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Quantifying the potential for 
bluetongue virus transmission in 
Danish cattle farms
najmul Haider  1,2, Lene Jung Kjær  1,3, Henrik Skovgård4, Søren Achim nielsen5 & 
Rene Bødker1,3

We used a mechanistic transmission model to estimate the number of infectious bites (iBs) generated 
per bluetongue virus (BtV) infected host (cattle) using estimated hourly microclimatic temperatures 
at 22,004 Danish cattle farms for the period 2000–2016, and Culicoides midge abundance based on 
1,453 light-trap collections during 2007–2016. We used a range of published estimates of the duration 
of the hosts’ infectious period and equations for the relationship between temperature and four key 
transmission parameters: extrinsic incubation period, daily vector survival rate, daily vector biting rate 
and host-to-vector transmission rate resulting in 147,456 combinations of daily IBs. More than 82% 
combinations of the parameter values predicted > 1 IBs per host. The mean IBs (10–90th percentiles) 
for BTV per infectious host were 59 (0–73) during the transmission period. We estimated a maximum 
of 14,954 IBs per infectious host at some farms, while a best-case scenario suggested transmission 
was never possible at some farms. The use of different equations for the vector survival rate and host-
to-vector transmission rates resulted in large uncertainty in the predictions. If BTV is introduced in 
Denmark, local transmission is very likely to occur. Vectors infected as late as mid-September (early 
autumn) can successfully transmit BTV to a new host until mid-November (late autumn).

Bluetongue virus (BTV) causes bluetongue disease (BT) – an important infection in ruminants and notifiable to 
the World Organization of Animal Health1,2. Symptoms of BT include weight loss, reduced milk yield and can 
lead to abortions and ultimately death. BTV circulates in a natural transmission cycle between insect vectors 
(Culicoides spp) and hosts (cattle, sheep, goat)3. BT is responsible for international trade restrictions on animals 
and animal products1,2, and has caused global losses of an estimated 2.6 billion EUR a year2. Six different strains 
of BTV belonging to 8 serotypes (BTV-1, BTV-2, BTV-4, BTV-6, BTV-8, BTV-9, BTV-11, BTV-16) and a vaccine 
serotype (BTV-14) have been reported in Europe since 20064, and these viruses in combination have caused the 
most severe outbreaks of BT ever reported, resulting in the death of over 1.5 million sheep1,5. In Denmark, BTV 
was first identified in 2007, and another 15 outbreaks were identified across the country in 20086.

Estimating the vectorial capacity (VC) of a vector-borne disease (VBD) is a common approach used to evalu-
ate the potential threat of a disease outbreak. The VC of BTV is defined as the number of new hosts infected from 
an infectious host being exposed to vectors for one day7,8. Values for VC can aid in estimating potential outbreak 
risks, the initial number of animals infected, and the time when local transmission could occur. VC can be used as 
a risk assessment tool, where higher VC values indicate a potentially faster transmission3. The VC can be summed 
over the entire infectious period (period of viremia) of the host to obtain the basic reproduction number of a 
disease, commonly known as R0

8. This parameter is defined as the number of infectious bites (IB) resulting from 
the infectious host and thus potentially the number of infected individuals originating from the introduction of 
one infectious host into a naïve population until the host recovers or dies1,3. IBs are the sum of infectious bites 
originating from all the daily cohorts of biting midges attacking the host during its infectious period7,8. Daily IBs 
represent the maximum potential for transmission and the estimates produced may be used for targeted surveil-
lance and import regulations duringrisk periods.
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The VC of a VBD can be expressed as a function of the number of vectors per host (m), vector biting rate (a), 
daily vector survival rate (p), the extrinsic incubation period (EIP), and the time interval between ingestion of an 
infected blood meal and the vector’s ability to transmit the virus to a new host (n). A simple version of the VC, 
adapted from Garrett-Jones9 and originally developed from Ross-Macdonald’s model for Malaria10 is shown as:
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where, VC = new infections disseminated per cattle per day, ma = the number of bites/host/day, a = the frequency 
of blood feeding on cattle (1 divided by the duration of the gonotrophic cycle in days), p = probability of daily 
survival, n = time from infection to infectivity in days in the vector and is usually estimated from the ambient 
temperature using a degree-day relationship. Thus, pn = probability of a mosquito surviving to become infective, 
and the expected duration of life in days after becoming infectious = 1/−ln(p).

The duration of EIP, vector biting rate, and vector survival rate are all highly dependent on temperature11,12. 
The EIP has a very strong impact on the VC of a disease, as the VC is proportional to the survival rate raised to 
the power of EIP. Other parameters that influence the VC, which are not included in the VC equation, includes 
the transmission rate from host to vector and the transmission rate from vector to host (cattle). Recently, 
temperature-dependent equations for BTV transmission from host to vector were suggested for C. imicola and C. 
bolitinos (Meiswinkel)13,14.

The original and modified versions of the Ross-Macdonald-Jones equation are deterministic and assume a 
“fixed rate” for most of the biological parameters15, whereas simulation models use a range of values14. The typical 
EIP equation7,16,17 used for BTV modelling has two important aspects: i) there is a threshold temperature below 
which no development is possible1,7,13,16,18, ii) above this threshold, there is either a linear or a more complicated 
non-linear relationship between the temperature and virus development in the vector19. The minimum threshold 
temperatures for virus development are often derived from a series of experiments conducted at constant temper-
atures7,16–18, after which a model is fitted to the data to predict development rates at other temperatures. In reality 
the threshold temperature may be much lower12,19 and temperatures climbing beyond this threshold may result 
in quicker virus development, followed by a period of more steady development12. The widely used equations in 
R0 modelling7,16,17 are likely to be less reliable at very high and very low temperature ranges, especially around the 
lower and upper threshold temperatures19.

Equations for the daily survival rate of Culicoides have mostly been developed from natural capture-release 
studies18,20. Some of these equations differ substantially in their estimates of daily survival rates, for example 
Wittmann et al.16 and Gerry & Mullens18. Furthermore, some researchers assume the daily survival rate is inde-
pendent of age20, while others suggest it depends on age21.

Arthropods are poikilothermic, thus the environmental temperature affects the rate at which an arbovirus 
is able to replicate to a transmissible level within an arthropod vector12. Female biting midges spend almost 
90% of their lifetime resting while digesting blood meals and developing eggs and the remaining period is for 
searching for a host for blood meals and mating7,22. The temperature, to which insects are exposed during resting 
are therefore important when modelling VBDs. However, most models of Culicoides-borne diseases1,5,7,11,12,23,24 
predict the VC or R0 using meteorological temperature rather than the actual temperature in the microclimatic 
environment where the vectors rest. Microclimatic habitats are in general warmer than the estimates recorded by 
standard meteorological institutions25. Studies in Scandinavian climates have shown that microclimatic tempera-
tures are warmer during the day and cooler during the night compared to recordings from nearby meteorological 
weather stations, and that the differences significantly affect the rate of virus development in Culicoides as well as 
the duration of the transmission season25,26. Even if the daily average meteorological temperatures and the daily 
average microclimatic temperatures were the same, the presence of threshold minimum temperatures for virus 
development and a non-linear relationship with temperatures above that threshold mean that the decreased speed 
of virus development during the night cannot compensate for the increase during the day. This means that models 
relying on meteorological temperature may underestimate development rates. Furthermore, many of the models 
used in estimating VBD transmission are based on monthly or daily mean temperatures7,12,23. In reality, insects do 
not experience a “mean temperature”, but are instead exposed to changing temperatures varying day by day and 
throughout the day27. Therefore, hourly temperatures at the vector resting sites can better capture the impact on 
VBD when modelling temperature-sensitive parameters.

