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Abstract 13 

Measuring particulate matter concentration in poultry houses remains as a difficult task, primarily 14 

because aerosol analysers are expensive, require specialist knowledge to operate and are labour 15 

intensive to maintain. However, it is well known that high concentrations of particulate matter 16 

causes health and welfare problems with livestock, farm workers and people living in the vicinity 17 

of the farm premises. In this work, a data-based mechanistic model is developed to relate broiler 18 

activity and ventilation rate with indoor particulate matter concentration. For six complete growing 19 

cycles, in a U.K. commercial poultry farm, broiler activity was monitored using a camera-based 20 

flock monitoring system (eYeNamic®) and ventilation rate was measured. Indoor particulate 21 

matter concentration was continuously monitored by measuring size-segregated mass fraction 22 

concentrations with the aerosol analyser DustTrakTM. A discrete-time multi-input single-output 23 
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time-invariant parameters Transfer Function model was developed to determine the particulate 24 

dynamics within each day of the growing cycle in the poultry house using broiler activity and 25 

ventilation rate as inputs. This model monitored indoor particulate matter concentration with an 26 

average accuracy of 𝑅𝑇
2 = (51 ± 26) %. A dynamic linear regression modelling with time-variant 27 

parameters improved average accuracy with 𝑅𝑇
2 = (97.7 ± 1.3) %. It forecasted one sample-28 

ahead the indoor particulate matter concentration level, using a time window of 14 samples, with 29 

a mean relative prediction error, 𝑀𝑅𝑃𝐸 = (4.6 ± 3.2) %. Thus, dynamic modelling with time-30 

variant parameters has the potential to be part of a control system to manage in real-time indoor 31 

particulate matter concentration in broiler houses. 32 

Keywords: climate control; dust; environmental quality; forecasting; precision livestock farming 33 

1. Introduction 34 

 35 

Poultry production is projected to become the biggest source of meat with at 134 million tonnes 36 

predicted to be produced worldwide in 2023 (OECD-FAO, 2014). In the UK production currently 37 

stands at 1.42 million tonnes per annum (National Statistics, 2016). Poultry production is also one 38 

of the largest producers of bio-aerosols (Winkel, Mosquera, Groot Koerkamp, Ogink, & Aarnink, 39 

2015) often associated with negative effects upon the health and welfare of poultry (Cambra-40 

López, Aarnink, Zhao, Calvet, & Torres, 2010; Lai, Nieuwland, Kemp, Aarnink, & Parmentier, 41 

2009) and humans (Basinas et al., 2015; Guillam et al., 2013; Radon et al., 2001). Normally, in air 42 

quality terminology, particulate matter (PM) is defined as a complex mixture of fine solid or liquid 43 

particles suspended in a gaseous medium. The term dust refers to a mixture of solid matter particles 44 

formed often by mechanical fracture of different materials, sedimenting due to gravitational forces 45 
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(Zhang, 2004, p.618). Therefore, dust is made up of a number of PM size fractions exhibiting 46 

different physical, chemical and biological characteristics, which define its behaviour and impact 47 

in the environment or the health. Regarding particle sizes (PMsize), they are normally expressed in 48 

µm, and their impact on the respiratory system. Inhalable particles, designated PMTOTAL and up to 49 

100 µm in size, are deposited in the upper airways, whereas thoracic dust or PM10 particles 50 

penetrate to the tracheobronchial region. Respirable dust (PMResp) penetrates to the alveolar region 51 

and has a maximum size of around 4.5 µm. Thus, in the USA, PM2.5 is often referred to as the 52 

respirable fraction of dust (Cambra-López et al., 2010). 53 

 54 

Poultry production contributes about 40-57 % and 45-50 % of the total UK emissions of PM10 and 55 

PM2.5 from housed livestock, respectively (Klimont & Amann, 2002). The most recent emission 56 

factors for PM2.5 and PM10 measured in the UK were 5.1 and 31.6 mg animal-1 day-1 (Demmers et 57 

al., 2010, p.34), well within the published range of values (Oenema, Velthof, Amann, Klimont, & 58 

Winiwarter, 2012). However, due to the difficult nature of PM measurement and analysis, and its 59 

expense, the amount of data available is low (Cambra-López, Winkel, Mosquera, Ogink, & 60 

Aarnink, 2015; Wathes, Holden, Sneath, White, & Phillips, 1997). 61 

 62 

Broiler houses indoor PM concentrations regularly exceed the recommended maximum 63 

concentrations of 3.4 and 1.7 mg m-3 for inhalable and respirable PM, respectively (CIGR, 1994; 64 

Takai & Pedersen, 2000). Most UK poultry operations are subject to environmental legislation 65 

based on their size and are obliged to demonstrate dust management measures, i.e. simple control-66 

at-source measures such as using pelleted rather than meal feed or simple “end of pipe” control 67 

methods. More complex dust abatement systems are rarely used in the UK, but more are used 68 
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elsewhere in Europe (Environment Agency UK, 2011, pp. 1-13). Therefore, there is a growing 69 

need to integrate PM monitoring and management in modern poultry production. 70 

 71 

Precision livestock farming (PLF) technology provides continuous measurement of key indicators 72 

on livestock farms through image and sound analysis and other key sensors and thus offers the 73 

potential to provide on-line control of the underlying process for these key indicators (Wathes, 74 

Kristensen, Aerts & Berckmans, 2008). The focus of PLF technology has been on production and 75 

welfare indicators, such as animal growth and animal health and behaviour (Aerts, Wathes, & 76 

Berckmans, 2003; Kashiha, Pluk, Bahr, Vranken, & Berckmans, 2013; Van Hertem et al., 2014). 77 

To date, few applications have focused on environmental related indicators (Rigo Monteiro, 78 

Garcia-Launay, Brossard, Wilfart & Dourmad, 2017; Haeussermann et al., 2008). 79 

 80 

In this work, it is aimed to determine the transfer function model structure needed to relate indoor 81 

PM concentration dynamics with the key indicators animal activity and ventilation rate. 82 

Ventilation rate has been proven to play a major role in PM concentration (Calvet, Cambra-López, 83 

