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Abstract  28 

This study looked to assess the stability of Cryptosporidium parvum genotypes in calves between the 29 

final day of treatment with the antiprotozoal halofuginone lactate and seven days post-treatment. Paired 30 

faecal samples were collected on the final day of treatment and seven days later from 54 calves across 31 

seven farms in South-west England. The presence of Cryptosporidium species was detected using 32 

polymerase chain reaction targeting the 18s rDNA. The presence and genotype of C. parvum was 33 

determined by PCR and amplicon sequencing targeting the gp60 locus. On farms where C. parvum 34 

was detected at both sampling times there was a distinct genotype shift.  Detection of gp60 genotype 35 

IIaA15G2R1 decreased from 40% to 7% while IIaA17G1R1 increased from 0% to 41%, supplemented 36 

by IIaA16G3R1 in one sample. A shift in C. parvum genotypes present in calves within a one week 37 

sampling timeframe has not been described prior to this study, indicating that the timeframe is likely 38 

suitable for observing variation in C. parvum populations and interactions with antiprotozoal control 39 

strategies. 40 

 41 
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Highlights 48 

 A single Cryptosporidium parvum genotype was initially dominant on multiple farms 49 

 gp60 genotypes became more diverse within a one week sampling timeframe 50 

 First description of a C. parvum genotype shift in neonate calves 51 

 Explanatory factors considered: drug interaction and maturation of calves 52 

 53 

1. Introduction 54 

Cryptosporidium parvum is a zoonotic parasite prevalent among UK calves, reported to occur at levels 55 

of 45.1% in individuals under one month of age (Smith et al., 2014). Infection largely results in morbidity 56 

in juveniles, associated with diarrhoea, anorexia and dehydration, although for immunocompromised 57 

individuals further complications can arise (Taylor et al., 2007, De Graaf et al., 1999). Halofuginone 58 

lactate is licensed for control and treatment of C. parvum in UK cattle; however the effects of treatment 59 

on C. parvum population structure has not been defined.  60 

 61 

Cryptosporidium follows a lifecycle broadly in line with other members of the suborder Eimeriorina with 62 

three key phases: sporulation, schizogony, and gametogony. Notably, sporulation occurs within the 63 

host and not externally, meaning oocysts are capable of auto-infection of the same host as well as 64 

being immediately infectious upon shedding (Taylor et al., 2007). Following the initiation of infection it 65 

takes a minimum 72 hours for progeny oocysts to be produced (the pre-patent period; (Taylor et al., 66 

2007)); with self-limiting infections lasting around two weeks (Olson et al., 1999). The tough oocyst wall 67 

permits significant longevity in the environment. Overall, oocysts can survive in soil and faecal matter 68 

for up to 12 weeks at below 25°C, and for over 12 weeks in water (Olson et al., 1999), making effective 69 

control and biosecurity a challenge for farmers. One option for control is the use of halofuginone lactate, 70 

licensed for treatment of Cryptosporidium in calves for both prophylactic (prevention of diarrhoea) and 71 

therapeutic purposes (reduction of diarrhoea). It is most commonly used prophylactically and is 72 

administered for seven days orally to calves starting from 24-48 hours old (European Medicines Agency, 73 

2016). Field and trial studies have shown efficacy in reducing Cryptosporidium oocyst shedding when 74 

investigating faecal presence compared to placebo treatment. Commonly, data has been collected from 75 

the final day of treatment (~ 7-9 days) and thereafter at regular intervals up to ~28 days.  76 

 77 
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Jarvie and colleagues showed that, in the first month of life, halofuginone treated calves excreted 70% 78 

fewer oocysts than placebo treated calves (p<0.05) (Jarvie et al., 2005); and Lefay observed that calves 79 

after seven days of halofuginone treatment excreted 44% fewer oocysts compared to a placebo 80 

(p<0.05) (Lefay et al., 2001). Conversely, Almawly observed only a delay in oocyst shedding by 81 

halofuginone treated calves but no overall significant difference in total numbers or the occurrence of 82 

diarrhoea (Almawly et al., 2013). Trotz-Williams noted a difference only in overall oocyst shedding, not 83 

in the occurrence of diarrhoea or body weight gain (Trotz-Williams et al., 2011). Finally, De Waele’s 84 

study noted halofuginone was more successful (reduction in oocyst excretion and diarrhoea) when high-85 

level farm hygiene was also present (De Waele et al., 2010). Overall, halofuginone is considered to 86 

reduce oocyst shedding and mitigate against diarrhoea and weight loss. 87 

 88 

Infection and oocyst shedding is expected to resume post-treatment (Trotz-Williams et al., 2011, Jarvie 89 

et al., 2005) but, considering Zambriski’s work, it is still beneficial to treat since the onset of shedding 90 

can be delayed and the overall yield reduced (Zambriski et al., 2013). Delaying the onset of oocyst 91 

shedding can reduce environmental contamination, decrease the severity of subsequent disease and 92 

the consequential economic burden. While the influence of parasite occurrence has been considered, 93 

the impact of genetic variation within C. parvum populations has not been assessed. For example, the 94 