Culicoides imicola was previously considered the main vector for BTV transmission in southern Europe5,28. 
Recently, BTV was isolated from wild specimens of Culicoides obsoletus (Meigen), C. scoticus (Downes & Kettle) 
and specimens of the Pulicaris sp.28–31. Identifying Culicoides species based on their morphological characteristics 
is difficult. Therefore, the term ‘ensemble’ is here suggested to denote a group of sympatric species for which mor-
phological identification is sometimes difficult or not possible without phylogenetic analysis32. Obsoletus ensem-
ble refers here to both the Obsoletus group and C. dewulfi, and includes C. obsoletus, C. scoticus, C. montanus 
(Shakirzjanova), C. chiopterus (Meigen) and C. dewulfi. The Pulicaris ensemble includes C. pulicaris (Linnaeus) 
and C. punctatus (Meigen)32,33. In this manuscript, we used both Obsoletus and Pulicaris ensemble abundance 
data to estimate the IBs with BTV resulting from an infectious host.

Many studies ignore the role of C. pulicaris in BTV transmission1,34 despite the Pulicaris ensemble comprising 
some of the most abundant vectors in “imicola-free” BT affected regions of Europe. Recent studies propose spe-
cies within this ensemble to be potential vectors of BTV29,30,33,35,36. Experimental studies on oral susceptibility to 
BTV showed similar rates of infection in both the Obsoletus and Pulicaris ensembles (7.4% vs 13%)30. Another 
study using field caught specimens identified higher prevalence of BTV in the samples of the Pulicaris ensembles 
compared to that of the Obsoletus ensembles (57% vs. 46%)36. However, a large German study on field caught 
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specimens showed a significantly higher number of Obsoletus ensembles being positive for BTV than Pulicaris 
ensembles (0.034% vs. 0.0002%)29.

The objective of this study was to use a mechanistic transmission model to: i) estimate the potential number of 
IBs per infectious host resulting from an introduction of BTV at farms in Denmark at any given day by including 
known parameter estimates and equations together with national vector surveillance and meteorological data; ii) 
quantify the uncertainty associated with each parameter.

Methods
Estimating microclimatic temperatures in Denmark, 2000–2016. We obtained hourly meteorolog-
ical parameters (temperature, solar radiation, humidity, wind speed) for the period 2000–2016 from the Danish 
Meteorological Institute (DMI) at 320 grid points across Denmark. We considered the nearest grid point to each of 
the 22,004 cattle farms to be the temperature of that farm. The type of land cover within a 500 m radius of each cattle 
farm was quantified using CORINE Land Cover37. The land cover was reclassified as dry meadow (83%), hedges (6%), 
wet meadow (3%), and forest (3%)26. Using a previously published microclimatic model for Denmark25,26, these mete-
orological parameters were converted to estimates of hourly microclimatic temperatures for the period of April 1st to 
December 31st for each of the four different microclimatic habitats. This resulted in four different hourly temperatures 
for the 22,004 cattle farms over the 17 years. From each of these four microclimatic series we calculated the hourly 
mean of the first quantiles (>minimum and <25th percentile), mean of the second quantiles (≥25th percentile <50th 
percentile), mean of the third quantiles (≥50th percentile <75th percentile) and mean of the fourth quantiles (≥75th 
percentile) over the 17-year period. To quantify the impact of temperature on IBs, we ran our model with all four series 
of hourly temperatures for each of the four habitats in all combinations with the other model parameter settings (differ-
ent equations of EIPs, daily survival rate, biting rate, host-to-vector and vector-to-host transmission rate). In addition, 
to quantify the worst- and best-case scenario, we also identified the maximum and minimum temperature of all farms 
each hour and for each microclimatic habitat, respectively from this 17-year hourly temperature dataset. An annual 
average of the six temperature series from each habitat data is presented in Fig. 1.

Culicoides density data. Danish researchers have carried out a number of surveillance and research pro-
jects on abundance of biting midges across Denmark since 2007. Surveillance was conducted at 22 sites over the 
winter of 2007, 2008 and 2010 to identify the vector-free season. To monitor Culicoides in the warm season, 12 

Legends 

Max Temp
Q4Mean
Q3Mean
Q2Mean
Q1Mean
Min Temp

0 1000 2000 3000 4000 5000 6000

−2
0

0
10

20
30

40

Danish Met. Institute

 Hours (1st April−Dec 31st)

Te
m

pe
ra

tu
re

 C

0 1000 2000 3000 4000 5000 6000

−2
0

0
10

20
30

40
Dry Meadow

 Hours (1st April−Dec 31st)

Te
m

pe
ra

tu
re

 C

0 1000 2000 3000 4000 5000 6000

−2
0

0
10

20
30

40

Hedges

 Hours (1st April−Dec 31st)

Te
m

pe
ra

tu
re

 C

0 1000 2000 3000 4000 5000 6000

−2
0

0
10

20
30

40

Forest

 Hours (1st April−Dec 31st)

Te
m

pe
ra

tu
re

 C

0 1000 2000 3000 4000 5000 6000

−2
0

0
10

20
30

40

Wet Meadow

 Hours (1st April−Dec 31st)
Te

m
pe

ra
tu

re
 C

Figure 1. Six hourly microclimatic temperature series from April 1st to December 31st estimated at four 
potential insect habitats surrounding 22,004 Danish cattle farms and the temperature modelled by the Danish 
Meteorological Institute. Q4Mean, Q3Mean, Q2Mean and Q1Mean are the means of the fourth, third, second 
and first quantile observations.
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farm sites were randomly selected across Denmark during 2008 and 2009, and each site was sampled 29 times. In 
four of these 12 farms midges were collected for two nights every week during 2012, and three nights every week 
after this. From 2012 onwards, midges have been monitored in three of these four sites as a part of the national 
monitoring of Culicoides, and surveillance information is updated on the vector surveillance website: http://www.
myggetal.dk/. Surveillance data were available for the period 2012–2016. In addition, collections were taken over 
one night at 251 farms in 2008 and 124 farms in 2009 from different regions of the country. The Onderstepoort 
light trap was used to collect the biting midges. Where collections were made on more than one night, we calcu-
lated the daily mean number assuming the trap had collected the same number of midges each day. Details of the 
counting and species-identification methods are described by Lassen et al.38, while surveillance collections are 
only identified to the two ensemble levels. In this study, we assumed the used Ondersteport trap acts like a host 
and would attract the same number of Culicoides as one host will attract as also assumed by Guis et al.39. Thus, we 
prepare a dataset with counts of biting midges for each week of different years.