Blanes-Vidal, Estellés, & Torres, 2010). PM concentration has also been shown to vary with 84 

animal activity (Calvet, Van den Weghe, Kosch & Estelles, 2009; Costa & Guarino, 2009; 85 

Demmers et al., 2010). Broiler activity can be measured by analysing infra-red images offline 86 

using a detailed analysis of the behaviour resulting in an accurate activity level, which provides a 87 

direct cause-effect relationship between animal activity and dust concentration (r2 = 0.89) (Calvet, 88 

et al., 2009). Alternatively, online systems comparing subsequent images at pixel level provide a 89 

general non-specified activity level. These activity levels were shown to be modified by inducing 90 

step changes in the lighting regimes over the day (Demmers, Cao, Parsons, Gauss & Lowe, 2011; 91 
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Kristensen, Aerts, Leroy, Wathes & Berckmans, 2006). Thus, potentially, broiler activity data 92 

could be used as an estimate of PM concentration and therefore used to guide the climate control 93 

systems of buildings to minimise the emissions to the environment. In pigs, a dynamic modelling 94 

approach has been tested to model the variation of PM concentration as function of several inputs, 95 

such as animal activity and ventilation rate (Aerts, Vranken, Berckmans, & Guarino, 2008). 96 

However, in poultry production there is still the need to develop different strategies at all 97 

management levels to reduce dust concentration and air emissions (Powers, Angel & Applegate, 98 

2005).  99 

 100 

Therefore, the aim of this work was, firstly, to identify which time-invariant parameters transfer 101 

function model structure defines the relationship between indoor PM concentration and broiler 102 

activity and ventilation rate. It was expected that the impact of broiler activity and ventilation rate 103 

on indoor PM concentration would change over time and it would be impacted by other variables, 104 

such as indoor temperature and/or relative humidity, not taken into account explicitly in the model. 105 

Thus, a time-variant parameters dynamic modelling approach was tested based on the previous 106 

transfer function model structure, in order to develop a model that can be used to predict in real-107 

time the indoor PM concentration. Potentially, this model could then be used in a control system 108 

in which manipulating the light level and/or ventilation rate and this would allow for reduced PM 109 

indoor concentrations and/or emissions. 110 

 111 

2. Material and Methods 112 

 113 
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2.1. Data collection 114 

 115 

The experiments were carried out at a commercial broiler farm in a newly build mechanically 116 

ventilated broiler house (110 m × 20 m; capacity 50,000 birds). The building was indirectly heated 117 

using a central heating system and heat exchangers placed below the ridge line of the building 118 

(CUBO, Chore-time Europe B.V., Panningen, The Netherlands). Water was provided using nipple 119 

drinkers and dry pelleted feed was supplied to standard poultry feeders using augers. Wood 120 

shavings were used as litter. There were no special means to maintain good litter condition, besides 121 

the ad-hoc changes in heating and ventilation settings. This worked well from spring to autumn, 122 

but during winter results were limited. Following the current legislation, the daily light scheduled 123 

consisted in three light periods of 6 h each, together with two dark periods of 2 and 4 h, respectively 124 

 125 

PM concentration was measured below two fan shafts (ventilation stage 1 and 2, respectively) 126 

using two DustTrakTM DRX 8533 analysers (TSI Ltd., Shoreview, Minnesota, US fitted with a 127 

PM10 inlet, providing simultaneous data for PM1, PM2.5, PMResp (~PM4.5), PM10 and PMTOTAL 128 

inhalable dust at 2 min intervals. Due to the variable fan speed, some non-isokinetic sampling was 129 

to be expected. The DustTrakTM instruments were factory calibrated to the respirable fraction of 130 

standard ISO 12103-1, A1 test dust. The inlet and PM10 impactor of the DustTrakTM instruments 131 

were serviced and cleaned prior to use in each batch and the instruments returned to the factory 132 

for internal cleaning of the optics and calibration after, on average, 1,600 h. The latter was more 133 

frequent than the normal maintenance schedule, due to the continuous monitoring. A correction 134 

factor of 1.29 for poultry dust was obtained using the internal gravimetric filter of the DustTrakTM 135 

as the reference sampler (n = 8). Filters were weighed before and after exposure using an analytical 136 
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balance in a climate controlled room (T = 20 ± 1 °C; RH = 50 ± 5 %). This factor was lower than 137 

the factor obtained against European reference samplers of 1.58 (Winkel et al., 2015). In this study, 138 

the concentrations for PM1, PM2.5, PM10, PMRESP and PMTOTAL obtained within the day were used 139 

to evaluate the model performance. During the implementation the continuous operation of the 140 

DustTraKTM analysers was hampered by frequent failures of the power supply to the instruments. 141 

Therefore, more servicing and calibration of the instruments by the manufacturer was required due 142 

to contamination of the internal parts and optics of the instruments by excessive exposure to dust. 143 

 144 

Ventilation rate was measured using three full size measuring fans (Fancom B.V., Panningen, The 145 

Netherlands) fitted below fans of ventilation stage 1, 2 and 3 (out of 6), as well as the runtime 146 

monitoring of each fan and ventilation stage. Based on the number of fans and the throughput 147 

measured by the measuring fan(s), the total flowrate calculated was therefore based an accurate 148 

measurement of the overall ventilation rate. 149 

 150 

The eYeNamic® (Fancom BV, Netherlands) is a top view camera system that measures the activity 151 

and distribution of animals. It generates a visualisation of the floor area and image analysis 152 

software translates the acquired images into indices of activity and distribution of the flock within 153 

the in-view floor area. These indices are measures of animal movement and position. Data 154 

collection consisted of an activity index per minute. The camera was not equipped with infrared 155 

sensors, thus activity measurements could be only collected during the light periods. 156 

 157 

Data were collected from 14 growing batches over a period of 2.5 years, but only data from six 158 

growing cycles was accurate enough to be used for further analysis because of the aforementioned 159 
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power failures and instrument problems. All other data were logged using LabVIEW virtual 160 

instrument routines (LabVIEW, National Instruments, Austin, Texas, US) running on a local 161 

computer. The eYeNamic® data were logged separately from the fourth batch onwards, following 162 

a software modification. Data from each individual light period throughout the growth period was 163 

used to perform the system identification and time-variant parameters modelling. 164 

