary surgeons with the opportunity to target haemorrhage due to hyperfibrinolysis with 15 

antifibrinolytic drugs and reduce associated morbidity and mortality.  The fibrinolytic system and the 16 

conditions associated with increased fibrinolytic activity in cats and dogs are the focus of this review 17 

article.  In addition, laboratory and point of care techniques for assessing hyperfibrinolysis and 18 

antifibrinolytic treatment for patients with haemorrhage will be reviewed.  19 

 20 

The Fibrinolytic System 21 

Primary haemostasis is initiated following vascular injury and results in the formation of a haemostatic 22 

plug consisting of platelets, von Willebrand factor and exposed subendothelial collagen. This haemostatic 23 

plug provides a surface for secondary haemostasis, activation of coagulation factors, thrombin generation 24 

and fibrin formation (Smith, 2009). Fibrinolysis is activated concurrently with coagulation and restricts 25 

clot formation to the area of vascular injury via plasmin mediated lysis of fibrinogen and fibrin, in order 26 

to preserve vascular patency the fibrinolytic system dismantles the clot as healing occurs (Ekert and 27 

Muntz, 1972). Under physiological conditions fibrinolysis is controlled by co-factors, receptors and 28 
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inhibitors, which regulate haemostasis and prevent thrombosis (Figure 1). Dysregulation of the 29 

fibrinolytic system results in hypofibrinolysis or hyperfibrinolysis, which may manifest clinically as 30 

thrombosis or haemorrhage respectively. Investigation of the fibrinolytic system should be considered in 31 

patients with haemorrhage when surgical haemostasis has been achieved and investigations do not reveal 32 

a primary or secondary haemostatic disorder.  33 

 34 

Activation of fibrinolysis 35 

Plasmin is the primary fibrinolytic protease, it is converted from circulating inactive plasminogen by tissue 36 

plasminogen activator (tPA) and urokinase plasminogen activator (uPa). Direct injury or stimulation of 37 

vascular endothelial cells results in the release of tPA and factor XII activation following contact with 38 

negatively charged surfaces (Kooistra et al., 1994; Renné, 2012). Factor XIIa complexes with kininogen 39 

and pre-kallikrein to form bradykinin which potently induces more tPA release from endothelial cells 40 

(Brown et al., 1999). Plasmin cleaves fibrinogen and fibrin, resulting in the exposure of fibrin carboxyl 41 

terminal lysine residues which further enhance fibrinolysis by acting as binding sites for tPA and 42 

plasminogen (Ekert & Muntz, 1972; Cesarman-Maus & Hajjar, 2005). Lysis of fibrin results in the 43 

formation of soluble fibrin degradation products (FDP’s) including D-dimers.  44 

 45 

Inhibition and attenuation of fibrinolysis 46 

The three main inhibitors of fibrinolysis are plasminogen activator inhibitor-1 (PAI-1), alpha-2-47 

antiplasmin and thrombin activatable fibrinolysis inhibitor (TAFI), which are primarily produced by the 48 

liver (Saito et al., 1982; Eaton et al., 1991; Knittel et al., 1996). PAI-1 is the main inhibitor of tPA and 49 

uPA and therefore the most significant inhibitor of fibrinolysis (Loskutoff et al., 1989; van Meijer & 50 

Pannekoek, 1995). Alpha-2 antiplasmin inhibits fibrinolysis by forming a complex with active plasmin to 51 

neutralise its action and also by preventing absorption of plasminogen onto the fibrin clot. Alpha-2 52 

antiplasmin also crosslinks fibrin and factor XIIIa which strengthens the fibrin clot and enhances its 53 

resistance to plasmin (Carpenter & Mathew, 2008). TAFI is activated by thrombin in a reaction that is 54 

catalysed by thrombomodulin (Bajzar et al., 1996; Bouma & Meijers, 2004). TAFI is a potent down-55 

regulator of fibrinolysis; by removing carboxyl-terminal lysine groups from fibrin strands it prevents the 56 
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binding of plasminogen and tPA to the thrombus. TAFI decreases plasminogen activation, attenuates 57 

positive feedback from plasmin and at high concentrations also directly inhibits plasmin (Mosnier & 58 

Bouma, 2006; Foley et al., 2013). The anticoagulant, pro-fibrinolytic enzyme activated protein C 59 

neutralises PAI-1 and attenuates the production of TAFI (Sakata et al., 1986; Bajzar et al., 1996).  60 

(Figure 1) 61 

 62 

Hyperfibrinolytic Disorders 63 

Hyperfibrinolytic disorders result in premature clot lysis and haemorrhage, which may be further 64 

exacerbated by the development of a consumptive coagulopathy if dysregulation of fibrinolysis persists 65 

(Hunt, 1996; Rizoli et al., 2011; Sigrist et al., 2018). In human and veterinary medicine, haemorrhage due 66 

to hyperfibrinolysis has been associated with both congenital and acquired disorders and can be classified 67 

as primary or secondary. Primary hyperfibrinolysis occurs due to quantitative or qualitative abnormalities 68 

of the proteins involved in the regulation of the fibrinolytic pathway (Kolev and Longstaff, 2016). 69 

Secondary hyperfibrinolysis describes hyperactivity of a normal fibrinolytic pathway, typically provoked 70 

by abnormal coagulation, or hyperfibrinolysis due to increased susceptibility of fibrin to lysis (Kolev and 71 

Longstaff, 2016). Although this method of classification requires further refinement, it clarifies the 72 

underlying pathophysiology of hyperfibrinolysis, contextualising its role within the systemic status of the 73 

patient, and may be helpful in guiding therapeutic interventions.  74 

 75 

Laboratory Assessment of Fibrinolysis 76 

Methods to measure the individual components of the fibrinolytic pathway are not readily available in 77 

practice, cost prohibitive and frequently lack validation for veterinary species. Elevated FDP and D-dimer 78 

concentrations indicate increased fibrinolytic activity, however they lack specificity and viscoelastic 79 

techniques are currently considered superior for assessing fibrinolysis (Spiel et al., 2006; Schöchl et al., 80 

2009; Longstaff, 2018). It is important to note that even viscoelastic techniques are imperfect and may 81 

either fail to detect hyperfibrinolysis or conversely report hyperfibrinolysis in apparently healthy patients 82 

(Raza et al., 2013; Sigrist et al., 2018).  83 

 84 
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Fibrin/fibrinogen degradation products & D-dimers   85 

FDPs are produced following plasmin-mediated lysis of fibrinogen and/or fibrin, thus elevated FDP’s 86 

indicate increased fibrinolytic activity (Bick., 1982). Fibrinogen is present in the circulation regardless of 87 

whether or not clot formation has occurred, as such the presence of FDPs is not a specific marker of clot 88 

formation and lysis. D-dimers are a specific form of FDP produced following plasmin-mediated lysis of 89 

cross-linked fibrin, with elevations indicating that activation of coagulation and fibrinolysis has occurred 90 

(Elms et al., 1983; Greenberg et al., 1985). Point of care kits to assess FDP and D-dimer concentrations 91 

are available and have been evaluated for their utility in dogs and cats (Stokol et al., 1999; Griffin et al., 92 