From the obtained Culicoides abundance data, we calculated the mean of the first quantiles (>minimum and 
<25th percentile), mean of the second quantiles (≥25th percentile <50th percentile), mean of the third quan-
tiles (≥50th percentile <75th percentile) and mean of the fourth quantiles (≥75th percentile) of the number of 
Obsoletus and Pulicaris ensembles separately from the daily trap data. We then generated a daily abundance for 
each of the four estimates for each of the two species ensembles by assuming the abundance would be the same 
on each day of the week. Finally, we smoothed each of these eight daily Culicoides abundance series by a 15-day 
running average and used these daily vector abundances on cattle farms in Denmark as estimates of abundance 
for an average vector season. The resulting estimates of IBs are therefore averages for Denmark ignoring spatial 
variation as well as year-to-year variation in both microclimatic temperatures and vector abundance. In addition, 
to quantify the worst and best case scenario, we identified the maximum and minimum number of Obsoletus and 
Pulicaris ensembles each week from the 10-years Culicoides dataset and smoothed them with 15-day running 
averages. We present summaries of vector abundance data in Fig. 2.

The equations used. The identified equations used in the transmission model and their references are listed 
in Table 1 and Fig. S1.The four different EIP equations are referred to as EIP equation I7, EIP equation II16, 
EIP equation III16, and EIP equation IV12. The four equations have a threshold temperature for start of virus 

Figure 2. Boxplot of average weekly Pulicaris and Obsoletus ensemble abundance in Denmark based on 
collections during 2007–2016. The bottom and top of the box indicate the first and third quartiles Culicoides 
number; the band inside the box is the median Culicoides number. and the whiskers the lowest and highest data 
points still within 1.5 times the interquartile range of the respective lower and upper quartiles. The dots outside 
the box are outliers.
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replication, which is 10.4, 11.0, 14.1 and 13.3 °C respectively. We refer to the three different daily insect survival 
rate equations as Survival rate equation I16, Survival rate equation II18 and Survival rate equation III18. Survival 
rate equation I shows a very high survival rate (e.g. 90% at 30 °C) whereas survival rate equation III shows a low 
survival rate (e.g. 6% at 30 °C). All the survival rates are based on the assumption that midge daily survival rate is 
independent of age. We used an equation for frequency of blood feeding by the biting midges on the host7.

Most BTV transmission models use a fixed rate of transmission from host to vector1,14,23. In this manuscript, 
we used two temperature dependent equations described by Turner et al.14 from the study of Paweska et al.13 and 
one fixed rate of transmission (median value from a range of distributions) from host to vector used by Gubbins 
et al.1 and Szmaragd et al.23 (Table 1). We used these three equations for both Obsoletus and Pulicaris ensembles 
considering that the rate of BTV transmission from host to vector is the same in both species. We refer to the rate 
of BTV transmission from host to vector as Host-vector transmission I (developed for C. imicola)13,14, Host-vector 
transmission II (developed for C. bolitinos)13,14 and Host-vector transmission III (fixed rate) (Table 1). We define 
the transmission season as the period when a vector ingesting an infected blood meal will survive to become 
infectious and infect a new host.

Mechanistic model for estimating the number of daily IBs by Culicoides insects. We used a 
mechanistic model to estimate the potential number of IBs originating from one infectious host via Culicoides. 
This is a biological process-driven model based on the above-mentioned parameters. The model has previously 
been described40, and a similar model for another VBD, Setaria tundra (Filarioidea: Onchocercidae), has been 
described by Haider et al.41.

The model was designed to follow daily cohorts of biting midges throughout the season at hourly temperatures 
estimated for the four habitats: dry meadow, wet meadow, hedges and forest. In the model, biting midges took a 
blood meal infected with BTV, rested until the gonotrophic cycle was completed and then successfully took a new 
blood meal. Completion of the EIP was solely dependent on the hourly temperature experienced by the cohort of 
midges on each consequtive day. After the EIP was complete, we assumed that all subsequent bites by the biting 
midges were infectious until all vectors in the cohort were dead. We used a rate summation model in which the 
EIP or blood meal digestion rate was calculated hourly and summed up daily until the virus development/blood 
meal digestionwas complete.

The steps in the model are described below41.

 1. The daily survival rates for Culicoides midges were calcuated using the daily mean temperaure recorded/
predicted by the Danish Meteorological Institute and the equations listed in Table 1. We assumed a maxi-
mum survival time of 60 d for Culicodes biting midges in Denmark with a daily maximum survival rate of 
90% and minimum survival rate of 1% (Table 1).

 2. The model calculated the EIP for BTV (Table 1) based on successive hourly temperatures for each daily 
cohort and identified the date when the biting midges in each cohort became infectious, i.e. when the EIP 
was complete.

 3. The model calculated and identified the dates when the vectors completed each gonotrophic cycle (Table 1) 

Parameters Equations Sources/References
Name in the 
manuscript

Survival rate of Culicoides 
biting midges

1 − (0.015*exp(0.063*Temp)) Wittmann et al. (2002)16 Survival rate 
equation I

EXP (−1/(111.84*EXP(−0.1547*Tmean))) Gerry & Mullens (2000)18 Survival rate 
equation II

1 − (0.009* exp (0.16*Tmean)) Bessell et al. (2016)49

Gerry & Mullens (2000)18
Survival rate 
equation III

1/Extrinsic Incubation 
Period

((0.0003T(T − 10.4))
(BTV) Mullens et al. (2004)7 EIP-I

0.0069T −0.0636
(BTV 10) Wittmann et al. (2002)16 EIP-II

0.0113T − 0.1419
(BTV 16) Wittmann et al. (2002)16 EIP-III

0.019 *(T − 13.3) (BTV 9) Wilson & Mellor (2009)17

Carpenter et al. (2011)12 EIP-IV

Biting rate (blood meal 
digestion) 0.0002T(T − 37) (41.9 − T)1/2.7 Mullens et al. (2004)7 Biting rate

Rate of transmission from 
host-to-vector

0.0003699 exp(0.1725T)
(originally developed for C. imicola) Paweska et al. (2002)13

Turner et al. (2013)14

Host-to-vector I

0.005465 exp(0.159T)
(originally developed for C. bolitinos) Host-to-vector II

Fixed rate
(Used for Obsoletus ensemble only)

0.071
(Median of a range of transmission from 
host-to-vector used by Szmaragd et al. 
2009, Gubbins et al. 2008 and)1,23

Host-to-vector III

Rate of transmission from 
vector-to-host 0.80 O’Connell (2002)51 Vector-to-host

Table 1. Parameters used in modelling bluetongue virus transmission.
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based on the successive hourly temperatures for each daily cohort. It was assumed that the biting midges 
would take a new blood meal immediately after the gonotrophic cycle was complete.

 4. The model identified the date of the IBs in each cohort as the date when vectors bite after the EIP was com-
plete. This date was then merged with information on the survival rate of biting midges to calculate how 
many vectors of the original cohort have survived until that day.