 165 

2.2 System Identification and modelling 166 

 167 

The modelling framework used in this work is defined as data-based mechanistic. In summary, a 168 

deterministic model structure is inferred inductively from the data. This mathematical 169 

representation can only be accepted if it can be linked, in physically meaningful terms, to the 170 

process analysed (Young, 2006). Therefore, a system identification step is firstly used to find 171 

which data-based transfer function model structure characterises the indoor PM concentration as 172 

a dynamic response to broiler activity and ventilation rate. Then, a multi-input, single-output 173 

(MISO) transfer function (TF) modelling approach was evaluated using broiler activity and 174 

ventilation rate as inputs and indoor concentration of each PM size individually as output. Once, 175 

the structure of the model was set, a time-variant parameters dynamic transfer function, in this case 176 

a dynamic linear regression (DLR) approach, was used to evaluate its performance and potential 177 

to be used in a control system for monitoring and controlling indoor PM concentration by 178 

evaluating its forecasting properties. Concurrently, the time-evolution of the model parameters 179 

was linked to the biological process. 180 

 181 
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This analysis is carried out using MATLAB® (v.2015b, The Mathworks, Inc., Natick, 182 

Massachusetts, US) software and the CAPTAIN Toolbox, which is a collection of routines 183 

developed to characterize and model non-stationary time-series (Young , Taylor, Tych & Pedregal, 184 

2007). In this work, the routines dedicated to identify a transfer-function (TF) model structure and 185 

the execution of dynamic linear regression models were used. 186 

2.2.1 Multi-Input Single-Output (MISO) Transfer Function (TF) model  187 

 188 

The relation between broiler activity and ventilation rate as inputs and indoor PM concentration in 189 

different batches was studied by using a MISO discrete-time transfer function model. The model 190 

had the following general structure (Young, 1984), 191 

 192 

                                                                      𝑦(𝑘) = ∑
𝐵𝑖(𝑧−1)

𝐴(𝑧−1)
𝑢𝑖(𝑘 − 𝛿𝑖) +  𝜉(𝑘)                                                (1) 193 

 194 

where 𝑦(𝑘) and 𝑢𝑖(𝑘) are the output, PM concentration, and the inputs of the model, broiler 195 

activity and ventilation rate; i is the delay associated with the input i; 𝜉(𝑘) is additive noise 196 

assumed to be zero mean, serially uncorrelated sequence of random variables with variance 𝜎2, 197 

accounting for measurement noise, modelling errors and effects of unmeasured inputs to the 198 

process; 𝑘 is the sample of the measurement; 𝐴(𝑧−1) and 𝐵𝑖(𝑧−1) are two series given by: 199 

 200 

                                                   𝐴(𝑧−1) = 1 + 𝑎1𝑧−1 +  𝑎2𝑧−2 + ⋯ +  𝑎𝑛𝑎
𝑧−𝑛𝑎                                              (2)                                                             201 

 202 

                                                  𝐵𝑖(𝑧−1) = 𝑏0 +  𝑏1𝑧−1 +  𝑏2𝑧−2 + ⋯ + 𝑏𝑛𝑏
𝑧−𝑛𝑏                                             (3) 203 
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 204 

where 𝑎𝑗 and 𝑏𝑗 are the model parameters to be estimated; 𝑧−1 is the backward shift operator, 205 

𝑧−1𝑦(𝑘) =  𝑦(𝑘 − 1), with y and k defined as in Eq. (1) and na and 𝑛𝑏𝑖
 are the orders of the 206 

respective polynomials. The model parameters were estimated using a refined instrumental 207 

variable approach (Young, 1984). The model structure is displayed as [na 𝑛𝑏1
𝑛𝑏2

 1 2]. The best 208 

model is selected according to the Young identification criterion (YIC) and the coefficient of 209 

correlation (𝑅𝑇
2). The YIC provides a combined measure of fitting agreement and parametric 210 

efficiency. 211 

2.2.2 Dynamic Linear Regression (DLR) 212 

The DLR modelling approach was tested in order to check if model accuracy improved by 213 

considering within the day variation of broiler activity and ventilation rate to have an impact on 214 

indoor PM concentration. The advantage of the DLR model, with respect to the time-invariant 215 

parameters models, is that it allows the parameters to vary over time. Hence, it is possible to take 216 

into account the impact of the external variables (disturbances) on the output, which are not used 217 

explicitly in the model, and the impact of the dynamic changes of the inputs to the output. The 218 

DLR is the simplest state-space model using time-variant parameters. Its general expression is 219 

given by:                                                                                                                                                                                  220 

                                                              𝑦𝑘 = 𝑇𝑘 + ∑ 𝑐𝑖,𝑘𝑢𝑖,𝑘
𝑚
𝑖=1                                                    (4) 221 

where 𝑦𝑘 is the output ( i.e. the relevant indoor PM concentration) or dependent variable; 𝑇𝑘 is a 222 

trend or low frequency component; 𝑐𝑖,𝑘 are time-varying parameters over the observational interval 223 

which reflect possible changes in the regression relationship; and 𝑢𝑖,𝑘 are the inputs of the model 224 

(broiler activity and ventilation rate), which are assumed to affect the dependent variable 𝑦𝑘 225 
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(Taylor, Pedregal, Young & Tych, 2007). In this study, on each discrete time instant k, the time-226 

variant parameters linear relation can be written as: 227 

 228 

                                                    𝐷𝑘 = 𝑐1,𝑘 + 𝑐2,𝑘𝐴𝑘 + 𝑐3,𝑘𝑉𝑅𝑘                                        (5) 229 

 230 

where D is the measured indoor PM concentration of different PM sizes (𝑚𝑔 𝑚−3) and A and VR 231 

are the animal activity (%) and the ventilation rate (𝑚3 ℎ−1) at time k, respectively. c1,k (𝑚𝑔 𝑚−3), 232 

c2,k (𝑚𝑔 𝑚−3), c3,k (𝑚𝑔 ℎ 𝑚−6 ) are the time-variant model parameters estimated at time k. 233 

 234 

At every discrete time instant k, the parameters 𝑐1,𝑘, 𝑐2,𝑘 and 𝑐3,𝑘 were estimated based solely in 235 

