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Abstract

Background: Dogs that have clinical leishmaniosis (ClinL), caused by the parasite Leishmania infantum, are commonly
co-infected with other pathogens, especially vector-borne pathogens (VBP). A recent PCR-based study found that ClinL
dogs are more likely to be additionally infected with the rickettsial bacteria Ehrlichia canis. Further information on co-
infections in ClinL cases with VBP, as assessed by serology, is required. The research described in this report determined
if dogs with ClinL are at higher risk of exposure to VBP than healthy control dogs using a case-control serology study.

Results: Of the 47 dogs with ClinL, anti-E. canis/ Ehrlichia ewingii antibodies were detected in 17 (36.2%), anti-
Anaplasma phagocytophilum/Anaplasma platys antibodies in 5 (10.6%) and antigen for Dirofilaria immitis in 2
(4.3%). Of the 87 control dogs, anti-E. canis/E. ewingii antibodies were detected in 14 (16.1%) and anti-A. phagocytophilum/
A. platys antibodies in 2 (2.3%). No anti-Borrelia burgdorferi antibody tests were positive. No statistical differences between
the ClinL dogs and control dogs regarding lifestyle or use of ectoparasitic prevention, were identified. The ClinL
was significantly associated with anti-E. canis/E. ewingii antibodies (odds ratio = 2.9, 95% confidence interval: 1.3–
6.7, P = 0.010) compared to controls by both multivariable logistic regression and structural equation modelling.

Conclusions: It was demonstrated that an increased risk for E. canis/E. ewingii seropositivity is present in dogs
with ClinL compared to clinically healthy control dogs, despite similar ectoparasitic prevention use and lifestyle.
Based on these findings it is suggested that dogs with ClinL should not only be tested for E. canis co-infection
using PCR but also serologically for E. canis/E. ewingii.

Keywords: Dog, Leishmania infantum, Ehrlichia canis, Borrelia burgdorferi, Acanthocheilonema reconditum, Vector-
borne pathogen, Co-infection, Cyprus

Background
Canine leishmaniosis (CanL) is a significant zoonotic
disease in Mediterranean region and is caused by the
kinetoplastid parasite Leishmania infantum that is trans-
mitted by sand flies vectors belonging to the Phleboto-
mus genus [1]. Often vector-borne pathogens (VBP)
such as Anaplasma platys, Ehrlichia canis, Dirofilaria
immitis, Hepatozoon canis and Babesia vogeli concur-
rently infect dogs which have clinical leishmaniosis

(ClinL) despite being transmitted by vectors different
than these for L. infantum [2–4]. Such co-infections can
result in an unexpected incubation time, atypical clinical
sings, more severe clinicopathological abnormalities and
worse prognosis for the dogs with CanL, compared with
dogs that have CanL alone [2, 3, 5]. Furthermore, a
recent PCR-based case-control study found that dogs
with ClinL are in higher risk to be co-infected with E.
canis compared to healthy matched controls [6].
Additional information on co-infections in ClinL cases
with VBP, as assessed by serology in case-control stud-
ies, is required.
The aim of this study was to examine if dogs with

ClinL are more likely to be exposed to A. phagocytophilum/
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A. platys, B. burgdorferi and E. canis/Ehrlichia ewingii, or
infected for D. immitis than clinically healthy controls.

Results
Serum was available in 47 dogs with ClinL and 87
dog controls that were included in this study. The
age of these 134 dogs ranged from 1 up to 12 years
(median 4 years, interquartile range 3 years) and 98
(73%) were pedigree including Cocker spaniel, Segugio
Italiano, Beagle, German Shepherd and other breeds
(Additional file 1).
In the ClinL group, anti-A. phagocytophilum/A. platys

antibodies were detected in 5 (10.6%), anti-E. canis/E.
ewingii antibodies in 17 (36.2%) and antigen for D.
immitis in 2 (4.3%) dogs. Of the 87 control dogs, anti-A.
phagocytophilum/A. platys antibodies were detected in 2
(2.3%) and anti-E. canis/E. ewingii antibodies in 14
(16.1%). No anti-B. burgdorferi antibody tests were
positive (Fig. 1). Table 1 summarizes the demographic
characteristics and the serology findings. The two dogs
with D. immitis antigens underwent microfilaria PCR
specification which was positive for A. reconditum and
negative for D. immitis for both cases.
ClinL was significantly associated with anti-E. canis/E.