 5. The model estimated the proportion of vectors that became infected while taking a blood meal. This was 
done seperately for the Obsoletus and Pulicaris ensembles by using two temperature-dependent formulae 
as well as one fixed rate (Table 1). This proportion was multiplied by the number of surviving vectors to 
estimate the total number of IBs produced by the cohorts.

 6. The model assumed 80% of IBs would successfully infect the host by multiplying the total number of IBs by 
a factor of 0.80 (the rate of BTV transmission from vector to host, Table 1).

 7. The model estimated the IBs for the Obsoletus and Pulicaris ensembles seperately, then summed them up 
to estimate the total number of IBs for each day.

 8. We summed up the total number of IBs estimated per infectious host by summing all the IBs over the 
infectious period (20.6 d) and named it “daily IBs per infectious host” or simply “IBs per host”

 9. For example, daily IBs of 10 per infectious host on August 1st meant that if a newly infectious cow was 
introduced on a farm on August 1st, this would result in 10 new infectious bites originating from that cow. 
Hence, “daily” refers to the first day in the viremia period of the host, though infectious bites may originate 
from anytime during the host infectious period to vectors. Considering a duration of the infectious period 
of 20.6 d and a vector life span of 60 d, the last date that a new host could be infected from a bite from a 
vector infected by that infectious cow would be October 21st.

Summary of infectious bite estimates. From the literature we identified four EIP equations for BTV, 
three equations for Culicoides daily survival rate, three equations for transmission from host to vector (two are 
temperature dependent and one is a fixed rate), one equation for biting rate and one rate for transmission of BTV 
from vector to host. We used these in the model by assuming that all equations were equally likely to capture the 
true relationship between temperature and the relevant outcome. We then ran the model in all possible combi-
nations of the equations (4 × 3 × 3 × 1 × 1 = 36). Each of the 36 model combinations was then ran hourly with 
four distributions of microclimatic temperatures (mean of fourth, third, second, and first quantiles) for each of 
four potential insect resting habitats (dry meadow, hedges, forest and wet meadow), and four series of Culicoides 
abundance data (mean of fourth, third, second and first quantiles) in both vector ensemples (the Obsoletus and 
Pulicaris ensembles); in total (36 × 4 × 4 × 4 × 2 = ) 4608 daily combinations.

Danish cattle farms are surrounded by different habitats including 83% dry meadow, 6% hedges, 3% forest 
and 3% wet meadow25 on average. We considered that biting midges would rest randomly in the different habitats 
surrounding the farm (the larger proportion a specific habitat constitutes around a farm, the larger the proportion 
of vectors will be resting in that habitat). To adjust for different areas covered by each habitat we multiplied our 
model output by the IBs estimates (28 times, as there were approx. 28 times more dry meadow than forest or wet 
meadow) by those estimated from dry meadow temperature. Hedges were two times more abundant than forest 
or wet meadow and we multiplied the IBs 2 times with those estimated by hedges, and used the complete dataset 
including the IBs estimated with wet meadow and forest temperature in summary analysis. Finally, our daily 
estimated IBs resulted in 147,456 IBs.

To identify the worst- and best-case scenarios, we also ran the model with the maximum hourly tempera-
tures and the daily maximum abundance of biting midges and the minimum hourly temperatures and the daily 
minimum abundance of biting midges, respectively. This gave another 144 daily estimates (4 EIP × 3 Survival 
rate × 3 rate of transmission from host to vector × 4 habitats) for each of the worst and best-case scenarios for 
both the Obsoletus ensample and the Pulicaris ensemble. We then summed the IBs estimated for the Obsoletus 
and Pulicaris ensembles to get the total IB from Culicoides vectors per day. We identified the worst-case scenario 
as the maximum value of IBs for each day from 144 different estimates. Likewise, we identified the best-case sce-
nario as the daily minimum value of IBs for each day from 144 different estimates.

Data analysis. We calculated summary statistics to report the daily mean temperature and 10–90th percen-
tiles at each of the four microclimatic habitats as well as the DMI weather stations. We also did this for the number 
of biting midges per day. We calculated the mean IBs and the 10–90th percentiles from the 147,456 daily IBs. To 
quantify the impact of the variation in each of the three different input parameters (temperature, vector abun-
dance, habitats etc.), we calculated the mean IBs for each category of that particular parameter while allowing 
all other parameters to vary in all remaining combinations. To quantify the uncertainty in each of the parameter 
equations (EIPs, survival rate, host to vector transmission rate), we ran the entire model for each equation one at 
the time and present the mean IBs for each equation. The mechanistic model for estimating the IBs per host was 
developed in SAS version 9.442 and all summary analyses and plots were performed in R version 3.4.043.

Results
Temperatures in Denmark. Figure 1 summarizes the microclimatic temperature data and data from DMI. 
The dry meadow was the warmest microhabitat with a mean (10–90th percentile) summer (July and August) 
temperature of 17.9 °C (12.4–24.6 °C) compared to hedges 17.8 °C (13.9–23.1 °C), wet meadow 15.8 °C (13.3–
19.4 °C) and forest 16.7 °C (14–19.4 °C). The mean (10–90th percentiles) summer DMI temperature was 17.0 °C 
(14.6–19.6 °C).
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Culicoides vectors in Denmark. We identified 1,463 trap collections over 1–3 nights from 351 cattle farms 
across Denmark between 2007 and 2016. The mean number (and the10–90th percentiles) of the Obsoletus ensem-
ble was 204 (0–488) per night, and the mean number of the Pulicaris ensemble was 142 (0–288) per night. The 
number of vectors in the Obsoletus ensemble started to increase in early May, reaching a peak in July with a mean 
(10–90th percentiles) of 388 (0–1,140) midges per night. The number of vectors in the Pulicaris ensemble started 
to increase in April and peaked in June with a mean (10–90th percentiles) of 281 (1–578) midges per night (Fig. 2). 
We found four or five generations of Obsoletus using the annual average, with the first peak seen in May, the sec-
ond in June, third in July, fourth in August and the fifth and final peak was surprisingly seen between late October 
and the beginning of November. Although not as clear as for the Obsoletus ensemble, five or six generations of 
Pulicaris ensembles were observed between April and November (Fig. S2).

IBs. Figure 3 summarizes the estimated number of IBs per host with BTV. The mean (10–90th percentiles) 
number of IBs per host estimated for BTV in Denmark was 59 (0–73) per infectious host for the period April 1st to 
October 31st, taking into consideration all possible combinations of parameter values. In the worst-case scenario, 
the daily maximum number of IBs per host was 14,954 IB, per infectious host, while no transmission was detected 
in the best-case scenario. More than 82% of the estimated values showed more than one IBs per host.

Seasonality. While considering the median IBs of all combinations, the period when vectors could become 
infected and subsequently successfully transmit BTV lasted almost 4 months, starting in the first week of May and 
ending in the third week of August (Fig. 3). According to the median value of all combinations (50th percentiles), 
the earliest possible day a cohort of Culicoides could become infected and successfully transmit BTV was in the 
first week of May with the resulting IBs being delivered up to 80.6 d later and the last day was in the third week of 
September (or second week of October based on the worst-case scenario; Fig. 3).