2003; Brazzell & Borjesson, 2007; Dewhurst et al., 2008; Bauer & Moritz, 2009; Tholen et al., 2009). 93 

Discordant FDP and D-dimer results, i.e. elevated FDPs alongside normal D-dimer concentration, are 94 

possible and have been attributed to primary hyperfibrinolysis and laboratory technique (Sato et al., 1995; 95 

Song et al., 1999; Zoia et al., 2017, 2018).  96 

 97 

Elevated FDPs and D-dimers are supportive of, but not specific to, hyperfibrinolysis. Mildly elevated 98 

FDPs/D-dimers are documented during normal post-operative healing in dogs (Sobiech et al., 2011; 99 

Moldal et al., 2012; Shipov et al., 2018). Increased FDP’s/D-dimers are also associated with pathological 100 

processes such as disseminated intravascular coagulation (DIC) or thromboembolic disease in which a 101 

regulated hyperfibrinolysis represents an initial protective mechanism (Stokol et al., 1999; Nelson & 102 

Andreasen, 2003; Stokol, 2003; Machida et al., 2010). Due to this lack of specificity FDPs/D-dimers 103 

should not be used to identify patients with hyperfibrinolysis who would benefit from antifibrinolytic 104 

therapy. Antifibrinolytic drugs are contraindicated in thromboembolic disease and rarely recommended in 105 

people with DIC, therefore the administration of antifibrinolytic drugs to patients based on elevated 106 

FDP’s/D-dimers has the potential to cause harm. (Wada et al., 2010).  107 

 108 

Viscoelastic techniques 109 

Viscoelastic tests provide a global assessment of the coagulation system by detecting the change in blood 110 

viscosity as the different coagulation phases occur. Rotational thromboelastometry (ROTEM) and 111 
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thromboelastography (TEG) can be used to diagnose hypocoagulability, hypercoagulability, enhanced and 112 

reduced fibrinolysis (Kol and Borjesson, 2010; McMichael and Smith, 2011).  113 

 114 

Samples for TEG and ROTEM are collected into 3.2% buffered sodium citrate and standardised 115 

sampling protocols advised (Flatland et al., 2014). Before testing, samples are recalcified and in-vitro 116 

coagulation is accelerated and preanalytical errors are reduced with the use of contact activators (Wiinberg 117 

et al., 2005, 2007; Bauer & Moritz, 2009). TEG activators used for the assessment of fibrinolysis include 118 

kaolin and kaolin combined with tissue factor (Rapid TEG). Tissue factor is utilised to activate the 119 

extrinsic pathway when assessing fibrinolysis using ROTEM. Results obtained using different activators 120 

are not directly comparable (Wiinberg et al., 2005, 2007; Bauer & Moritz, 2009). 121 

 122 

Analysis is performed following a standardised 30 minute delay and within 2 hours of collection (Goggs 123 

et al., 2014).  Whole blood is placed in a cup and warmed to 37oC, a pin attached to a torsion wire is 124 

suspended within the cup. The torsion wire is connected to a mechanical-electrical transducer. TEG 125 

operates by moving the cup around the stationary pin in a gentle arc. ROTEM has an immobile cup and 126 

instead the pin slowly oscillates. Coagulation results in the formation of fibrin strands between the cup 127 

and the pin. Movement of the cup (TEG) or pin (ROTEM) creates different degrees of torsion according 128 

to blood viscosity, and as fibrinolysis occurs torsional forces are reduced. Changes in torsional forces on 129 

the pin are converted into electrical signals. Graphical and numerical information is created from 130 

electrical signals and presented as the thromboelastogram (ROTEM) or thromboelastograph (TEG). It is 131 

important to note that although thromboelastogram tracings for TEG and ROTEM appear similar they 132 

are not directly comparable. 133 

 134 

Fibrinolysis is reported as the percentage reduction in clot strength at 30 and 60 minutes after maximal 135 

clot strength is achieved (TEG) and percentage lysis at 30 and 60 mins following initiation of clotting 136 

(ROTEM). In vitro fibrinolysis proceeds slowly due to an imbalance of anti-fibrinolytic and pro-137 

fibrinolytic factors. Whole blood samples contain anti-fibrinolytic factors, such as alpha-2 antiplasmin, 138 

which circulate in plasma (Sabovic et al., 1989). Consequently in vitro fibrinolysis may not be detectable 139 
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within the testing timeframe or before sample dehydration occurs. Modification of TEG assays with 140 

recombinant tissue plasminogen activator (tPA) has been shown to accurately reflect the fibrinolytic 141 

potential of whole blood and aid detection of fibrinolytic dysfunction (Figure 2) (Kupesiz et al., 2010; 142 

Spodsberg et al., 2013; Fletcher et al., 2016; Yoo et al., 2016). The use of tPA in ROTEM to diagnose 143 

fibrinolytic dysfunction is not reported in the veterinary literature but is reported in people (Kuiper et al., 144 

2016).  145 

(Figure 2) 146 

ROTEM offers four standard tracings, INTEM, EXTEM, APTEM, FIBTEM, which are interpreted 147 

together. EXTEM and APTEM are utilised for the detection of fibrinolytic disorders and contain tissue 148 

factor (TF) which activates the extrinsic pathway (Srivastava and Kelleher, 2013). Aprotinin is added to 149 

APTEM to inhibit fibrinolysis, increased clot lysis on EXTEM combined with a normal APTEM tracing 150 

indicates hyperfibrinolysis (Marly-Voquer et al., 2017).  151 

 152 

Viscoelastometry is available in specialist hospitals, but currently is not routinely utilised in primary care 153 

practice.  Portable handheld viscoelastic analysers are now available and have been recently validated in 154 

both canine and feline patients (Buriko & Silverstein, 2018; Jandrey et al., 2018). In the future, as our 155 

understanding of the utility and application of viscoelastic techniques develops alongside advances in 156 

technology, it is likely that viscoelastic techniques will be integrated into primary care practice. Practices 157 

utilising point of care viscoelastic devices will need to use established veterinary clinical pathology 158 

guidelines to determine reference intervals (Goggs et al., 2014).  159 

 160 

Congenital Hyperfibrinolysis 161 

Congenital hyperfibrinolysis occurs due to increased clot fragility and susceptibility to fibrinolysis 162 

(resulting from quantitative or qualitative factor issues), and/or a deficiency of fibrinolytic inhibitors. In 163 

people congenital hyperfibrinolysis is reported due to alpha-2 antiplasmin deficiency, PAI-1 deficiency, 164 

haemophilia, FXIII deficiency and dysfibrinogenaemia (Anwar & Miloszewski, 1999; Maino et al., 2008; 165 

Mehta & Shapiro, 2008; Kolev & Longstaff, 2016). Haemophilia A and B occur in both cats and dogs 166 

(Cotter et al., 1978; Brooks, 1999; Barr & McMichael, 2012). Reports of congenital FXIII deficiency and 167 
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fibrinogen disorders within the veterinary literature are extremely rare, alpha-2 antiplasmin and PAI-1 168 

deficiency have not been reported (Kammermann et al., 1971; Cotter et al., 1978; Wilkerson et al., 2005; 169 

Chambers, 2013; Kong et al., 2014; Jolivet et al., 2017). Deficiency of the anti-fibrinolytic serpins alpha-2 170 

antiplasmin and PAI-1 results in disinhibition of the fibrinolytic system and primary hyperfibrinolysis 171 