PM concentration, broiler activity and ventilation rate measurements during a time window of a 236 

previous S samples, as described in Aerts et al., 2003. In the experiments, the time between two 237 

subsequent observations lasted 2 min. At each time instant k (min) the parameters of Eq. (50 were 238 

estimated based on the measured values of animal activity, ventilation rate and PM concentration 239 

in a time window of S samples (from sample k − S + 1 until k) and, subsequently, the concentration 240 

was predicted F samples ahead (k + F) by using Eq. (5) with 𝐴𝑘+𝐹 and 𝑉𝑅𝑘+𝐹. At sample k + 1, 241 

the procedure was repeated. In this way, the PM concentration was predicted at each time instant 242 

based on a small window of current and past data, minimising the effect of obsolete data (Aerts et 243 

al., 2003). 244 

 245 

In order to investigate the accuracy of the model predictions, as a function of window size S and 246 

prediction horizon F, the recursive estimation algorithm was applied to each dataset with a window 247 

size ranging from 7 to 18 samples and a prediction horizon ranging from 1 to 7 samples. The 248 
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goodness of the prediction estimations of the DLR approach were quantified by means of the mean 249 

relative prediction error (MRPE), which is defined as: 250 

 251 

                                              𝑀𝑅𝑃𝐸 =  
1

𝑁
∑ √(

𝐷𝑘−𝐷𝑘̂

𝐷𝑘
)

2
𝑁
𝑘=1 ∙ 100                                               (6) 252 

 253 

where MRPE is a percentage; N is the number of samples; Dk is the PM concentration measured 254 

at time k and 𝐷𝑘̂ is the predicted concentration at time k. 255 

3 Results and Discussion 256 

 257 

The dynamics of the two inputs, broiler activity and ventilation rate, and the output, indoor PM 258 

concentration were visually inspected throughout a light period. The measured PM concentration 259 

for different particle size classes showed a similar instantaneous pattern as broiler activity, as was 260 

expected and can be seen in the example displayed in Fig. 1. However, it can be also seen that 261 

there is a change in the indoor PM concentration trend with a change in ventilation rate whilst 262 

broiler activity remained constant. This indicates that using only one of the two variables, either 263 

broiler activity or ventilation rate, as input it would not be possible to characterise all the dynamics 264 

present in the time-evolution of indoor PM concentration. 265 

 266 

Thus, a system identification process was applied individually to the data of each light period in 267 

the growth cycle using a multi-input single-output discrete-time time-invariant parameters transfer 268 

function modelling approach. The aim of this system identification process was to establish, using 269 

the data collected, a suitable transfer function model structure to characterise the impact of broiler 270 
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activity and ventilation rate on the indoor PM concentration dynamics. The model order for the 271 

models performing best in terms of YIC and 𝑅𝑇
2 grouped per day (approximately 70 % of the days) 272 

was found to be [1 2 1 0 0-5]. These results are displayed in Table 1. In Fig. 2, an example of this 273 

MISO TF model performance for a light period in a growth cycle is shown. 274 

Table 1. Results from the system identification process to find a suitable MISO TF model to relate the sampled data of broiler 275 
activity and ventilation rate with PMRESP indoor concentration. The table shows the model orders nA, 𝒏𝑩𝟏

, 𝒏𝑩𝟐
 for polynomials 276 

A, B1 and B2, respectively, the delays 1 and 2, associated to the inputs broiler activity and ventilation rate, respectively, and 277 
the fitting agreement (R2) and Young Identification Criterion (YIC) for the most accurate model found during the identification 278 
process from the daily average of the analysis of each individual light period in a growth cycle (Day). 279 

Day nA 𝒏𝑩𝟏
 𝒏𝑩𝟐

 1 2 R2 YIC 

2 1 2 1 0 4 0.41 -0.21 

3 1 2 1 0 0 0.60 -2.82 

6 1 2 1 0 4 0.60 -2.05 

7 1 2 1 0 4 0.74 -4.51 

9 1 2 1 0 0 0.66 -5.21 

10 1 2 1 0 3 0.24 -2.67 

11 1 2 1 0 3 0.15 -2.44 

13 1 2 1 0 0 0.84 -6.46 

14 1 2 1 0 0 0.53 -4.49 

15 1 2 1 0 0 0.26 -3.03 

16 1 2 1 0 0 0.92 -5.94 

17 1 2 1 0 0 0.10 5.27 

20 1 2 1 0 1 0.57 -3.45 

22 1 2 1 0 2 0.09 1.17 

24 1 2 1 0 2 0.81 -7.08 

25 1 2 1 0 0 0.80 -5.61 

26 1 2 1 0 2 0.49 -2.89 

28 1 2 1 0 0 0.02 -0.54 

30 1 2 1 0 5 0.66 -5.63 

31 1 2 1 0 0 0.56 -1.15 

33 1 2 1 0 5 0.57 -4.64 

 280 

The model structure is a first order model with a second order B-polynomial multiplying broiler 281 

activity, without any delay, and a first order B-polynomial with varying delay multiplying 282 

ventilation rate. These results may be interpreted as broiler activity accounting for the short term 283 

dynamics in PM concentration (two b-parameters and no delay) whereas the ventilation rate 284 
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accounts for the long term, or trend, dynamics exhibit by PM concentration within the light period 285 

(one b-parameter and delay). The delay term associated to the ventilation rate represents, 286 

mathematically, the physical characteristic for which a change in ventilation rate has a slower 287 

diminishing effect on the PM concentration. This is in agreement with what it was deduced by 288 

inspecting the dynamics exhibited by the variables in Fig. 1. Therefore, the model term related to 289 

broiler activity takes care of the rapid variability in the indoor PM concentration, while the 290 

ventilation rate accounts for the general trend changes in the indoor PM concentration level. 291 

 292 
Figure 1. Example of PMRESP indoor concentration (a), broiler activity level (b) and ventilation rate (c) data for a light period on 293 
day 10 in the growth cycle.  294 

For 70 % of the days analysed, the model performance was acceptable (𝑅𝑇
2 ≥ 65 % 𝑎𝑛𝑑 𝑌𝐼𝐶 ≤295 

5.0 ) although, on average, it is showed only a fitting agreement (𝑅𝑇
2) and YIC values of 𝑅𝑇