We observed three peaks of IBs per host: at the end of May, middle of June, and the final and largest peak was 
observed between the second and fourth week of July. These peaks of transmission from host to vector correlated 
with the number of Obsoletus ensemble during the same period. The mean number of IBs with BTV per infec-
tious host was 27 in April, 67 in May, 125 in June, 160 in July, 34 in August, and 3 in September (Fig. S2). We did 
not find a large discrepancy in the start or end of the season as estimated by the different equations (EIP, survival 
rate, host-to-vector transmission). However, different temperatures and vector abundances resulted in different 
durations of the transmission season. While the worst-case scenario showed almost 6 months of transmission, 
first quantile mean temperature showed around 3 months of transmission (mid-May to mid-August) and first 
quantile mean Obsoletus abundance showed less than 3 months of transmission (mid-May to the end of August).

Uncertainty of parameter estimates in BTV transmission. The mean IBs per infectious host during 
the transmission season (April to October) was estimated as 26 using EIP equation I, 42 using EIP equation II, 41 
using EIP equation III, and 77 using EIP equation IV (Fig. 4). Survival rate equation I estimated much higher IBs 
(mean: 103) compared to survival rate equation II (mean: 23) and survival rate equation III (mean: 13) (Fig. 4).

The mean number of IBs by host-to-vector transmission estimated with equation II was more than ten-fold 
higher than with equation I (53.5 vs. 4.7 for Obsoletus ensembles and 33.9 vs. 3.1 for Pulicaris ensembles). The 

Bluetongue virus: Infectious bites per infectious host
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Figure 3. The number of infectious bites (IBs) with bluetongue virus per infectious host generated from 
147,456 different combinations estimated by combining all the natural variation in temperature, vector 
abundance and resting habitats types as well as the uncertainty associated with equations used for extrinsic 
incubation period, daily survival rates, host-to-vector transmission rates, biting rates and vector-to-host 
transmission rates. Four different microclimatic temperatures were chosen from 2000–2016, as well as weekly 
vector density data from 1,453 trap collections across Denmark between 2007 and 2016. The worst-case 
scenario estimated the maximum of 14,954 IBs, whereas the best-case scenario estimated no transmission being 
possible in Denmark. The dotted horizontal line indicates IBs = 1 each day (log10 (1 + 1)). More than 82% 
combinations predicted >1 IBs per host at least one day of the transmission season.
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fixed rate host-to-vector transmission estimated a mean daily number of IBs of 28.1 for the Obsoletus ensemble 
and 19.7 for the Pulicaris ensemble (Fig. 4).

Difference in BTV transmission potential due to natural variation in observed temperature, 
vector abundance and resting habitats. The number of IBs estimated from the fourth quantile mean 
temperature was three times higher than when estimated from the third quantile mean temperature, 52 times 
higher on average compared to estimates from the second quantile temperature, and 128 times higher compared 
to the first quantile temperature (Fig. 5).

In presence of favorable temperatures (when temperature is high enough to accomplish the EIP in 60 d), vari-
ation in vector abundance was the most influential parameter driving the IBs. The number of IBs estimated from 
the fourth quantile mean Obsoletus ensemble abundance was on average 13 times higher than the IBs estimated 
from the third quantile mean, 110 times higher than estimates from the second quantile, and 173 times higher 
than estimates from the first quantile (Fig. 5). For the abundance of the Pulicaris ensemble, the number of IBs 
estimated from the fourth quantile mean was on average 13 times higher than the IBs estimated from the third 
quantile mean, 346 times higher than estimates from the second quantile, and 653 times higher than estimates 
from the first quantile mean (Fig. 5).

The mean number of IBs per host was 49.1 when insects rested at dry meadow temperature, 40.7 at hedge 
temperature, 20.2 at forest temperature and 13.7 at wet meadow temperature (Fig. 5).

Discussion
Our estimates of BTV IBs per host are based on the assumption that the identified equations used in BTV mod-
elling are equally likely to be correct at estimating the number of IBs. Our model generated 147,456 different 
IBs by combining different parameter estimates of BTV in Denmark for each day of the potential transmission 
season (April 1st to October 31st). Instead of calculating point estimates of IBs, we estimated a distribution of 
IBs per host for each day by combining all the natural variations (temperature, vector abundance and resting 
habitats types) and uncertainty associated with the different parameter equations (EIP, the daily survival rate, the 
host-to-vector transmission rate, biting rates and rate of transmission from vector- to- host). This allowed us to 
predict a wide range of IBs per host each day during the transmission season (April to October). Our estimates 
showed that only 18% of the combinations had less than one IBs per host during the entire season. The worst-case 
scenario predicted a very high average of 2,861 IBs for the entire season (April-October), with a maximum daily 
value of 14,954. The worst-case scenario was identified as the highest number of IBs estimated from the highest 
temperature recorded every hour over 17 years from any part of the country along with the highest number of 
biting midges recorded that week. The best-case scenario showed that no transmission would be possible, and 
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Figure 4. The mean infectious bites (IBs) per host estimated by different equations of three parameters 
including extrinsic incubation period (EIP), daily survival rates and rates of transmission from host-to-vector. 
The mean IBs for each equation of that particular parameter were estimated allowing all other parameters to 
vary in all remaining combinations. A large uncertainty is seen among three different equations of daily survival 
rate and among three rate of transmission from host-to-vector.
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was identified as the lowest number of IBs estimated with the lowest hourly temperatures over 17 years from any 
part of the country, leading to a prediction where virus development was never possible within the lifespan of the 
vector. However, both best-case and worst-case scenarios are applicable only to the farms with lowest and highest 
temperature each hour and vector abundance each week and should be considered only as extreme prediction 
scenarios for the country. The mean number of IBs per host for all combinations was 59 for the entire season, 
indicating that BTV has a high potential to spread if introduced44.

The number of IBs per host refers to the ability of the vector population to transmit a pathogen to the host 
population from an infectious host7 and is different from the basic reproduction rate or R0 in that the number 
of susceptible animals available is not accounted for. IBs are bites where infectious vira are transmitted to a host. 
However, a host may not be susceptible to BTV, or may already be infected or may have become immune. How IB 
translates into R0 on the given farm depends both on the availability of alternative hosts and on the proportion of 
vectors that disperse from the farm. The period of viremia in naturally infected animals varies for different strains 
of BTV with a range of 14–63 d and a mean of 20.6 d44,45. Our estimates therefore show that if BTV is introduced 
into the country, local spread is likely to occur. This finding is supported by empirical observations of BTV out-
breaks in 2008 in Denmark, where a large number of animals were infected with BTV and local transmission was 
observed6.