(Kolev & Longstaff, 2016; Franchini & Mannucci, 2018). Haemophilia, FXIII deficiency and 172 

dysfibrinogenaemia are coagulopathies which stimulate upregulation of the fibrinolytic system and 173 

secondary hyperfibrinolysis (Kolev & Longstaff, 2016; Franchini & Mannucci, 2018). A hyperfibrinolytic 174 

profile has been recognised in the Greyhound breed which likely represents an inherited coagulopathy 175 

(Lara-García et al., 2008).  176 

 177 

 178 

 179 

Haemophilia 180 

Haemophilia A (factor VIII deficiency) and B (factor IX deficiency) are sex linked inherited 181 

coagulopathies reported to occur in both dogs and cats (Littlewood, 1989; Barr & McMichael, 2012). 182 

Haemophilia C, due to factor XI deficiency, has also been reported in dogs and cats (Dodds & Kull, 183 

1971; Knowler et al., 1994; Troxel et al., 2002). The critical role of factors VIII and FIX in coagulation is 184 

best illustrated by the cell based model of coagulation (Smith, 2009). In people with haemophilia 185 

haemorrhage occurs due to both defective coagulation and up-regulated fibrinolysis (Broze & Higuchi, 186 

1996; Mosnier et al., 2001; Foley & Nesheim, 2009). A more intensely haemorrhagic phenotype has been 187 

reported in human haemophiliacs with hyperfibrinolysis (Grünewald et al., 2002).  188 

 189 

Impaired thrombin production affects fibrin structure and cross-linking, impairs platelet accumulation 190 

and decreases TAFI activation ( Wolberg & Campbell, 2008; Brummel-Ziedins et al., 2009; Foley & 191 

Nesheim, 2009). Haemophiliacs with impaired thrombin production form loose fibrin clots with high 192 

permeability constants that are susceptible to lysis (Bettigole et al., 1964; Sixma & Wester, 1977; Fraser et 193 

al., 2011). Thrombin activates FXIII which crosslinks fibrin monomers to stabilise clots, so decreased 194 

FXIIIa results in the formation of fragile clots susceptible to lysis (Lorand et al., 1981; Muszbek et al., 195 
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1999). Finally, thrombin is required for activation of TAFI and insufficient TAFIa is associated with 196 

premature clot lysis (Broze & Higuchi, 1996; Foley & Nesheim, 2009). Haemophiliac dogs treated with 197 

low dose soluble thrombomodulin to increase TAFIa produced clots that were more resistant to 198 

fibrinolysis (Foley et al., 2012).  199 

 200 

The pathophysiology of haemophilia A and B in people and dogs is similar, to the extent that dogs are 201 

used in research as a disease model to assess the efficacy of therapeutic interventions (Nichols et al., 202 

2010). Hyperfibrinolysis has not been reported in dogs and cats with haemophilia and further studies are 203 

required to investigate the role of hyperfibrinolysis in cats and dogs with haemorrhage due to 204 

haemophilia. The use of viscoelastic techniques to assess global coagulation is reported in haemophiliac 205 

dogs (Othman et al., 2009; Aroch et al., 2015). However, in the study by Othman et al (2009) TEG 206 

tracings were only recorded until maximum amplitude was reached and hyperfibrinolysis was not 207 

assessed. The single case report by Aroch et al (2015) did not document hyperfibrinolysis on ROTEM in 208 

a dog with Haemophilia A.  209 

 210 

Recombinant factor VIII and IX replacement therapy is used for prophylaxis and treatment in people 211 

with haemophilia. Studies have demonstrated a reduction of spontaneous bleeding episodes in 212 

haemophiliac dogs treated prophylactically with both plasma derived, and recombinant human, factors 213 

VIII and IX, however specific factor replacement therapy is not routinely available for veterinary patients 214 

(Brinkhous et al., 1985, 1996, 2002; Russell et al., 2003) . The mainstay of treatment in cats and dogs with 215 

haemophilia is blood product administration, during bleeding episodes or prior to planned surgical 216 

procedures, in the form of cryoprecipitate (for haemophilia A), fresh frozen plasma, whole blood or 217 

packed red blood cells (Aslanian et al., 2014). In the absence of effective haemorrhage prophylaxis 218 

repeated blood product administration represents a considerable financial commitment for clients. 219 

Antifibrinolytic therapy also forms part of haemorrhage prophylaxis and treatment in people with 220 

haemophilia ( Rizza, 1980; Ghosh, 2004; Hvas et al., 2007). Currently evidence does not exist to support 221 

the use of antifibrinolytic therapy in veterinary patients with haemophilia. However, antifibrinolytic 222 

therapy is unlikely to cause harm and could be considered for haemorrhage prophylaxis and treatment in 223 
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cats and dogs with severe haemophilia prior to considering euthanasia (Aroch et al., 2015; Kelmer et al., 224 

2015).  225 

  226 

Fibrinogen Disorders 227 

Fibrinogen is cleaved to fibrin by thrombin and then fibrin monomers are polymerised to form the 228 

network of fibres essential for the foundation of a stable clot (Lord, 2011). Acquired quantitative and 229 

qualitative fibrinogen disorders occur rarely in people and are challenging to diagnose (Al-Mondhiry & 230 

Ehmann, 1994; de Moerloose et al., 2013). Fibrinogen disorders are typically asymptomatic with 231 

haemorrhage occurring following trauma or surgery (Moen & Lord 2006). Afibrinogenemia has been 232 

reported in a Bernese Mountain Dog, a Chihuahua and a Bichon Frise, while hypofibrinogenaemia has 233 

been reported in a German Short Haired Pointer (Kammermann et al., 1971; Wilkerson et al., 2005; 234 

Chambers, 2013). The treatment of choice for veterinary patients with haemorrhage secondary to 235 

fibrinogen disorders is cryoprecipitate or fresh frozen plasma to replenish fibrinogen. Thromboembolic 236 

complications are reported in people with congenital fibrinogen disorders, although the underlying 237 

pathophysiology is incompletely understood (Korte et al., 2017). As such the use of antifibrinolytic agents 238 

in cats and dogs with congenital fibrinogen disorders is not recommended.  239 

 240 

FXIII deficiency 241 

Factor XIII (also known as fibrin stabilising factor) contributes to clot stability by cross linking loose 242 

fibrin polymers, increasing tensile strength and reducing susceptibility to fibrinolysis (Anwar and 243 

Miloszewski, 1999). FXIII also crosslinks alpha-2-antiplasmin to fibrin which significantly decreases its 244 

susceptibility to lysis (Sakata & Aoki, 1980; Fraser et al., 2011).  Thus, in the absence of FXIII, the fibrin 245 

meshwork is unstable and susceptible to lysis by plasmin (Board et al., 1993; Mosesson et al., 2008; 246 

Chapman et al., 2016). Congenital FXIII deficiency is rare in people and only one case report exists in the 247 

veterinary literature describing FXIII deficiency in a dog (Acharya et al., 2004; Kong et al., 248 

2014). Treatment options are similar to those previously discussed for cats and dogs with haemophilia 249 

including the use of cryoprecipitate.   250 

 251 
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Breed Associated Hyperfibrinolysis: Greyhounds 252 