ewingii antibodies [odds ratio (OR) = 2.9, 95% confidence
interval (CI): 1.3–6.7, P = 0.010], compared to healthy
controls using multivariable logistic regression. The
presence of anti-A. phagocytophilum/A. platys anti-
bodies was initially associated significantly with ClinL
compared to controls using univariable analysis (OR =
5.1, 95% CI: 0.9–27.2, P = 0.038) but this association was
not maintained during multivariable logistic regression

Fig. 1 Comparison of VBP percentages detected by serology between dogs with ClinL (n = 47) and healthy control dogs (n = 87). Abbreviations:
VBP, vector-borne pathogen; ClinL, clinical leishmaniosis; E. canis, Ehrlichia canis; E. ewingii, Ehrlichia ewingii; D. immitis, Dirofilaria immitis; A.
phagocytophilum, Anaplasma phagocytophilum; A. platys. Anaplasma platys

Table 1 Demographic characteristics of the study dog groups
and serology results for the VBPs tested. All dogs tested
negative for Borrelia burgdorferi antibodies
Characteristic No. of cases

ClinL (%) (n = 47)
No. of Control
(%) (n = 87)

Age in years

Median 3.0 4.1

Interquartile range 3.3 3.0

Sex

Male 23 (49) 47 (54)

Female 24 (51) 40 (46)

Lifestyle

Outdoors 34 (72) 65 (75)

Mainly indoors 13 (28) 22 (25)

Ectoparasitic prevention

Used 16 (34) 36 (41)

Not used 31 (66) 51 (59)

Breed

Pedigree 33 (70) 65 (75)

Crossbreed 14 (30) 22 (25)

E. canis/E. ewingii

Positive 17 (36) 14 (16)

Negative 30 (64) 73 (84)

A. phagocytophilum/A. platys

Positive 5 (10) 2 (2)

Negative 42 (90) 85 (98)

D. immitis

Positive 2 (4) 0 (0)

Negative 45 (96) 87 (100)

Abbreviations: VBP Vector-borne pathogen, ClinL Clinical leishmaniosis, E. canis
Ehrlichia canis, E. ewingii Ehrlichia ewingii, D. immitis Dirofilaria immitis, A.
phagocytophilum Anaplasma phagocytophilum, A. platys. Anaplasma platys
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analysis. The numbers of D. immitis were very low
hindering any further statistical analysis. Age, breed, sex,
lifestyle, and use of ectoparasitic prevention were not
statistically different between the ClinL and the control
dogs.
Two associations were identified based on SEM (Fig. 2,

Table 2). It was more likely for dogs with ClinL be E.
canis/E. ewingii seropositive and dogs seropositive for E.
canis/E. ewingii are more likely to have be infected with
E. canis based on PCR. A trend was identified between
dogs with ClinL and A. phagocytophilum/A. platys
seropositive.

Discussion
The findings from this serology study are in agreement
with previous studies [3, 7] and further support the
findings from the initial PCR based study, using a fairly
similar cohort of samples, in which it was demonstrated
that it is 12 times more likely for dogs with ClinL be
co-infected with E. canis compared with healthy canine
controls (CI: 1.5–106.0, P = 0.022) [6]. A previous 3-year
longitudinal study, evaluating E. canis and L. infantum
co-infection in naturally exposed dogs, found that E.
canis infection preceded L. infantum infection in dogs
with dual infections, thus suggesting that E. canis could
contribute in the establishment of ClinL [7]. Interest-
ingly, a recent study by Baxarias et al. [5] from Catalonia
(Spain) found that dogs with ClinL were four times more
likely to be seropositive for Rickettsia conorii and 14
times most likely to be seropositive for A. phagocytophilum

compared with healthy controls, but they did not found an
association between ClinL and E. canis seroreactivity. This
discrepancy probably reflects the different prevalence of
these pathogens in Cyprus and other Mediterranean areas
in comparison to Catalonia.
The seroprevalence of the various VBP in this specific