We observed a large difference in estimates of BTV IBs per host due to natural variation in temperature, vec-
tor abundance and types of resting habitats. An increase of one quantile mean number of Obsoletus ensemble 
resulted in IBs that were at least 13 times higher than another quantiles. The 4th quantiles mean Pulicaris ensemble 
estimated IBs that were 653 times higher than IBs estimated using the first quantile mean Pulicaris number. This 
is due to the large variation in Culicoides abundance observed between traps each week in different years or at 
different locations in Denmark. We found several generations of Obsoletus and Pulicaris ensembles during an 
average season. The peak of each vector generation coincided with the peak of IBs. In earlier studies, peaks of 
estimated R0 based on observed and predicted Obsoletus complex also coincided with a peak in the population 
of vectors3. The Pulicaris ensemble population peaks earlier in the spring, and there was a small peak in the daily 
IBs in the beginning of May due to vectors in the Pulicaris ensemble. Pulicaris ensemble has previously not been 
considered to be a competent vector in BTV transmission models1,34, although an experimental study found the 
Pulicaris ensemble to have similar vector competence as the Obsoletus ensemble30. The field collected specimens 
have showed higher prevalence of BTV in Obsoletus ensemble than in Pulicaris ensemble29. Pulicaris are abun-
dant in the “non-imicola” region where BTV was detected46, and recent studies indicate that they play a role in 
BTV transmission29,30. In studies from southern and central Europe3,31, the Pulicaris ensemble populations only 
constitutes a small fraction of the biting midges populations, yet we found that in Denmark the Pulicaris ensemble 
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Figure 5. The mean infectious bites (IBs) per host estimated by different quantiles of observed temperatures, 
vector abundance and temperatures of resting habitats. The mean IBs for each quantiles of each particular 
parameter were estimated allowing all other parameters to vary in all remaining combinations. A large 
uncertainty is shown among four different quantiles of vector abundance. The Pulicaris ensemble appears 
early in the season and thus had higher estimates of IBs in spring. Q4M indicates mean of the fourth quantile 
(≥75th percentile) observations, Q3M indicates mean of the third quantiles (≥50th percentile <75th percentile) 
observation and so on.
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populations were around half that of the total population of Obsoletus over the entire period. In general, Pulicaris 
are considered to be more abundant in Scandinavia than in central and southern Europe47 and if species in the 
Pulicaris ensemble are competent vectors, their high abundance makes it necessary to include them in transmis-
sion models for Denmark. Our model shows that Pulicaris ensemble could influence the infectious bites per host 
or R0 if the vectors are competent for BTV transmission. It is important to note that the host biting rates used to 
calculate IBs are based on the assumption that the number of female Culicoides collected in Onderstepoort light 
traps, reflects the biting rate, but light traps may both under- and overestimate actual biting rates48.

Temperature plays a critical role in driving many parameters including the EIP, survival rate, biting rate of vec-
tors and host-to-vector transmission rate. In the best-case scenario, we used the minimum temperature among all 
the farms each hour to estimate the IBs of BTV which predicted transmission was not possible on any day. There 
was no transmission because virus development was not completed within the maximum lifespan of the vectors. 
In a situation like this, the number of insects becomes irrelevant; BTV transmission will not be possible despite 
high abundance of vectors. The model that used the first quantile mean temperature estimated a very low num-
ber of IBs per host because virus development was very slow, resulting in only few insects surviving to transmit 
the infections to new hosts when EIP was completed. One of the survival rates proposed by Gerry and Mullens 
(2000)18,49 (Survival rate III) estimated a very low number of IBs, because only a small proportion of vectors sur-
vived until the EIP was complete. We estimated higher numbers of IBs per host in dry meadow compared to other 
habitats, simply because the temperature on average was higher than in any other resting site.

In an earlier study from Denmark, Græsbøll et al. (2012) showed that the temperature and seasonality of 
vectors determined the period during which an incursion of BTV could lead to epidemic spread45. Furthermore, 
the authors concluded that within the transmission season, the number of affected animals will depend on the 
temperature and vector abundance, vector behavior and vector ability to locate hosts45. If the temperature remains 
favorable, the size of outbreaks will depend on the vector population. A generation of Culicoides will generally 
take 4–5 weeks to reach peak abundance. Our findings show that peaks of vector abundance coincide with peak 
IBs estimates, which indicate that seasonality of vectors drives the IBs.

During the 2008 BTV outbreak in Denmark, most of the cases were identified in late autumn (generally 
between September and October, while the last case was detected on November 17th)6. The date of some infections 
could possibly be earlier due to a delay in outbreak identification, but it has been unclear how BTV is transmitted 
at the low autumn temperatures found in Denmark. Our model used estimated microclimatic temperatures of 
potential vector habitats and showed that the last date when a cohort of vectors could be infected and be able to 
infect new hosts after completion of the EIP was in the second week of September (early autumn). Considering 
the maximum lifespan of Culicoides is 60 d, our model therefore showed that a successful transmission from vec-
tor to host is possible even in mid-November (late autumn) in Denmark.

We found a large variation in the estimated number of IB when using temperature-dependent equations for 
different parameters. We observed the largest variation in IBs per host between the equations used for the rate of 
BTV transmission from host to vector. The mean number of IBs estimated from the Host-vector transmission II 
equation was 10 fold higher IB than for equation I. The mean number of IBs estimated from survival rate equa-
tion I was 3.6 times higher than for equation II and 6.3 times higher than for survival rate equation III. The mean 
number of IBs estimated from EIP equation IV was 3.8 times higher than for EIP equation I, 1.9 times higher 
than for equation II and 1.8 times higher than for equation III. Such large uncertainty for a parameter will lead 
to substantial uncertainty in the outputs of a BTV R0 model, making it difficult to use model predictions to plan 
prevention and control strategies.

Although host to vector transmission is an important parameter, most models use a fixed number or a range 
of values for BTV transmission models. We used both temperatures dependent equations and a fixed rate for esti-
mation of BTV transmission. The time it takes from when the virus enters the Culicoides to when it reaches a cell 
where it can replicate is unknown. However, virus attachment to and entry of a midgut cell within the Culicoides 
must occur before the peritrophic matrix (an acellular layer) form around the virus if a successful infection is to 
take place50. Therefore, we used the mean temperature of the day when the insect took the blood meal to calculate 
the temperature dependent probability of successful transmission of virus from host to vector. In total, we iden-
tified and used four equations for the EIP, three equations for the daily survival rate, two equations for the host 
to vector transmission rate and one equation for biting rates. However, there is a need to identify more precise 
parameters estimates for virus transmission in European Culicoides. Denmark experienced BTV outbreaks in two 
consecutive years in 2007 and 20086. The IBs per host estimated from our model showed that only 18% of all esti-
mates resulted in IBs per host less than 1. We suggest the quantitative predictions from modelling the transmis-
sion of BTV in northern Europe could be improved if more efforts were put into identifying and quantifying the 
correct relationships between temperature and Culicoides transmission parameters for BTV in European climates.