Delayed haemorrhage is reported following trauma and surgery in greyhounds in the absence of primary 253 

or secondary coagulation derangement (Lara-García et al., 2008). The prevalence of delayed post-254 

operative bleeding following routine gonadectomy in Greyhounds is reported to be as high as 26% (Lara-255 

García et al., 2008) although it is possible that surgeon inexperience, combined with the thin skin and 256 

haircoat of the breed, contributed to an increased incidence of haemorrhage and enhanced detection of 257 

bruising in this study. Nonetheless, the reported prevalence of haemorrhage in Greyhounds following 258 

gonadectomy is significantly higher than the prevalence of 0-2% reported in other dog breeds (Berzon, 259 

1979; Pollari et al., 1996; Burrow et al., 2005; Peeters & Kirpensteijn, 2011). Delayed haemorrhage is 260 

typically associated with the surgical site, however in some Greyhounds bleeding may progress to a 261 

generalised haemostatic disorder requiring intensive care and blood product administration (Marín et al., 262 

2012a; Marín et al., 2012b; Lara-García et al., 2008).  263 

When comparing Greyhounds who developed post-operative bleeding and those who did not, no 264 

significant difference in platelet count or function, PT, aPTT, fibrinogen, D-dimer, factor XIII and 265 

plasminogen concentration was found (Lara-García et al., 2008). However, alpha-2 antiplasmin and 266 

antithrombin levels were significantly reduced (although still within reference range) in the group of 267 

greyhounds with delayed post-operative bleeding (Lara-García et al., 2008). The absence of primary or 268 

secondary coagulation derangement combined with the delayed onset of bleeding suggest that enhanced 269 

fibrinolysis may be the primary mechanism behind post-operative bleeding in this breed (Lara-García et 270 

al., 2008). Furthermore the incidence of delayed post-operative haemorrhage is reduced in Greyhounds 271 

receiving peri-operative antifibrinolytic drugs (Marín et al., 2012).  272 

 273 

Current research using viscoelastic techniques does not strongly support the clinical suspicion of 274 

hyperfibrinolysis as the cause of delayed haemorrhage in Greyhounds (Vilar et al., 2008; Shropshire 2018). 275 

This may be due to low viscoelastic test sensitivity to detect endogenous fibrinolytic activity, and it is also 276 

possible that results may be affected by the high haematocrit in this breed (Bochsen et al., 2011; Raza et 277 

al., 2013; Brooks et al., 201). The only standard TEG variables associated with delayed haemorrhage in 278 

Greyhounds are alpha angle and maximal amplitude, both of which are influenced by fibrin cross-linking 279 
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(Vilar et al., 2008). Hyperfibrinolysis was not detected by tissue factor activated tPA TEG in healthy 280 

Greyhounds (Shropshire 2018). However, to the authors’ knowledge, kaolin and tissue factor assays or 281 

tPA TEG have not been utilised to assess coagulation and fibrinolysis in traumatised or post-surgical 282 

Greyhounds with delayed haemorrhage. 283 

 284 

Management of haemorrhage in greyhounds following trauma or surgery should initially focus on 285 

ensuring appropriate surgical haemostasis has been achieved and ruling out a primary or secondary 286 

coagulopathy. To avoid misdiagnosis and inappropriate treatment, it is important not to immediately 287 

attribute unexplained haemorrhage in this breed to hyperfibrinolysis. In Greyhounds with haemorrhage 288 

suspected to be, at least in part, secondary to hyperfibrinolysis, treatment with antifibrinolytic drugs can 289 

be considered. The prophylactic use of antifibrinolytic drugs in Greyhounds undergoing surgery should 290 

be considered based prior history and risk-benefit analysis.  291 

 292 

Acquired Hyperfibrinolysis 293 

Acquired hyperfibrinolysis in people is associated with DIC, trauma, neoplasia, end stage liver cirrhosis 294 

and obstetric complications (Tallman & Kwaan, 1992; Hyman et al., 2011; Asakura, 2014; Leebeek & 295 

Rijken, 2015; Davenport & Brohi, 2016; Hibbs et al., 2018). Acquired primary hyperfibrinolysis associated 296 

with quantitative and/or qualitative abnormalities of proteins involved in regulation of the fibrinolytic 297 

pathway has been reported in cats and dogs with haemoperitoneum, cavitary effusions, acute traumatic 298 

coagulopathy and Angiostrongylus vasorum infection (Fletcher et al., 2016; Yoo et al., 2016; Muri et al., 2018; 299 

Sigrist et al., 2017, 2018; Zoia et al., 2018, 2017). Primary hyperfibrinolysis has been diagnosed in cats 300 

with haemorrhagic pleural and peritoneal effusion and following snake envenomation (Fuchs et al., 2017; 301 

Sigrist et al., 2018). Acquired secondary hyperfibrinolysis is described in dogs with DIC due to up-302 

regulation of a normal fibrinolytic pathway (Vilar-Saavedra and Hosoya, 2011).  303 

 304 

Disseminated Intravascular Coagulation  305 

Disseminated intravascular coagulation (DIC) is an acquired consumptive thrombo-haemorrhagic 306 

disorder. It occurs when an underlying disease results in the systemic activation of coagulation and 307 
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fibrinolysis. Diseases reported to incite DIC in cats and dogs are numerous and varied; systemic infection, 308 

inflammation and neoplasia are most commonly associated with DIC in veterinary patients (Feldman et 309 

al., 1981; Estrin et al., 2006.; Wiinberg et al., 2008). The clinical manifestations of DIC are influenced by 310 

the underlying aetiology, host response and co-morbid conditions (Bick et al., 1999). Depending on the 311 

ever-changing balance between pro-thrombotic and anticoagulant, antifibrinolytic and profibrinolytic 312 

factors the phenotype may be subclinical, thrombotic or hyperfibrinolytic (Asakura, 2014; Wada et al., 313 

2014).  314 

 315 

Thrombin generation in DIC is initiated when tissue factor expression by vascular endothelial cells, 316 

monocytes or neoplastic cells activates coagulation factors (Versteeg et al., 2013). Proinflammatory 317 

cytokines and chemokines propagate coagulation, impair physiological anticoagulant pathways and 318 

suppress fibrinolysis (Simmons & Pittet, 2015, Levi & van der Poll, 2017). Consumption and depletion of 319 

anticoagulant factors further sustains the hypercoagulable state (Feldman et al., 1981; Marder & Francis, 320 