canine population of 134 dogs from the area of Paphos,
Cyprus, revealed a strikingly high seroreactivity to E.
canis/E. ewingii (23%) and anti-A. phagocytophilum/A.
platys (13%) antibodies compared to other studies from
Mediterranean countries using a similar in-house ELISA
kit as the one utilised in this study [8–10]. If quantitative
ELISA or IFAT with higher sensitivity, compared to the
in-house kit, were used in this study, then seropreva-
lences of the VBP could have been even higher than
these reported [11]. The area of Paphos, Cyprus, may be
Lyme disease free as no anti-B. burgdorferi antibodies
were detected in any of the dogs tested in this study,
and the tick vectors that transmit this pathogen, includ-
ing Ixodes Ricinus, have not yet been identified in
Cyprus [12]. In two dogs (1%) antigens for D. immitis
were detected but PCR failed to confirm this infection
and instead an infection with A. reconditum was identi-
fied for both cases. These results may indicate that the
dogs had dual infection with both D. immitis and A.
reconditum, and the negative PCR for D. immitis was
as a result of low level microfilaraemia. However,
false positive D. immitis results cannot be ruled out
entirely especially in light of a recent study from
Cyprus in which, using a modified Knott’s testing for

Fig. 2 Structural equation model showing predictors of vector-borne serological exposure status (except ClinL), and pathogen covariance
(including ClinL), in domestic dogs. Values represent standardised coefficients among variables. Single headed arrows represent directional/causal
relationships and double headed arrows covariance relationships among pathogens. For image clarity the serological status is in yellow boxes
and the coefficients of host characteristics predicting pathogens are listed next to each host characteristic. The covariances E. canis, A. platys,
Hepatozoon spp. and M. haemocanis were PCR-based diagnosed. In all cases, except age, variables are binomial (0 or 1) with 1 equal to male,
outside, ectoparasitic prevention use, pedigree and positive pathogen status. Standardised coefficients with significant relationships of P ≤ 0.05
(also see Table 2) are denoted in bold. Abbreviations: ClinL, clinical leishmaniosis; E. canis, Ehrlichia canis; E. ewingii, Ehrlichia ewingii; A.
phagocytophilum, Anaplasma phagocytophilum; A. platys. Anaplasma platys; M. haemocanis, Mycoplasma haemocanis
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morphological identification of microfilariae in a total of
200 healthy dogs which did not receive any kind of heart-
worm prevention, only A. reconditum was identified in 9
dogs (4.5%) and no D. immitis was found [13].

Conclusions
It was demonstrated that dogs with ClinL are three
times more likely to be exposed to E. canis/E. ewingii
than clinically healthy control dogs in Paphos, Cyprus.
Furthermore, dogs from this area have a high seroreac-
tivity to E. canis/E. ewingii and A. phagocytophilum/A.
platys while they are B. burgdorferi free.

Methods
Study design, site and populations
The samples used for this serology study were collected
under the frame of a previous case-control study design
[6]. All samples were collected from canine clinical cases

presented to a small animal veterinary hospital in Pa-
phos, Cyprus from April 2013 until March 2014. That
area was selected since there are high numbers of
CanL [14] and various canine VBP have been re-
ported [15, 16].
The exact recruiting criteria and the demographic

characteristics recorded can be found in the previously
published study [6]. Briefly, the dogs that had ClinL were
naturally infected and matched with clinically healthy
control dogs in-terms of breed, sex, age, living in the
same geographical area as well as ideally lifestyle and
ectoparasitic prevention use.

Laboratory tests
Approximately 1–2 ml of surplus serum collected in
plain tubes and stored at − 20 °C until laboratory
processing at the Diagnostic Laboratories of the Royal
Veterinary College, London, UK.

Table 2 Structural equation model statistical output showing host characteristics predicting serological exposure status for co-
infecting pathogens (except ClinL), and the covariance among pathogens (including ClinL), in domestic dogs. The covariances E.
canis, A. platys, Hepatozoon spp. and M. haemocanis were PCR based diagnosed. In all cases, except age, variables are binomial (0 or
1) with 1 equal to male, outside, ectoparasites controlled, pedigree and positive pathogen status