conclusion
We estimated 147,456 different IBs by combining different parameter estimates of BTV in Denmark for each day 
of the potential transmission season of which more than 82% of the estimated values showed more than one IBs 
per host. The mean (and 10–90th percentiles) number of IBs was 59 (0–73) per infectious host over the trans-
mission period. The best-case scenario in our model showed transmission was not possible. In the worst-case 
scenario, the transmission season lasted around 6 months (mid-April to mid-October), with a maximum number 
of IBs per host of 14,954. Therefore, it is likely that local spread will occur if BTV is introduced in Denmark. We 
identified a large uncertainty associated with the number of IBs estimated by different equations, including those 
for daily survival rate of Culicoides and host-to-vector transmission rates. We found temperature and the number 
of vectors to be the most influential factors in determining the BTV transmission (the daily number of IBs). Our 
model showed that the effective BTV transmission period is long in Denmark, and vectors infected as late as 
mid-September (early autumn) can successfully transmit BTV to a new host in mid-November (late autumn).

https://doi.org/10.1038/s41598-019-49866-8


1 1Scientific RepoRtS |         (2019) 9:13466  | https://doi.org/10.1038/s41598-019-49866-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
 1. Gubbins, S., Carpenter, S., Baylis, M., Wood, J. L. & Mellor, P. S. Assessing the risk of bluetongue to UK livestock: uncertainty and 

sensitivity analyses of a temperature-dependent model for the basic reproduction number. J. R. Soc. Interface 5, 363–371 (2008).
 2. Sperlova, A. & Zendulkova, D. Bluetongue: A review. Vet. Med. (Praha). 54, 430–452 (2009).
 3. Brugger, K. & Rubel, F. Bluetongue disease risk assessment based on observed and projected Culicoides obsoletus spp. vector 

densities. PLoS One 8, e60330 (2013).
 4. Saegerman, C., Berkvens, D. & Mellor, P. S. Bluetongue epidemiology in the European Union. Emerging Infectious Diseases. https://

doi.org/10.3201/eid1404.071441 (2008).
 5. Purse, B. V. et al. Climate change and the recent emergence of bluetongue in Europe. Nat. Rev. Microbiol. 3, 171–81 (2005).
 6. Rasmussen, L. D., Rasmussen, T. B., Belsham, G. J., Strandbygaard, B. & Bøtner, A. Bluetongue in Denmark during 2008. Vet. Rec. 

166, 714–718 (2010).
 7. Mullens, B. A., Gerry, A. C., Lysyk, T. J. & Schmidtmann, E. T. Environmental effects on vector competence and virogenesis of 

bluetongue virus in Culicoides: interpreting laboratory data in a field context. Vet. Ital. 40, 160–6 (2004).
 8. Kirkeby, C. Spatio-temporal abundance and dispersal of Culicoides. (Technical University of Denmark, 2013).
 9. Garrett-Jones, C. Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature 

204, 1173–1175 (1964).
 10. MacDonald, G. The Epidemiology and Control of Malaria. (Oxford University Press, 1957).
 11. Ruder, M. G. et al. Effect of Temperature on Replication of Epizootic Hemorrhagic Disease Viruses in Culicoides sonorensis 

(Diptera: Ceratopogonidae). J. Med. Entomol. 52, 1050–9 (2015).
 12. Carpenter, S. et al. Temperature dependence of the extrinsic incubation period of orbiviruses in Culicoides biting midges. PLoS One 

6, e27987 (2011).
 13. Paweska, J. T., Venter, G. J. & Mellor, P. S. Vector competence of South African Culicoides species for bluetongue virus serotype 1 

(BTV-1) with special reference to the effect of temperature on the rate of virus replication in C. Imicola and C. Bolitinos. Med. Vet. 
Entomol. 16, 10–21 (2002).

 14. Turner, J., Bowers, R. G. & Baylis, M. Two-Host, Two-Vector Basic Reproduction Ratio (R0) for Bluetongue. PLoS One 8, e53128 
(2013).

 15. Brand, S. P. C., Rock, K. S. & Keeling, M. J. The Interaction between Vector Life History and Short Vector Life in Vector-Borne 
Disease Transmission and Control. PLoS Comput. Biol. 12 (2016).

 16. Wittmann, E. J., Mello, P. S. & Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides 
sonorensis. Med Vet Entomol 16, 147–156 (2002).

 17. Wilson, A. J. & Mellor, P. S. Bluetongue in Europe: Past, present and future. Philosophical Transactions of the Royal Society B: 
Biological Sciences 364, 2669–2681 (2009).

 18. Gerry, A. C. & Mullens, Ba Seasonal abundance and survivorship of Culicoides sonorensis (Diptera: Ceratopogonidae) at a southern 
California dairy, with reference to potential bluetongue virus transmission and persistence. J. Med. Entomol. 37, 675–88 (2000).

 19. Worner, S. P. Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate 
summation effect. Environ. Entomol. 21, 689–699 (1992).

 20. Buonaccorsi, J. P., Harrington, L. C. & Edman, J. D. Estimation and Comparison of Mosquito Survival Rates with Release-Recapture-
Removal Data. J. Med. Entomol. 40, 6–17 (2003).

 21. Bellan, S. E. The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease 
transmission and control. PLoS One 5 (2010).

 22. Lassen, S. B., Nielsen, S. A., Skovgård, H. & Kristensen, M. Molecular identification of bloodmeals from biting midges (Diptera: 
Ceratopogonidae: Culicoides Latreille) in Denmark. Parasitol. Res. 108, 823–829 (2011).

 23. Szmaragd, C. et al. A modeling framework to describe the transmission of bluetongue virus within and between farms in Great 
Britain. PLoS One 4, e7741 (2009).

 24. Tabachnick, W. J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing 
world. J. Exp. Biol. 213, 946–54 (2010).

 25. Haider, N. et al. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian 
climate. Sci. Rep. 7 (2017).

 26. Haider, N., Cuellar, A. C., Kjær, L. J., Sørensen, J. H. & Bødker, R. Microclimatic temperatures at Danish cattle farms, 2000–2016: 
quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus. Parasit. Vectors 11, 128 (2018).

 27. Paaijmans, K. P., Read, A. F. & Thomas, M. B. Understanding the link between malaria risk and climate. Proc. Natl. Acad. Sci. 106, 
13844–13849 (2009).

 28. Clausen, P. H. et al. Seasonal dynamics of biting midges (Diptera: Ceratopogonidae, Culicoides spp.) on dairy farms of Central 
Germany during the 2007/2008 epidemic of bluetongue. Parasitol. Res. 105, 381–386 (2009).

 29. Hoffmann, B. et al. Monitoring of putative vectors of bluetongue virus serotype 8, Germany. Emerg. Infect. Dis. 15, 1481–1484 
(2009).

 30. Carpenter, S., Lunt, H. H. L., Arav, D., Venter, G. J. & Mellor, P. S. Oral susceptibility to bluetongue virus of Culicoides (Diptera: 
Ceratopogonidae) from the United Kingdom. J. Med. Entomol. 43, 73–78 (2006).

 31. De Liberato, C. et al. Identification of Culicoides obsoletus (Diptera: Ceratopogonidae) as a vector of bluetongue virus in central 
Italy. Vet. Rec. 156, 301–304 (2005).