2 =296 

(51 ± 26) % and 𝑌𝐼𝐶 = (−3 ± 2), respectively. Fig. 2 shows a descriptive example for a light 297 

period, concerning the PMRESP indoor concentration. Similar results were obtained for PM1, PM2.5, 298 

PM10 and PMTOTAL indoor concentrations. Inspecting Fig. 2, the previous performance results 299 
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discussed can be explained by the inability of the model to capture the fast variability of the indoor 300 

PM concentration. The average level and some of the variability was thus captured, but the model 301 

consistently missed extreme values from the fast variability. Usually, this indicates that the impact 302 

of the input in the output varies throughout the period studied, in this case throughout the light 303 

period. Thus, time-variant parameter modelling was considered may be more suitable to 304 

characterise the process studied. 305 

 306 

Figure 2. Comparison between the raw PMRESP indoor concentration data (solid line) for one of the monitored light periods and the 307 
multi input – single output (MISO) transfer function (TF) model output (dashed line) using broiler activity and ventilation rate as 308 
inputs (a). The fitting error is displayed in (b). 309 

In order to explore further the reason why the MISO TF model could not fully describe the indoor 310 

PM concentration dynamics, the estimated values of the time-invariant model parameters, 311 

summarised per day from the individual light period analysis, were investigated. Fig. 3 shows the 312 

daily estimates for the parameters b11 and b21 associated to broiler activity and ventilation rate, 313 

respectively. It is clear that these daily estimates vary throughout the growth cycle. Parameter b11 314 

evolution, associated with broiler activity, initially showed low average values and little 315 
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variability. However, as the growth cycle continued its average value and variability increased. 316 

Parameter b21 associated with ventilation rate, showed higher average values and variability at the 317 

beginning of the growth cycle but as the growth cycle advanced, its average value decreased and 318 

it became more stable. The order difference in the values of these parameters is due to the units in 319 

which broiler activity and ventilation rate are used in the model.  320 

 321 

Figure 3. Average daily estimations from the analysis of the individual light periods of the time-invariant parameter b11 associated 322 
with broiler activity (a) and parameter b21 associated with ventilation rate (b).  323 

These parameter evolutions may be related to the poultry production process. At the beginning of 324 

the growth cycle, broilers are small and their activity plays a less important role in the generation 325 

and dynamics of PM e.g. increase in concentration due to broilers lower than the reduction due to 326 

the ventilation rate. It accounts for the sudden variations in the indoor PM concentration level but 327 

the overall concentration trend is governed by the ventilation rate. As broilers grow, their activity 328 

starts playing a greater role in PM concentration dynamics, while the contribution of ventilation  329 
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rate diminishes. It can be seen that b11 has a positive value, indicating that an increase in broiler 330 

activity will induce an increase in indoor PM concentration. Also, b22 has negative values, meaning 331 

that an increase in ventilation rate will generate a decrease in the indoor PM concentration. This 332 

can be also explained in terms of the broiler production process. As broilers increase their 333 

movement, they will interact with the dust in their local environment, lifting it up and increasing 334 

the overall level of PM concentration. Normally, these events are of short duration and, after some 335 

time, these particles sediment due to gravity. Thus, increases in broiler activity induce sudden 336 

increases in indoor PM concentrations. This explains the positive value of the b11 parameter and 337 

the activity being related to the rapidly varying indoor PM concentrations. When ventilation rate 338 

increases, it induces it dilutes indoor PM concentration, gradually decreasing its level. This 339 

explains the negative b22 parameter value and the modelling structure pointing to ventilation rate 340 

affecting the trend dynamics of the indoor PM concentration but with a certain time delay. It should 341 

also be taken into account that the activity measurements from the eYeNamic® system are less 342 

accurate when the floor area is increasingly occupied by birds. It has been shown that once birds 343 

reach, on average, 1 kg of bodyweight, the activity index become less reliable as they consistently 344 

cover most of the floor area (Peña Fernández et al., 2018). This may contribute to the higher 345 

variability exhibited by the model parameter linked to broiler activity towards the end of the 346 

growth cycle. Another aspect that can affect the dynamics is the thinning procedure. On day 31, 347 

on average, around 10-15 % of the birds are removed. This time evolution for the estimated values 348 

of the model parameters is consistent across the different PM sizes analysis, as it can be seen in 349 

Fig. 4.  350 
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 351 

Figure 4. Average daily estimations from the analysis of the individual light periods of the time-invariant parameter b11 associated 352 
with broiler activity (a) and parameter b21 associated with ventilation rate (b) for particle seizes of 1m (square), 2,5m (x), 10m 353 
(circle), Respiratory (RESP) size (asterisk) and TOTAL (cross).  354 

Thus, from the previous analysis, it seems that a discrete-time MISO time-invariant parameters TF 355 

model with a [1 2 1 0 0-5] structure is capable of estimating the indoor PM concentration level in 356 

a broiler house. This model structure seems to be aligned with the expected impact of the inputs, 357 

broiler activity and ventilation rate, in the output, indoor PM concentration, according to the broiler 358 

rearing process. However, its performance is hampered by its inability to capture all the extremal 359 

values exhibited by the indoor PM concentration within the daily dynamics. Estimates of the model 360 

parameters show an evolution along the growth cycle, indicating that the impact of broiler activity 361 

and ventilation rate on indoor PM concentration changes, not only changes throughout the growth 362 

cycle, but also between the consecutive light periods monitored. Consequently, if a discrete-time 363 

MISO time-invariant parameters TF model was be built using an average value of the model 364 

parameters, the issue of coping with the maximum and minimum variability of the PM 365 

concentration would become acute, lowering even more the fitting agreement (𝑹𝑻
𝟐). Thus, it would 366 
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not be possible to just develop a unique model to simulate dust concentration with a given or fixed 367 

set of parameter values that could be used to develop a control system.  368 

Due to this inability to model indoor PM concentration variability over a light period with a time-369 

invariant parameter transfer function model, a time-variant approach was tested. It was expected 370 

that these time-varying parameters modelling approach would closely follow the evolution of the 371 

indoor PM concentration throughout the light period and the growth cycle. Furthermore, the model 372 

forecasting properties were evaluated in order to test the model’s capabilities to be used as the core 373 

of a control system to actively manage in real-time the indoor PM concentration in broiler houses. 374 