1987, Levi & Sivapalaratnam, 2018). Initially patients are hypercoagulable, however at this early stage 321 

microthrombi formation may not be clinically apparent and DIC is “non-overt” (Asakura, 2014; Wada et 322 

al., 2014). Continued formation and deposition of fibrin will eventually result in microcirculatory 323 

impairment and organ dysfunction. Furthermore, the increased utilisation and depletion of platelets 324 

ultimately results in a clinically apparent or “overt” consumptive coagulopathy (Asakura, 2014; Wada et 325 

al., 2014). This systemic activation of coagulation typically results in concurrent complementary activation 326 

of the fibrinolytic pathway.  327 

  328 

Thrombosis predominates in patients with DIC when the fibrinolytic response to systemic coagulation is 329 

inadequate or impaired. Organ dysfunction is common and haemorrhage is infrequently observed (Estrin 330 

et al., 2006; Wiinberg et al., 2008). Severe impairment of the fibrinolytic system is observed in patients 331 

with endotoxaemia or sepsis when shutdown of fibrinolysis occurs secondary to increased endothelial 332 

release of PAI-1 (Sawdey et al., 1989; Madoiwa et al., 2006; Levi et al., 2009; Wada et al., 2014). In 333 

patients with a prothrombotic DIC phenotype it is the development of a consumptive coagulopathy 334 

rather than imbalanced hyperfibrinolysis that results in clinical signs of haemorrhage. This phenotype is 335 
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also referred to as suppressed-fibrinolytic-type DIC (Asakura, 2014). Administration of antifibrinolytic 336 

agents to prothrombotic patients with impaired fibrinolysis has the potential to cause harm. As such, 337 

current treatment guidelines do not recommend the routine use of antifibrinolytic agents in people with 338 

DIC (Levi et al., 2009; Wada et al., 2014).  339 

  340 

Occasionally life-threatening haemorrhage is reported to occur in people with a hyperfibrinolytic DIC 341 

phenotype, also referred to as enhanced-fibrinolytic DIC where increased profibrinolytic factors are 342 

present (Asakura, 2014). Hyperfibrinolysis results in rapid dissolution of  microthrombi and therefore 343 

organ dysfunction due to microcirculatory impairment is uncommon (Asakura et al., 2001). Enhanced 344 

fibrinolytic DIC leading to significant haemorrhage has been associated with acute promyelocytic 345 

leukaemia, aortic aneurysm, prostatic carcinoma and amyloidosis in people (Tallman & Kwaan, 1992; 346 

Adam et al., 2004; Takahashi et al., 2008; Prokopchuk-Gauk & Brose, 2015). DIC and hyperfibrinolysis is 347 

reported in dogs with metastatic mammary carcinoma and increased circulating levels of uPA occur in 348 

dogs with metastatic disease (Mischke et al., 1998; Ramos et al., 2017). Hypocoagulation and 349 

hyperfibrinolysis have also been documented in a dog with DIC secondary to metastatic 350 

haemangiosarcoma using TF activated TEG (Vilar-Saavedra and Hosoya, 2011). Further studies are 351 

required to interrogate the role of hyperfibrinolysis induced haemorrhage in cats and dogs with DIC.  352 

  353 

Disseminated intravascular coagulation is associated with a poor prognosis in cats and dogs (Estrin et al., 354 

2006). The dynamic nature of DIC makes optimising therapeutic interventions challenging. Point of care 355 

thromboelastometry has been utilised to diagnose, guide and monitor treatment of haemorrhage in 356 

people with a hyperfibrinolytic DIC phenotype (Velez and Friedman, 2011). In the future, point of care 357 

viscoelastic techniques may provide the opportunity to interrogate the contribution of hyperfibrinolysis to 358 

haemorrhage observed in cats and dogs with DIC. Current therapy recommendations for haemorrhage 359 

associated with DIC includes blood product administration to replenish oxygen carrying capacity, 360 

platelets, coagulation factors and inhibitors (Papageorgiou et al., 2018). The introduction of 361 

antifibrinolytic agents to the therapeutic protocol of cats and dogs with documented enhanced-362 
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fibrinolytic DIC has the potential to be blood product sparing in addition to reducing morbidity and 363 

mortality.  364 

  365 

Cavitary Effusions 366 

Haemorrhagic fluid aspirated from the pericardial, pleural or peritoneal cavity will not clot and the 367 

absence of clot formation is utilised clinically to confirm that inadvertent sampling from the heart or 368 

vasculature has not occurred (Murphy & Warman, 2007). The primary mechanism behind the formation 369 

of this anti-coagulant environment relates to the fibrinolytic activity of mesothelial cells lining the 370 

pericardium, pleural space and peritoneum (Mutsaers & Wilkosz, 2007). Their fibrinolytic activity is 371 

achieved primarily through the secretion of tPA and uPA, which cleaves plasminogen found in 372 

pericardial, pleural and peritoneal fluid (Idell et al., 1992; Ivarsson et al., 1998). Mesothelial cells can 373 

further enhance anticoagulation by increasing local expression of protein C (Iakhiaev and Idell, 2006). 374 

Severe injury to the pleura and peritoneum i.e. due to surgical trauma, sepsis, ischaemia and neoplasia, 375 

activates coagulation and suppresses fibrinolysis. The formation of fibrous adhesions is a common 376 

sequelae to pleural and peritoneal disease when fibrinolysis is suppressed (Mutsaers & Wilkosz, 2007; 377 

Stommel et al., 2014).  378 

 379 

Systemic hyperfibrinolysis secondary to cavitary effusion is thought to occur due to resorption of 380 

hyperfibrinolytic fluid from the lymphatic circulation and subsequent return to the systemic circulation 381 

via the thoracic duct (Mutsaers et al., 2015). Elevated FDP and D-dimer concentrations consistent with 382 

increased fibrinolytic activity have been documented in 40% of dogs with pleural effusion and 50% with 383 

peritoneal effusion secondary to a variety of causes. In both studies primary hyperfibrinolysis due to lysis 384 

of fibrinogen was diagnosed, and increased lysis of fibrin excluded, based on discordant FDP and D-385 

dimer concentrations (Zoia et al., 2017, 2018). This method of diagnosis is problematic as the sensitivity 386 

and specificity of utilising discordant FDPs and D-dimers to diagnose primary hyperfibrinolysis is 387 

unknown and causes of discordant results other than primary hyperfibrinolysis are also possible (Sato, 388 

Takahashi and Shibata, 1995; Song et al., 1999). Thromboelastometry has been utilised to diagnose 389 

hyperfibrinolysis in dogs with spontaneous haemoperitoneum which occurred secondary to neoplasia in 390 
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96% of patients, D-dimers were also found to be increased in this group (Fletcher et al., 2016). It is likely 391 

that rupture of neoplastic lesions resulting in activation of coagulation, fibrin formation and concurrent 392 

increased fibrinolytic activity contributed to the reported increase in FDP and D-dimer concentration.  393 

 394 

Cavitary effusions occur secondary to a number of diseases such as liver failure, congestive heart failure, 395 

neoplasia, sepsis and pancreatitis, all of which have been associated with DIC (Fletcher et al., 2016; Zoia 396 

et al., 2017, 2018). Elevated FDP and D-dimer concentrations occur in patients with DIC due to 397 

concurrent activation of the fibrinolytic system (Levi et al., 2009). Administration of antifibrinolytic drugs 398 

to patients with DIC is not recommended, therefore due to the risk of misdiagnosis causing harm, 399 

discordant FDP and D-dimer concentrations should not be used to diagnose primary hyperfibrinolysis as 400 

a cause of haemorrhage in patients with cavitary effusions (Wada et al., 2014; Levi et al., 2009). 401 