 32. Schwenkenbecher, J. M., Mordueluntz, A. J. & Piertney, S. B. Phylogenetic analysis indicates that Culicoides dewulfi should not be 
considered part of the Culicoides obsoletus complex. Bull. Entomol. Res. 99, 371–375 (2009).

 33. Cuéllar, A. C. et al. Spatial and temporal variation in the abundance of Culicoides biting midges (Diptera: Ceratopogonidae) in nine 
European countries. Parasites and Vectors 11 (2018).

 34. Brand, S. P. C. & Keeling, M. J. The impact of temperature changes on vector-borne disease transmission: Culicoides midges and 
bluetongue virus. J. R. Soc. Interface. https://doi.org/10.1098/rsif.2016.0481 (2017).

 35. Fall, M. et al. Circadian activity of Culicoides oxystoma (Diptera: Ceratopogonidae), potential vector of bluetongue and African 
horse sickness viruses in the Niayes area, Senegal. Parasitol. Res. 114, 3151–3158 (2015).

 36. Foxi, C. et al. Role of different Culicoides vectors (Diptera: Ceratopogonidae) in bluetongue virus transmission and overwintering 
in Sardinia (Italy). Parasites and Vectors. https://doi.org/10.1186/s13071-016-1733-9 (2016).

 37. European Environmental Agency. Corine Land Cover 2006 raster data (2010).
 38. Lassen, S. B., Nielsen, S. A. & Kristensen, M. Identity and diversity of blood meal hosts of biting midges (Diptera: Ceratopogonidae: 

Culicoides Latreille) in Denmark. Parasit. Vectors 5, 143 (2012).
 39. Guis, H. et al. Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe. J. R. Soc. Interface. 

https://doi.org/10.1098/rsif.2011.0255 (2012).
 40. European Food Safety Authority. Schmallenberg virus: Analysis of the Epidemiological Data and Assessment of Impact. EFSA J. 

2012;10(6)2768 10, 2768 (2012).
 41. Haider, N., Laaksonen, S., Kjær, L. J., Oksanen, A. & Bødker, R. The annual, temporal and spatial pattern of Setaria tundra outbreaks 

in Finnish reindeer: a mechanistic transmission model approach. Parasit. Vectors 11, 565 (2018).
 42. SAS Institute Inc. Cary, NC, U. (2016). SAS Statistical Software, (2017).
 43. R Core Team. R: A Language and Environment for Statistical Computing. (2017).

https://doi.org/10.1038/s41598-019-49866-8
https://doi.org/10.3201/eid1404.071441
https://doi.org/10.3201/eid1404.071441
https://doi.org/10.1098/rsif.2016.0481
https://doi.org/10.1186/s13071-016-1733-9
https://doi.org/10.1098/rsif.2011.0255


1 2Scientific RepoRtS |         (2019) 9:13466  | https://doi.org/10.1038/s41598-019-49866-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

 44. Melville, L. F. et al. Characteristics of naturally-occurring bluetongue viral infections of cattle. Bluetongue Disease in Southeast Asia & 
the Pacific (1995).

 45. Græsboll, K., Bodker, R., Enoe, C. & Christiansen, L. E. Simulating spread of Bluetongue Virus by flying vectors between hosts on 
pasture. Sci. Rep. 2, (2012).

 46. Mellor, P. S. Infection of the vectors and bluetongue epidemiology in. Europe. Vet. Ital. 40, 167–174 (2004).
 47. Nielsen, S. A., Nielsen, B. O. & Chirico, J. Monitoring of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) on farms in 

Sweden during the emergence of the 2008 epidemic of bluetongue. Parasitol. Res. 106, 1197–1203 (2010).
 48. Gerry, A. C., Monteys, V. S. I., Vidal, J.-O. M., Francino, O. & Mullens, B. A. Biting Rates of Culicoides Midges (Diptera: 

Ceratopogonidae) on Sheep in Northeastern Spain in Relation to Midge Capture Using UV Light and Carbon Dioxide-Baited Traps. 
J. Med. Entomol. 46, 615–624 (2009).

 49. Bessell, P. R. et al. Assessing the potential for Bluetongue virus 8 to spread and vaccination strategies in Scotland. Sci. Rep. 6, 38940 
(2016).

 50. BLAIR, C. D. Vector biology and West Nile virus In West Nile Encephalitis Virus Infection. (Springer, 2009).
 51. O’Connell, L. Entomological aspects of the transmission of orbiviruses by Culicoides biting midges (University of Bristol, 2002).

Acknowledgements
This study was funded by the Danish Food and Veterinary Administration as a part of the national surveillance 
and risk assessment for vectors and vector-borne infections. We thank the Danish Meteorological Institute (DMI) 
for sharing meteorological data. We acknowledge Cecilie Grønlund Clausen, Mette Frimodt Hansen, and Carsten 
Thure Kirkeby for their involvement in Culicoides collection and the farmers for allowing us to collect Culicoides 
from their farms over the years 2007–2016 in Denmark.

Author Contributions
N.H. led model development, data analysis and the manuscript writing, L.J.K. helped with data analysis and 
provided critical input in manuscript writing, S.A.N. and H.S. was involved in Culicoides data collection and 
provided critical input in drafting the manuscript, and R.B. planned the original study, helped with data analysis, 
development of the models and critically reviewed the manuscript. All authors reviewed and approved the final 
draft.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-49866-8.
Competing Interests: The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-49866-8
https://doi.org/10.1038/s41598-019-49866-8
http://creativecommons.org/licenses/by/4.0/

	Quantifying the potential for bluetongue virus transmission in Danish cattle farms

	Methods

	Estimating microclimatic temperatures in Denmark, 2000–2016. 
	Culicoides density data. 
	The equations used. 
	Mechanistic model for estimating the number of daily IBs by Culicoides insects. 
	Summary of infectious bite estimates. 
	Data analysis. 

	Results

	Temperatures in Denmark. 
	Culicoides vectors in Denmark. 
	IBs. 
	Seasonality. 
	Uncertainty of parameter estimates in BTV transmission. 
	Difference in BTV transmission potential due to natural variation in observed temperature, vector abundance and resting hab ...

	Discussion

	Conclusion

	Acknowledgements

	Figure 1 Six hourly microclimatic temperature series from April 1st to December 31st estimated at four potential insect habitats surrounding 22,004 Danish cattle farms and the temperature modelled by the Danish Meteorological Institute.
	Figure 2 Boxplot of average weekly Pulicaris and Obsoletus ensemble abundance in Denmark based on collections during 2007–2016.
	Figure 3 The number of infectious bites (IBs) with bluetongue virus per infectious host generated from 147,456 different combinations estimated by combining all the natural variation in temperature, vector abundance and resting habitats types as well as t
	Figure 4 The mean infectious bites (IBs) per host estimated by different equations of three parameters including extrinsic incubation period (EIP), daily survival rates and rates of transmission from host-to-vector.
	Figure 5 The mean infectious bites (IBs) per host estimated by different quantiles of observed temperatures, vector abundance and temperatures of resting habitats.
	Table 1 Parameters used in modelling bluetongue virus transmission.