efficacy of halofuginone for treatment of C. parvum in calves may be influenced by underlying genetic 95 

variation and parasite population structure. C. parvum has historically been distinguished from other 96 

parasite species morphologically and later by zoonotic capacity. Now, the accessibility of molecular-97 

based discrimination has enabled accurate sub-species genotyping based on markers such as the gp60 98 

coding sequence (Chako et al., 2010). This study aimed to define variation in C. parvum genotype 99 

occurrence using the sampling timeframe of one to two weeks as determined in previous studies of 100 

halofuginone efficacy. The hypothesis followed that the diversity of C. parvum genotypes in calf faecal 101 

samples would vary between the final day of treatment with the antiprotozoal halofuginone and seven 102 

days post-treatment.  103 

 104 

2. Materials and methods  105 

2.1 Sampling 106 
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To evaluate temporal genetic variation in C. parvum paired faecal samples were required from calves. 107 

The differential excretion of Cryptosporidium oocysts at the final day of halofuginone treatment and 108 

seven days post-treatment has previously been used to indicate treatment efficacy, as observed in the 109 

studies referenced above. On this basis, the same sampling timeframe was adopted to assess variation 110 

in genotype occurrence. Sampling before treatment was not viable since neonatal prophylaxis 111 

commonly begins at 24/48 hours old (European Medicines Agency, 2003), while oocyst shedding 112 

begins a minimum of 72 hours after infection (the pre-patent period; (Taylor et al., 2007)).  113 

 114 

Sampling packs were distributed to farms in Dorset, UK, between April 26th and June 1st, 2018. Sample 115 

packs consisted of: 50ml Falcon polypropylene tubes preloaded with 10ml of 2.5% (w/v) potassium 116 

dichromate to prevent bacterial proliferation and degradation of any oocysts (Olson et al., 1999), 117 

instructions, farm information questionnaire and consent form. The questionnaire was designed to 118 

identify herd size and breed, type of production system, and history of halofuginone use. Ethical review 119 

was undertaken by the Royal Veterinary College Clinical Research Ethical Review Board and approved 120 

under reference M2017 0124. 121 

 122 

Farmers non-invasively collected approximately 20ml faeces during voiding at the final day of 123 

prophylactic halofuginone treatment and seven days post-treatment. Calf ID, age and collection date 124 

were all recorded. Samples were stored at 4 °C and then returned to the farms’ veterinary practice and 125 

thence to the Royal Veterinary College (RVC) within two weeks. The questionnaire recorded the 126 

management system adopted by each farm. The questionnaire and instructions were tested by the RVC 127 

farm administrator for clarity prior to application. 128 

 129 

2.2 Sample Processing 130 

Faecal samples were analysed on receipt in no specific order. A modified protocol for a QIAamp Fast 131 

DNA Stool Extraction Kit (Qiagen, Hilden, Germany) was used to extract whole genomic DNA (gDNA) 132 

from Cryptosporidium present in faecal samples. Briefly, a faecal sample was mixed and sub-sampled 133 

for ~0.2 g solid matter, centrifuged at 10,000 g for 1 minute and the supernatant discarded, leaving the 134 

pellet. Each sample was combined with glass beads (0.4 - 0.6 mm; Sigma, UK) equal to 0.5× the pellet’s 135 

volume and 1 ml of InhibitEX buffer (Qiagen, Hilden, Germany), and homogenised using a BeadBeater 136 
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at 3,000 × oscillations/min for 1 minute. The rest of the protocol followed the manufacturer’s instructions. 137 

Samples were stored at -20 °C prior to PCR.  138 

 139 

2.3 PCR and Gel Electrophoresis 140 

Diagnostic nested PCR targeting a fragment of the Cryptosporidium 18S rRNA was carried out using 141 

gDNA with the primers 5’-GGAAGGGTTGTATTTATTAGATAAAG-3’ (forward) and 5’-142 

AGGAGTAAGGAACAACCTCCA-3’ (reverse) in the first round (Xiao et al., 19990, and 5’-143 

AGTGACAAGAAATAACAATACAGG-3’ (forward) and 5’-CCTGCTTTAAGCACTCTAATTTTC-3’ 144 

(reverse) in the second (Abe et al., 2002), employing reagents and conditions as described previously 145 

(Nolan et al., 2017). Subsequently, all samples that had been positive for Cryptosporidium in the 18S 146 

rRNA assay were also subjected to PCR targeting a fragment of the 60 kDa glycoprotein (gp60) coding 147 

sequence using the primers 5′-ATAGTCTCCGCTGTATTC-3′ (forward) and 5′-148 

GGAAGGAACGATGTATCT-3′ (reverse) as described previously (Nolan et al., 2017). Amplicons were 149 

resolved using a 1.5% (w/v) agarose (ThermoFisher Scientific, Hemel Hempstead, UK) gel made with 150 

0.5× TBE and stained with 0.01% (v/v) SafeView Nucleic Acid Stain (Novel Biological Solutions, 151 

Huntingdon, UK). Electrophoresis was carried out at 40 V for 40 mins in 0.5× TBE buffer.  152 

 153 

2.4 Sequencing 154 

Amplicons for gp60 from all putatively Cryptosporidium positive samples were purified using a MinElute 155 