Prospective studies using viscoelastic techniques are required to interrogate the extent to which primary 402 

hyperfibrinolysis contributes to haemorrhage in cats and dogs with cavitary effusions and whether this 403 

represents a novel therapeutic target.  404 

 405 

Hepatic failure 406 

The liver is an essential organ in coagulation as it is the primary source of most coagulation factors and 407 

fibrinolytic proteins, it is also responsible for their clearance (Mammen, 1992; Kavanagh et al., 2011). 408 

Coagulation changes associated with liver disease are dynamic and multifactorial, both haemorrhage and 409 

thrombosis are reported with liver disease (Mammen, 1992; Rogers et al., 2008; Kavanagh et al., 2011; 410 

Dircks et al., 2012; Respess et al., 2012; Kelley et al., 2015).  Haemorrhage can occur due to 411 

thrombocytopaenia, thrombocytopathia, decreased concentrations of procoagulant factors (factors I, II, 412 

V, VII, XIII), dysfibrinogenaemia and hypofibrinogenaemia (Willis, 1989; Dunayer & Gwaltney-Brant, 413 

2006; Botsch et al., 2009; Poldervaart et al., 2009; Prins et al., 2010). Thrombosis may occur due to 414 

decreased concentration of antithrombin and protein C, increased vWF and increased FVIII (Lisciandro 415 

et al., 1998; Kummeling et al., 2006; Toulza et al., 2006; Dereszynski et al., 2008; Prins et al., 2010). 416 

Furthermore, DIC occurs in cats and dogs with liver disease and may contribute to a consumptive 417 

coagulopathy (Lisciandro et al., 1998; Peterson et al 1998.; Prins et al., 2010).  418 
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 419 

Dysfunction of the fibrinolytic system is also reported in people and dogs with liver disease and may 420 

result in hypofibrinolysis or hyperfibrinolysis, the latter of which can produce a consumptive 421 

coagulopathy (Pernambuco et al., 1993; Kelley et al., 2015; Leebeek & Rijken, 2015). Hypocoagulation 422 

and hyperfibrinolysis is documented in people and veterinary patients with liver disease and is associated 423 

with disease severity ( Kelley et al., 2015; Fry et al., 2017). Dogs with acute liver disease trend towards 424 

hypocoagulability and hyperfibrinolysis as functional impairment occurs (Kelley et al., 2015). 425 

Hyperfibrinolysis can occur due to decreased hepatic production of anti-fibrinolytic proteins such as 426 

alpha-2-antiplasmin (Williams, 1989). Decreased hepatic clearance of plasminogen activators and plasmin 427 

also contributes to a hyperfibrinolytic state (Leebeek and Rijken, 2015). In addition, ascites is a negative 428 

prognostic indicator that is often associated with severe liver disease in cats and dogs and may result in 429 

systemic primary hyperfibrinolysis (Wright et al., 1999; Raffan et al., 2009).  430 

 431 

Whether or not hyperfibrinolysis contributes to haemorrhage in dogs and cats with liver disease and 432 

would represent a new therapeutic target has not yet been studied. As such, empiric use of antifibrinolytic 433 

agents to treat haemorrhage in patients with liver disease cannot be advised. In this group of patients, it is 434 

prudent to consider assessment of coagulation prior to surgical interventions such as feeding tube 435 

placement and liver biopsies, assessment of fibrinolysis can also be considered, particularly if unexplained 436 

haemorrhage is occurring. In cats and dogs with hepatic impairment and reduced capacity to produce 437 

coagulation factors, hyperfibrinolysis has the potential to contribute to the rapid development of a 438 

consumptive coagulopathy. Further research is needed to establish if viscoelastic techniques could help to 439 

identify hyperfibrinolysis in cats and dogs with liver disease and guide antifibrinolytic therapy, alongside 440 

coagulation factor replacement and vitamin K, in patients with active haemorrhage or planned surgical 441 

procedures.  442 

 443 

Lungworm Infection (Angiostrongylus vasorum) 444 

Angiostrongylus vasorum infection is associated with clinical signs of coagulopathy, verminous pneumonia, 445 

pulmonary hypertension, neurological deficits, polyuria and polydipsia attributed to hypercalcaemia and 446 
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gastrointestinal signs (Chapman et al., 2004; Esteves et al., 2004; Nicolle et al., 2006; Wessmann et al., 447 

2006; Traversa et al., 2008; Koch & Willesen, 2009; Helm et al., 2010) Haemorrhage in dogs with 448 

A.vasorum has been associated with von Willebrand factor deficiency, immune mediated 449 

thrombocytopaenia, consumptive coagulopathy secondary to DIC, vascular injury and more recently 450 

hyperfibrinolysis (Schelling et al., 1986; Caruso & Prestwood, 1988; Cury & Lima, 1996; Ramsey et al., 451 

1996; Gould & McInnes, 1999; Cury et al., 2002; Garosi et al., 2005; Whitley et al., 2005; Ganter & Hofer, 452 

2008; Adamantos et al., 2015;  Sigrist et al., 2017).  453 

 454 

Decreased fibrinogen concentration and hyperfibrinolysis using ROTEM has been reported in 67% of 455 

dogs with A.vasorum infection and haemorrhage (Sigrist et al., 2017). Treatment with fresh frozen plasma 456 

and tranexamic acid resulted in improvement or resolution of hypocoagulability and hyperfibrinolysis on 457 

ROTEM with all dogs treated surviving to discharge (Sigrist et al., 2017). The authors excluded DIC as a 458 

cause of hyperfibrinolysis based on the low fibrinogen concentration and fact that previous studies have 459 

reported haemorrhage in dogs with normal coagulation profiles and platelet count. More recently tPA 460 

modified TEG has been used to diagnose hyperfibrinolysis and guide successful treatment with 461 

tranexamic acid in a dog with A.vasorum infection (Cole et al., 2018).  462 

 463 

The pathophysiology of hyperfibrinolysis in patients infected by A. vasorum is incompletely understood. It 464 

is likely that adult nematodes interact with the intravascular environment to optimise survival by 465 

augmenting the host immune response and modulating haemostasis. Mechanical and biochemical trauma 466 

caused by adult A.vasorum nematodes and their metabolites may also induce tPA release from the vascular 467 

endothelium within the heart and pulmonary vasculature (Sigrist et al., 2017). It is yet to be determined 468 

whether A.vasorum directly enhances plasmin production and fibrinolysis as is reported in Dirofilaria 469 

immitis infection (González-Miguel et al., 2012; González-Miguel et al., 2013).  470 

 471 

It is important to note that hyperfibrinolysis is not the only possible cause of haemorrhage in dogs with 472 

A.vasorum (Schelling et al., 1986; Caruso & Prestwood, 1988; Cury & Lima, 1996; Ramsey et al., 1996; 473 