In Fig. 5, a descriptive example for a light period of the DLR one-sample ahead model forecasting 375 

performance for PMRESP indoor concentration is shown. Different time window and prediction 376 

horizon sizes were evaluated in order to check the potential of the model to estimate the different 377 

PM sizes concentration variability exhibited throughout a light period of the growth cycle. By 378 

averaging the time-variant parameters model forecasting performances from each individual light 379 

period over all the growth cycles monitored, it was discovered that using a window size of 14 380 

samples it was possible to predict one sample-ahead the dust concentration value with an average 381 

MRPE of (4.6 ± 3.2) %. This means that after gathering 28 min of data from the inputs and output, 382 

it is possible to start forecasting the indoor PM concentration with an average prediction error of 383 

4.6 % of the measured value.  384 
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 385 

Figure 5. Example of the DLR model one sample ahead forecasting output for the PMRESP indoor concentration (dashed line) 386 
against the sampled PMRESP indoor concentration (solid line), using broiler activity and ventilation rate sampled data as inputs for 387 
an individual light period. 388 

Fig. 6 shows the average MRPE for different combinations of time window and prediction horizon 389 

when modelling PMRESP indoor concentration. These results confirm the hypothesis regarding that 390 

the time-invariant behaviour of the model parameters in the discrete-time MISO TF model 391 

hampered its ability to describe all the dynamics present in the indoor PM concentration dynamics 392 

throughout a light period. Therefore, a DLR model, in which these model parameters are able to 393 
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vary over time, is able to capture accurately, 𝑅𝑇
2 = (97.7 ± 1.3) %, the light period dynamics 394 

present in the indoor PM concentration 395 

 396 

 397 

Figure 6. Average mean relative prediction error (MRPE), in percentage, of the forecasts accuracy using the dynamic linear 398 
regression (DLR) modelling approach with a historical window size (WS) ranging from 7 to 18 samples and a prediction horizon 399 
(PH) ranging from 1 to 7 samples for PMRESP indoor concentration form the individual light period analysis for all growth cycles 400 
monitored (a). Insight of the mean relative prediction error (MRPE) for the different window sizes (WS) tested for one sample 401 
ahead prediction horizon (b). 402 

A check was required to see if the link between the mathematical model and the biological process 403 

is preserved when time variation in the parameters is allowed and model complexity is reduced. 404 

As expected, the model parameters exhibit variability, not only along the growing cycle but also 405 

within the light period, as it can be seen in the descriptive example shown in Fig. 7.  406 

These dynamics indicate that the impact of broiler activity and ventilation rate changes throughout 407 

the light period, and the subsequent parameter behaviour, may be induced by several reasons. The 408 

impact of these inputs may be influenced by external variables playing a role in the process, such 409 

as temperature or humidity. This could generate extra contributions to the dynamics of indoor PM 410 

concentration but there could be external processes contributing to these dynamics such as particle 411 

resuspension. Resuspension is a process in which particles initially on a surface, join a stream of 412 

fluid. It is influenced, among other factors, by fluid velocity, turbulence, climatic conditions and 413 
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particle density (Mukai, Siegel, & Novoselac, 2009; Qian & Ferro, 2008). Thus, it is a process that 414 

can be generated inside the house by both broiler activity and ventilation rate. It could therefore 415 

interfere with the dynamic evolution of the indoor PM concentration and, therefore, contribute to 416 

the time-variant parameter behaviour captured by the DLR model. These external contributions do 417 

not strongly induce non-linear contributions to the indoor PM concentration dynamics and they 418 

can be characterised by assuming general random-walk evolutions for these model parameters. 419 

Further studies are needed to characterise fully which external processes contribute to the evolution 420 

of these time-variant parameters. 421 

 422 

Figure 7. Example of the evolution of the c2,t time-varying parameter from the DLR model, which is associated to broiler activity 423 
(a) and evolution of the c3,t time-varying parameter from the DLR model, which is associated to ventilation, rate (b) throughout a 424 
light period when modelling PMRESP indoor concentration 425 

Furthermore, the DLR model time-variant parameters dynamics during the growth cycle were 426 

evaluated, grouping the outcome from the analysis of each individual light period analysis per day. 427 

As before, these parameters exhibit a time evolution during the growth cycle. In Fig. 8, a 428 
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descriptive example of the time-variant DLR model parameters dynamics during the growth cycle 429 

is shown. 430 

 431 

Figure 8. Average daily evolution from the analysis of each individual light period for a complete growth cycle of the c2,t time-432 
varying parameter from the DLR model, which is associated to broiler activity (a) and evolution of the c3,t time-varying parameter 433 
from the DLR model, which is associated to ventilation rate (b) for PMRESP indoor concentration. 434 

As well in the results from the time-invariant parameter MISO TF modelling approach, the 435 

parameter linked to broiler activity, c2,t in the DLR model, gained importance as the growth cycle 436 

evolved as the size of the broilers increased. The parameter linked to ventilation rate, c3,t, was more 437 

important at the beginning of the growing cycle. Also, certain variability was observed in the time 438 

evolution of the parameters, which was also probably induced by the inner variability these 439 

parameters exhibit during every light period. It also appeared that there was little change in the 440 

dynamics around day 31 when the thinning process which removed 10-15 % of the birds from the 441 

broiler house, occurred. Thus, it can be seen that the dynamics of these time-variant parameters 442 

are consistent with the time-evolution was inferred from comparing the daily estimates of the time-443 
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invariant parameters. The time-variant nature of the parameters in the DLR model allowed these 444 

dynamics to be captured in a more consistent and reliable manner. Therefore, it appears that the 445 

logical relationship between the model characteristics and what it is expected from the broiler 446 

production process is maintained and is clarified by using the DLR model. 447 

 448 

Therefore, it appears there are several advantages in using a time-variant DLR model over the 449 

discrete-time MISO time-invariant model. By allowing the parameters to vary over time, it is 450 

possible to account for the effect on the output of external variables, which are not used explicitly 451 

in the model. The averaged coefficient of determination reached by the DLR model, 𝑅𝑇
2 = (97.7 ±452 