Standardised coefficient/covariance z-value P-value

E. canis/E. ewingii serology

Age −0.081 −0.908 0.364

Sex −0.015 − 0.143 0.886

Lifestyle 0.059 0.515 0.606

Ectoparasite prevention −0.041 − 0.336 0.737

Pedigree 0.015 0.142 0.887

A. phagocytophilum/A. platys serology

Age −0.035 −0.415 0.678

Sex 0.014 0.103 0.918

Lifestyle −0.037 − 0.363 0.717

Ectoparasite prevention −0.162 −1.532 0.126

Pedigree −0.111 −0.861 0.389

Covariances

E. canis/E. ewingii ~~ ClinL 0.229 2.453 0.014

A. phagocytophilum/A. platys ~~ ClinL 0.183 1.654 0.098*

E. canis/E. ewingii ~~ A. phagocytophilum/A. platys 0.180 1.443 0.149

E. canis/E. ewingii ~~ E. canis 0.317 2.164 0.030

E. canis/E. ewingii ~~ A. platys 0.009 0.092 0.926

E. canis/E. ewingii ~~ Hepatozoon spp. 0.068 0.747 0.455

E. canis/E. ewingii ~~ M. haemocanis 0.099 1.015 0.310

A. phagocytophilum/A. platys ~~ E. canis −0.015 −0.358 0.721

A. phagocytophilum/A. platys ~~ A. platys 0.349 1.290 0.197

A. phagocytophilum/A. platys ~~ Hepatozoon spp. −0.106 −1.167 0.243

A. phagocytophilum/A. platys ~~ M. haemocanis 0.000 −0.005 0.996

Significant relationships (P < 0.05) denoted by bold font and trending relationships (P < 0.1) denoted by *
Abbreviations: VBP Vector-borne pathogen, ClinL Clinical leishmaniosis, E. canis Ehrlichia canis, E. ewingii Ehrlichia ewingii, A. phagocytophilum Anaplasma
phagocytophilum, A. platys. Anaplasma platys, M. haemocanis Mycoplasma haemocanis
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A commercial in-clinic patient-side SNAP® 4Dx® Plus
test kit (IDEXX Laboratories, Inc., Westbrook, Maine,
USA) was used for the simultaneous detection of anti-
bodies against E. canis/E. ewingii, A. phagocytophilum/A.
platys, and B. burgdorferi, as well as antigens for D.
immitis, following manufacturer’s instructions. This
ELISA kit utilises bi-directional flow of sample and
automatic, sequential flow of wash solution and enzyme
substrate. For E. canis it detects antibodies to the pro-
teins p30 and p30–1, and for E. ewingii antibodies for
p28 protein. For A. phagocytophilum/A. platys the assay
detects antibodies against a peptide from the MSP2/p44
major surface protein and the C6 peptide is used for the
detection of antibodies to a surface lipoprotein of B.
burgdorferi. The assay detects antigens produced pri-
marily from the uterus of female D. immitis (IDEXX
Laboratories, Inc.).
Blood extracted DNA was submitted to IDEXX La-

boratories, Ludwigsburg, Germany from all the cases
that yielded positive antigens for D. immitis for further
microfilaria specification using PCR specific assays for
D. immitis, Dirofilaria repens, Acanthocheilonema
reconditum and Acanthocheilonema dracunculoides.
Additionally all samples underwent L. infantum serology
[17], qPCRs for Leishmania spp. [18], Babesia spp. [19],
“Candidatus Mycoplasma haematoparvum” and Myco-
plasma haemocanis [20] as well as conventional PCR
assays for Ehrlichia/Anaplasma spp. [21] and Hepato-
zoon spp. [22] under the framework of a previously
published study [6].

Data analysis
The sample size was previously calculated [6] and analyses
were performed using SPSS for Windows (version 25.0;
SPSS Inc., Chicago IL, USA). A univariable analysis was
initially performed to see how each of the explanatory
variables was associated with ClinL using Pearson’s Chi-
square test for categorical explanatory variables (breed,
sex, lifestyle, ectoparasitic prevention, positivity for A.
phagocytophilum/A. platys, positivity for B. burgdorferi,
positivity for E. canis/E. ewingii, and positivity for D.
immitis), and the two-sample t-test or Mann-Whitney U
test for continuous variables (age). Any variables that
showed a trend towards significant association with ClinL
(P-value < 0.1) were selected for entry into a multivariable
logistic regression. A stepwise selection procedure was
used to determine the final model (criteria for entry P-
value ≤0.05 and for removal P-value > 0.1).
Additionally, structural equation modelling (SEM) was

performed reflecting the hypothesise mechanisms that
may be associated with ClinL and other VBP exposure
statuses in dogs: (a) causal effects of host characteristics,
and (b) pathogen interrelationships, using a method pre-
viously described [6].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12917-019-2083-6.

Additional file 1: Table S1. Raw datasets with signalment and test
results per case enrolled.
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