Gould & McInnes, 1999; Cury et al., 2002; Garosi et al., 2005; Whitley et al., 2005; Ganter & Hofer, 2008; 474 
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Adamantos et al., 2015). Hypercoagulability has also been documented in dogs with A.vasorum infection 475 

and therefore the prophylactic use of antifibrinolytic agents is not advised in dogs without clinical signs of 476 

haemorrhage (Adamantos et al., 2015). However, in dogs with haemorrhage due to A.vasorum infection 477 

the use of ROTEM and tPA TEG can be used to diagnose hypocoagulability, hyperfibrinolysis and guide 478 

therapy with fresh frozen plasma and antifibrinolytic drugs ( Sigrist et al., 2017; Cole et al., 2018). When 479 

possible viscoelastic techniques should be incorporated into assessment of coagulation status in dogs with 480 

haemorrhage due to A.vasorum. If viscoelastic techniques are not available then the use of antifibrinolytic 481 

agents could be considered alongside blood products in coagulopathic dogs diagnosed with A.vasorum and 482 

clinical signs of haemorrhage.  483 

 484 

Acute Traumatic Coagulopathy 485 

Trauma-induced coagulopathy (TIC) is a term used to describe the spectrum of coagulation changes 486 

which occur following severe injury (Hess et al., 2008). There are multiple phenotypes of trauma induced 487 

coagulopathy and the clinical manifestation is influenced primarily by thrombin production, platelet 488 

function and fibrinolysis (Moore et al., 2015; Shenkman et al., 2017). The accumulation of catecholamines 489 

and metabolites post injury, the extent of endothelial activation and the host immune response also effect 490 

the phenotype of TIC (Johansson et al., 2012; Cohen et al., 2009; Johansson et al., 2017).  491 

Early haemorrhage following trauma is a phenotype of TIC associated with the combined effects of acute 492 

traumatic coagulopathy (ATC) and resuscitation-associated coagulopathy (Cohen et al., 2013). Acute 493 

traumatic coagulopathy is an endogenous coagulopathy that occurs in the immediate minutes following 494 

trauma prior to, or independent of, resuscitation attempts (Brohi, 2003; MacLeod et al., 2003). 495 

Hypocoagulability and hyperfibrinolysis are the hallmarks of ATC, which is reported to occur in up to 496 

25% of severely traumatised people and is associated with a 4-fold increased risk of mortality and massive 497 

transfusion requirement (Brohi, 2003; MacLeod et al., 2003; Eastridge et al., 2006; Hess et al., 2008). 498 

Whether or not ATC is actually a form of DIC with an enhanced-fibrinolytic profile is fiercely contested, 499 

as the formation of thrombi and the consumptive coagulopathy which characterise DIC are not observed 500 

immediately following trauma ( Johansson et al., 2012; Palmer & Martin, 2014; Dobson et al., 2015). 501 

Resuscitation-associated coagulopathy occurs secondary to haemodilution with large fluid volumes, the 502 
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administration of colloids, massive transfusion and prolonged surgery which contribute to the 503 

development of acidaemia and hypothermia (Cohen, 2012; Fries et al., 2005; Martini et al., 2005).  504 

 505 

Three distinct fibrinolytic phenotypes are reported in people with acute traumatic coagulopathy; 506 

hyperfibrinolysis, physiological fibrinolysis and shutdown of fibrinolysis (Moore et al., 2014). 507 

Hyperfibrinolysis, as seen in ATC, occurs when trauma and hypoperfusion (shock) result in endothelial 508 

cell activation and glycocalyx dysfunction, platelet dysfunction, increased systemic tPA and activation of 509 

protein C (Cohen et al., 2012; Johansson et al., 2012; Wohlauer et al., 2012; Chapman et al., 2016;  510 

Greven et al, 2018). APC was initially thought to be the primary driver of hyperfibrinolysis in ATC 511 

through inhibition of PAI-1, however this has recently been called into question. It is now thought that 512 

massive release of tPA from the vascular endothelium following trauma is the primary mechanism behind 513 

ATC (Chapman et al., 2016). Increased circulating concentrations of tPA cause saturation of its inhibitor 514 

PAI-1 and fibrinolysis proceeds uninhibited as antifibrinolytic mechanisms are overwhelmed (Chapman 515 

et al., 2016). Fibrinolytic shutdown is reported in up to 60% of severely traumatised people and is 516 

associated with thrombosis and organ dysfunction (Moore et al., 2014). Hypercoagulability has been 517 

reported in 1 dog and cat following trauma (Gottlieb et al., 2017). The pathophysiology of fibrinolytic 518 

shutdown is incompletely understood, however increased circulating PAI-1 and inadequate tPA release in 519 

response to injury are proposed mechanisms (Chapman et al., 2016). 520 

 521 

Haemostatic derangement is reported in cats and dogs following trauma ( Mischke, 2005; Simpson et al., 522 

2009; Abelson et al., 2013; Holowaychuk et al., 2014; Yoo et al., 2016; Gottlieb et al., 2017; Muri et al., 523 

2018; Sigrist et al., 2017, 2018). However, evidence to support the existence of ATC characterised by 524 

hypocoagulation and hyperfibrinolysis is currently limited. Two separate case reports have documented 525 

hypocoagulation and hyperfibrinolysis using ROTEM and tPA challenged TEG in dogs with severe 526 

polytrauma (Yoo et al., 2016; Muri et al., 2018). Both dogs received antifibrinolytic drugs which resulted 527 

in the resolution of hyperfibrinolysis on ROTEM/TEG and haemorrhage control. Hyperfibrinolysis has 528 

also recently been documented in cats following trauma (Sigrist et al., 2018). ATC is likely to be 529 

challenging to diagnose in veterinary patients due to the fact that it is a dynamic coagulopathy. There is 530 
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typically a delay between the traumatic episode and presentation to centres where fibrinolysis can be 531 

assessed (generally referral hospitals). It is possible that by the time fibrinolysis can be assessed the 532 

hyperfibrinolytic phase has resolved or that the most severely traumatised animals may have succumbed 533 

to their injuries.   534 

 535 

There is great interest in the use of tranexamic acid in veterinary trauma patients due to the results of the 536 

human CRASH-2 and MATTER trials (Morrison et al., 2012; Roberts et al., 2013). These landmark trials 537 

found that empiric administration of tranexamic acid to trauma patients with haemorrhagic shock was 538 

associated with increased survival. However, CRASH-2 also reported that mortality was increased in a 539 

subset of patients when tranexamic acid was administered empirically 3-8hrs post trauma. Major 540 

haemorrhage protocols used by human trauma centres advocate restrictive crystalloid administration, 541 

empiric use of tranexamic acid within the first 3hrs post trauma and resuscitation using a 1:1:1 ratio of 542 

fresh frozen plasma, packed red blood cells and platelets (Holcomb et al., 2015).  543 

 544 

Empiric use of antifibrinolytic drugs has the potential to cause harm in hypercoagulable traumatised cats 545 

and dogs with shutdown of fibrinolysis. Viscoelastic techniques can be utilised to diagnose ATC and 546 

guide therapy in traumatised animals, however given the dynamic nature of TIC and ATC point of care 547 

assessment is advised (Holowaychuk et al., 2014; Yoo et al., 2016; Muri et al., 2018;). The coagulation 548 

status of the patient may change rapidly and increased lag time between sampling and interpretation of 549 

results could result in misdiagnosis and inappropriate treatment. Further studies are needed, however the 550 

use of antifibrinolytic drugs in traumatised cats and dogs who are bleeding and have laboratory evidence 551 

of hyperfibrinolysis is unlikely to cause harm and may be of benefit (Yoo et al., 2016; Muri et al., 2018). 552 