1.3) %, appears to indicate that some of these external contributions may induce slightly non-453 

linear contributions to these dynamics, but model accuracy seems to be sufficient to characterise 454 

the general time-evolution of indoor PM by means of just broiler activity and ventilation rate. Also, 455 

model complexity has been reduced. Additionally, the DLR model forecasting error achieved, 456 

𝑀𝑅𝑃𝐸 = (4.6 ± 3.2) %, appears to indicate that after around half an hour of data has been 457 

gathered for both inputs (broiler activity and ventilation rate) and output (indoor PM 458 

concentration), it is possible to make accurate predictions of the changes in indoor PM 459 

concentration level induce by changes in broiler activity and ventilation rate. 460 

4 Current limitations and future perspectives 461 

The time-variant parameters model developed in this study shows promising properties to monitor 462 

the indoor PM concentration using broiler activity and ventilation rate as inputs. However, there 463 

are certain limitations to its application that require discussion and need further research to be 464 

addressed. 465 
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Firstly, due to the experiments being in a commercial setting, there are certain disadvantages, 466 

which should be noted. The system identification and model evaluation were performed during a 467 

“light period”. Due to current legislation, the light schedule was fixed. Every day there were 3 468 

light periods of approximately 6 h and two dark periods of approximately 4 and 2 h. Also, the 469 

camera included in the eYeNamic® system do not have infrared capabilities, thus it was not 470 

possible to collect activity measurements during dark periods with the current technology used on 471 

n the farm. Therefore, only data from the light periods have been used to develop and test the 472 

model. Moreover, trying to combine the different light periods for a day in a single dataset may 473 

induce sudden changes at the end and start of consecutive light periods, introducing artefacts for 474 

the model identification and evaluation. In future, if broiler activity data is available during dark 475 

periods, the model could be tested and adapted and if required continuously analysing the complete 476 

day. However, working only during a light period does not result in a limitation. The aim of the 477 

model is to be part of a predictive controller to be used in a commercial farm. The results show 478 

that once around half an hour of data is collected under typical commercial conditions, the model 479 

provides accurate predictions of indoor PM concentrations. Thus, it is feasible to develop a 480 

controller based on the DLR model, which would operate during the light period in the broiler 481 

house. 482 

Regarding model performance, there are certain aspects, which should also be discussed. The 483 

model may show limitations due to the characteristics of the building; the systems therein, such as 484 

lighting or ventilation; the legal regulations required to ensure animal welfare or the type and 485 

management of litter. Other external factors which are not explicitly taken into account in the 486 

model, such as temperature or humidity, are expected to have an impact in the indoor PM dynamics 487 

and thus on model performance. Two aspects should be taken into account regarding these issues. 488 
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Due to the adaptive properties of the modelling framework, it is expected that the impact of 489 

external factors not taken explicitly into account in the model would be captured by the time 490 

evolution of the parameters. This is feasible, since the impact of these factors does not induce a 491 

heavy non-linear behaviour during evolution of the model parameters, nor does it change the 492 

relationship between model variables thereby impacting on the model order needed to describe the 493 

process. Thus, the impact of these external factors does not alter the model structure since the 494 

adaptive characteristics of the model can cope with them. Adaptive characteristics should be 495 

understood as the model parameters will be estimated using data from that specific farm and will 496 

be updated through time according to the past and current conditions of the inputs and output. On 497 

the other hand, these different factors will limit the possible values of activity and ventilation rate 498 

in the farm. These aspects, rather than affecting the model itself, would affect and limit the 499 

development of a future model predictive controller. In principle, these limitations could be 500 

included as a constraint for the cost function of the controller. Thus, the action advised by the 501 

controller would be limited by these boundaries. Then, if constraints imposed by building 502 

characteristics and regulations were too strict, the capabilities of the controller to suggest 503 

alternatives to diminish the indoor PM concentration levels would be limited too. However, these 504 

limitations also pose an opportunity to develop further the process knowledge. It is expected that 505 

the time-evolution of the parameters throughout a rearing period would be the combination of the 506 

intrinsic time evolution behaviour of the variables considered in the model and the contribution of 507 

these external factors. This would help towards developing mechanistic expressions to establish 508 

the relation between the external variables, starting from a data-based approach, which can be used 509 

for both, gaining process knowledge and expand the current time-variant parameters model. 510 
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In addition, regarding the time evolution of the parameters a trade-off between efficiency and 511 

accuracy was needed. As in the commercial conditions tested, light periods will last 6 h, on 512 

average, the time window size of 14 samples, or 28 min, selected as optimal to initialise the model, 513 

seems acceptable. From the mean relative prediction error analysis, it seems possible to use an 514 

even smaller time window size and still achieve low MRPE values. However, it can be also seen 515 

that depending on the prediction horizon desired, the optimal time window size varies too. This is 516 

due to the process dynamics needed to be captured in order to describe accurately the process. A 517 

time window size too small will allow capturing sudden changes more accurately. However, the 518 

dynamics involved in the general trend exhibited by the indoor PM concentration will be lost, 519 

leading to a poorer overall performance as shown in the results. In contrast, a large time window 520 

size will lose the capability to capture sudden changes. Therefore, as the objective was to find a 521 

model, which can describe the dynamics of both light periods and growth cycles accurately, the 522 

time window size, which minimises the average performance, was selected. It is also expected that 523 

during a light period sudden peaks in PM concentration may emerge. Such a situation will have a 524 

negative impact in the time-variant parameters model forecasting performance. It is expected that 525 

if a particularly sudden increase is generated directly by a sudden change in one of the inputs in 526 

the current model (e.g. broiler activity or ventilation rate), the model will be able to capture it to a 527 

certain extent because sudden non-linear behaviours cannot be capture fully by the model 528 

developed in this study. However, if the sudden change in indoor PM concentration is due to a 529 

change in external factors, then the model will need some time to adapt to the new conditions, 530 

increasing the prediction error for the immediate forecasted samples. Therefore, an error analysis, 531 

focus on evaluating the maximal individual prediction error in each light period was performed. 532 

On average, from all of the available dataset, the maximum individual relative prediction error is 533 
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(45 ± 23) %. This result demonstrates the existence of high punctual deviations in the model 534 

predictions. Therefore, the impact of such errors on model performance was explored. The average 535 

mean relative prediction error was one order of magnitude lower than the relative maximum error 536 

(4.6 %). This already provides a first indication that in terms of the average performance the impact 537 

of these events is not highly relevant. It appears that the adaptive properties of the model allow it 538 

to quickly address these situations. An analysis was carried out of individual prediction errors in 539 

these situations. It was found that relative individual prediction errors were equal or greater than 540 

20, 30 or 50 % representing only 3.24, 1.15 and 0.23 % of all prediction errors. Thus, a sudden 541 

peak in the PM concentration will have an impact on model performance, increasing the prediction 542 

error. However, the adaptive capabilities of the time-variant model allowed this sudden change to 543 

be quickly addressed, adapting the model parameters to resemble again the conditions governing 544 

the indoor PM dynamics. Although the impact of these situations, at least in the datasets analysed 545 

in this study, on the overall performance of the algorithm is not highly significant, this aspect needs 546 

to be considered when developing a model predictive control system. The data-based mechanistic 547 

modelling framework used in this work, allows some possibilities to address this issue. Currently, 548 

the weight assigned to the previous measurements is the same. It has utilised a rectangular and not 549 

an exponential window. This was because the focus of this study was on the average performance. 550 

However, for short predictions may be interesting to assign more relevance to recent 551 

measurements. This might be also achieved by selecting shorter time window sizes, although this 552 

would indirectly assign more relevance to the impact of broiler activity than to ventilation rate, as 553 

this contribution exhibits a delay for indoor PM dynamics. Therefore, further work needs to be 554 

done to evaluate, over a longer term, the impact of these situations in the model and model 555 

predictive controller. Linking the time evolution of the model parameters in such situations to the 556 
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external variables, it is expected to develop expressions for this relation, which in the future may 557 

be included in the current model.  558 

Overall, these limitations point out again the need for a dynamic modelling approach, such as the 559 

one developed in this work, to manage indoor PM concentration dynamics. These models allow 560 

can adapt their structure according to the needs pursued to develop compact model predictive 561 

controllers and also provide insights into the biological and physical processes involved. The DLR 562 

model shows potential to be part of the design of a control system to actively control indoor PM 563 

concentration variability and, ideally, be extended to manage emissions to the surroundings as 564 

well. A scheme describing such a control system is shown in Fig. 9.  565 

 566 

Figure 9. Scheme describing a potential control system to manage and actively control the indoor particulate matter 567 
concentration in the broiler house using a dynamic linear regression model as core of the process. Broiler activity, managed by 568 
using light schedule and intensity as actuators, and ventilation rate are used as input for the model, which allows forecasting 569 
the indoor particulate matter according to changes on these inputs. The model predictive control will advise which broiler 570 
activity and ventilation rate levels are needed to achieve the desire set point of indoor particulate matter concentration. 571 

This is the representation of a model predictive control, using the DLR model developed in this 572 

work as core of it, to advise broiler activity, whose actuator is the light level in the building, and 573 

ventilation rate levels, leading the indoor PM concentration to the desire level, introduced as set 574 



    30 
 

point. Moreover, as indoor PM concentration is monitored as part of the model, it can be the first 575 

actuator to decide when there is a need for the control system to operate. Once indoor PM 576 

concentration exceeds the desired or imposed limit due to, for instance legislation, then the model 577 

predictive controller will take action. In the livestock sector, there are already some proposals for 578 

the control of integrated management systems in pig and poultry, especially related to their growth 579 

process (Frost et al., 1997). In poultry, the development of integrated or control systems has been 580 

focussed on broiler growth. There are examples based either on semi-mechanistic models (Stacey 581 

et al., 2004) or data-based mechanistic models (Aerts et al., 2003), as applied in this work, to 582 

develop control systems to manage broiler growth in real-time. Similarly, there are examples in 583 

pig rearing to attempt to estimate the daily nutrient requirements of animals in order to manage 584 

their growth and its impact in nitrogen excretion (Andretta, Pomar, Rivest, Pomar, & Radünz, 585 

2016; Hauschild, Lovatto, Pomar, & Pomar, 2012). To the best of our knowledge, there has not 586 

being any attempt of developing a data-based mechanistic model to manage and control the indoor 587 

dust concentration in a broiler house. Therefore, the data-based DLR model developed in this work 588 

has the potential to become the core of a control system to manage in real-time the indoor PM 589 

concentration in broiler houses. To date, few of these integrated applications has been either 590 

developed or adopted in commercial livestock production. However, it is expected that the 591 

combination of the advances in hardware and software, such as an active-control system as used 592 

in this example, together with an appreciation of the added value and benefit of these technologies, 593 

will stimulate the uptake of precision livestock farming techniques by farmers (Berckmans, 2013, 594 

pp. 276-277). 595 
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5 Conclusions 596 

 597 

The aim of this study was to test the ability to develop a model, which describes the relation 598 

between broiler activity and ventilation rate to PM concentration inside the broiler house. This 599 

relation was studied in order to develop a real-time model to monitor and forecast the impact of 600 

changes in broiler activity and/or ventilation rate in PM concentration within the day variability 601 

indoors the broiler house. 602 

 603 

A first order discrete-time multi-input single-output time-invariant parameters transfer function 604 

(MISO TF) model allowed monitoring the daily variability of PM with an average coefficient of 605 

determination 𝑅𝑇
2 = (51 ± 26) %. Broiler activity accounted for the fast dynamics exhibit by the 606 

indoor PM concentration, while ventilation rate accounted for its slow trend or general dynamic 607 

evolution within the day. The use of time-invariant parameters in these models hampered its 608 

capability of capturing all the dynamics present in the indoor PM concentration. 609 

 610 

Furthermore, a DLR model allows monitoring the current PM daily variability accurately and 611 

allows PM concentrations to be forecast as functions of broiler activity and ventilation rate 612 

accounting for the within the day time-evolution of the model parameters. An MRPE of 4.6 ±613 

3.2 % was found for prediction of one sample-ahead indoor PM concentration values in this work 614 

when using a time window of 14 samples. Thus, the DLR model exhibits excellent properties to 615 

be the core of a model predictive control system to actively manage in real-time indoor PM 616 

concentration variability along the day in the broiler house as function of broiler activity and 617 

ventilation rate. 618 
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