Furthermore, implementing balanced resuscitation using blood products, restricting crystalloid 553 

administration and performing damage control surgery in line with current recommendations in human 554 

medicine should be considered (Rossaint et al., 2016).  555 

 556 

Treatment of Hyperfibrinolytic disorders 557 
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Antifibrinolytic agents are frequently used in people to treat severe haemorrhage associated with 558 

congenital and acquired disorders of coagulation, menorrhoea, post-partum haemorrhage, neoplasia, 559 

gastrointestinal and urogenital haemorrhage, surgical haemorrhage and trauma (Mannucci, 1998). The 560 

antifibrinolytic agents most commonly used in human and veterinary medicine are Epsilon-aminocaproic 561 

acid (EACA) and tranexamic acid (TXA). Aprotinin administration is described in the human literature 562 

but was removed from the global market in 2008 due to safety concerns. In veterinary medicine the 563 

Chinese herb Yunnan Baiyao has also been anecdotally used for haemostasis, however robust evidence 564 

does not currently support its efficacy (Egger et al., 2016; Frederick et al., 2017; Lee et al., 2017).  565 

 566 

Tranexamic acid and aminocaproic acid are lysine analogues, they exert their mechanism of action by 567 

competitively binding C-terminal lysine sites on plasminogen. As a result of lysine analogue binding 568 

plasminogen is prevented from binding fibrin and plasmin formation is inhibited (Figure 3). 569 

 570 

The recommended dose of EACA for dogs with active haemorrhage is a loading dose of 50-100mg/kg 571 

IV followed by 15mg/kg administered q8hrs until haemorrhage has resolved (Hopper, 2006). In dogs 572 

100mg/kg is associated with increased clot strength in comparison to lower dosages with no adverse 573 

effects reported (Brown et al., 2016). Rapid administration may cause hypotension and gastrointestinal 574 

signs, weakness, myonecrosis, myoglobinuria and rhabdomyolysis are dose dependent adverse reactions 575 

reported in human patients following EACA administration (Borchers, 2014). To the authors’ knowledge 576 

there is no literature available regarding the use of EACA in cats.  577 

  578 

Tranexamic acid is up to 10 times more potent than EACA and its antifibrinolytic activity is superior and 579 

more sustained (Verstraete, 1985; McCormack, 2012). There is no consensus regarding optimal dosing, 580 

currently the recommended dose of TXA for dogs with active haemorrhage is 15mg/kg slow IV 581 

administered q8hrs until haemorrhage has resolved (Hopper, 2006; Osekavage et al 2018). Tranexamic 582 

acid is associated with few adverse events, although vomiting has been reported in dogs and seems to be 583 

associated with higher doses (20 mg/kg IV) or rapid bolus administration (Kelmer et al., 2013; Kakiuchi 584 

et al., 2014; Kelmer et al., 2015). It should therefore be used with caution in patients with 585 
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contraindications for vomiting, such as raised intra-ocular or intra-cranial pressure and obtunded patients 586 

vulnerable to aspiration. Tranexamic acid has been associated with seizure activity in people secondary to 587 

inhibition of gamma-aminobutyric acid type A receptors and glycine receptors, both of which are major 588 

inhibitory neurotransmitters (Lin and Xiaoyi, 2016). Evidence to guide the use of tranexamic acid in cats 589 

is currently not available.  590 

 591 

In people the incidence of thromboembolism associated with administration of antifibrinolytic agents is 592 

reported to be low (Ker et al., 2015; Nicolau-Raducu et al., 2016, Juhl et al., 2018) but this has not been 593 

established in cats and dogs.  Empiric use of these drugs is therefore not recommended in patients with 594 

pro-thrombotic conditions. Caution is also advised in the use of antifibrinolytic agents in cats and dogs 595 

with renal haemorrhage due to the risk of clot formation causing intra-renal and ureteric obstruction 596 

(Stark, 1965; Vujkovac & Sabovic, 2006). Both TXA and EACA are primarily excreted by the kidneys and 597 

in people with renal impairment TXA administration is associated with seizures (Montes et al., 2012). 598 

Although guidelines do not exist for TXA and EACA use in veterinary patients with renal impairment a 599 

reduction in dose in line with human medical recommendations is advised (Andersson et al., 1978; Jerath 600 

et al., 2018).  601 

Summary 602 

Hyperfibrinolysis occurs in both cats and dogs secondary to a variety of congenital and acquired 603 

disorders. It has been described in cats and dogs with conditions commonly encountered in primary care 604 

practice such as trauma, cavitary effusions, liver disease and A.vasorum. In addition, delayed haemorrhage 605 

attributed to hyperfibrinolysis is reported in Greyhounds following trauma and routine surgical 606 

procedures. Clinically significant haemorrhage can occur as the consequence of hyperfibrinolysis and has 607 

the potential to increase morbidity and mortality. Viscoelastic techniques provide a global assessment of 608 

coagulation and are considered superior for assessing the fibrinolytic systemic. Currently assessment of 609 

fibrinolysis using viscoelastic techniques is limited to specialist hospitals or laboratories with ROTEM and 610 

TEG, however this is changing with the recent development of point of care viscoelastic analysers. In the 611 

future it is likely that consideration and interrogation of the fibrinolytic system will become routine in the 612 
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management of coagulopathic cats and dogs in primary care practice. The authors hope that lives will be 613 

saved as our ability to recognise, diagnose and treat haemorrhage due to hyperfibrinolysis improves. 614 
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Figure 1. The Fibrinolytic System 1195 

 1196 

The fibrinolytic system is activated concurrently with coagulation following vascular injury. Tissue 1197 

plasminogen activator (tPA) released from vascular endothelial cells binds and activates plasminogen to 1198 

plasmin. Following activation of plasminogen the tPA/plasmin complex binds lysine residues on fibrin. Plasmin 1199 

cleaves fibrin resulting in the formation of fibrin degradation products/D-dimers. The fibrinolytic system is 1200 

regulated and inhibited primarily by plasminogen activator inhibitor-1 (PAI-1), alpha-2-antiplasmin and 1201 

thrombin activatable fibrinolysis inhibitor (TAFI). PAI-1 is the main inhibitor of tPA and uPA and 1202 

therefore the most significant inhibitor of fibrinolysis. Alpha-2 antiplasmin inhibits fibrinolysis by 1203 

forming a complex with active plasmin to neutralise its action and also by preventing absorption of 1204 

plasminogen onto the fibrin clot. TAFIa is a potent down-regulator of fibrinolysis; by removing carboxyl-1205 

terminal lysine groups from fibrin strands it prevents the binding of plasminogen and tPA to the 1206 

thrombus.  1207 
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Figure 2. TEG tracing with enhanced fibrinolysis following the addition of tPA (50 IU/ml) to citrated 1210 

whole blood from a critically ill Greyhound. 1211 

 1212 
Standard TEG tracing without evidence of fibrinolysis 1213 
 1214 

 1215 

 1216 
Modified TEG tracing with evidence of fibrinolysis following addition of tPA (50IU/ml) 1217 
  1218 
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Figure 3. a) Plasminogen is activated to plasmin by uPA or tPA on the surface of fibrin, resulting in 1219 

fibrinolysis and the production of fibrin degradation products. (b) Anti‐fibrinolytic drugs bind to 1220 

plasminogen C‐terminal lysine sites and inhibit activation of plasminogen to plasmin on the surface 1221 

of fibrin 1222 
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