PCR Purification Kit (Qiagen, Hilden, Germany) following the manufacturer instructions. Concentrations 156 

were standardised to 30 ng/µl using a spectrophotometer (DeNovix, Wilmington, USA) and then 157 

sequenced using the primers employed in the original reaction by GATC Biotech (GATC Biotech, 158 

Cologne, Germany). Sequences were assembled against the reference KY499051 (Genbank®) with 159 

default parameters on CLC Main Workbench v6.9.1 (CLC bio, Aarhus, Denmark) and gp60 genotypes 160 

annotated to confirm the presence of C. parvum following the conventional nomenclature (Xiao, 2010). 161 

All sequences have been deposited with GenBank under the accession numbers LR594827-LR594829. 162 

 163 

2.5 Statistical Analysis 164 

Analysis was carried out using IBM SPSS Statistics version 25. The significance of variation in paired 165 

genotype occurrence was assessed between days 7 and 14 for no genotype present or genotypes 166 
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IIaA15G2R1, IIaA17G1R1 or IIaA16G3R1 using the McNemar test. Results were considered to be 167 

significant when p<0.05. Additionally, the Kappa statistic of agreement was calculated, testing whether 168 

the results were in agreement between the two sampling days. 169 

 170 

3. Results 171 

The sample size comprised 54 calves from seven farms in South-west England, including between 5 172 

and 10 calves per farm (Table 1). All farms were commercial dairy systems, reported a herd size of 173 

over 100 head and either had Holstein or Holstein-Friesian cattle. All farms tested routinely used 174 

halofuginone prophylactically and, at a minimum, had been using halofuginone for two years.  175 

 176 

Sampling on the final day of halofuginone treatment found three of the seven farms tested to include 177 

calves positive for Cryptosporidium based upon a positive 18S rRNA PCR (43%; Table 1). Between 178 

two and seven calves were positive on each farm. Repeat sampling seven days post-treatment detected 179 

Cryptosporidium on all farms (100%), with two to six calves positive per farm. It should be noted that 180 

the PCR test was used was qualitative, and the level of Cryptosporidium excretion was not determined 181 

per individual. Targeted sequencing of a gp60 fragment revealed a total of three C. parvum gp60 182 

genotypes, all of which had been described previously (Smith et al., 2014). IIaA15G2R1 was the only 183 

gp60 genotype detected at the conclusion of halofuginone treatment (Table 1). Sampling seven days 184 

later identified IIaA15G2R1, IIaA17G1R1 and IIaA16G3R1 gp60 genotypes; including four farms that 185 

were host to more than one genotype. 186 

 187 

Pairwise comparison of Cryptosporidium gp60 genotype occurrence between sampling days 7 and 14 188 

using the McNemar test was not statistically significant, likely influenced by the low sample size. 189 

However, comparison using the Kappa statistic produced a Kappa value of 0.136 (standard error 0.076), 190 

suggesting that the strength of association was ‘poor’ and indicating notable variation. By considering 191 

paired samples at an individual calf level (Table 2), it was possible to differentiate persistent and 192 

apparently varied infections.  193 

 194 

4. Discussion 195 
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This study aimed to define the occurrence of C. parvum genotypes immediately following seven days 196 

routine halofuginone prophylaxis and one week post-treatment. The results showed that the single 197 

subtype IIaA15G2R1 was initially dominant on multiple farms in Dorset, UK, and that over the short 198 

experimental timeframe genotypes became identifiably more diverse with the emergence of 199 

IIaA17G1R1 and IIaA16G3R1. It is not possible to conclusively determine the cause of the change in 200 

genotype complexity, however likely reasons can be explored. The first consideration is that the shift 201 

was a result of the drug treatment. In the absence of a functional association between gp60 and the 202 

outcome of halofuginone treatment, the genotype was used as a genetic marker. A genotype change 203 

during the seven days after halofuginone withdrawal might suggest greater resistance defined 204 

IIaA15G2R1, and greater susceptibility IIaA17G1R1, although it is possible that drug dosing was 205 

inefficient. Unfortunately, a no-treatment control was not available to this study so causality cannot be 206 

concluded. Despite extensive effort through the veterinary practice associated with the study, and 207 

others in the region, we were unable to identify farmers who did not routinely medicate their calves. 208 

Asking farmers to stop medicating their calves was not considered on ethical grounds. 209 

 210 

Alternatively, the change in C. parvum genotypes could have been associated with calf maturation 211 

rather than drug treatment. This may include an age-associated infection where, as calves become 212 

more immunocompetent with increasing age, they become more resistant to certain genotypes. 213 

Previous studies have suggested that C. parvum genotypes remain stable between week old and 2-4 214 

week old calves in the absence of halofuginone prophylaxis (Thomson, 2015). It is also possible that 215 

one or more calves may have moved from their pens during the experimental period and become 216 

exposed to C. parvum genotypes in other environments, although no movement was reported. 217 

Irrespective of the reason for the early dominance of IIaA15G2R1; the expansion of genotype 218 

complexity within a short timeframe could provide an explanation why farms experience repeated bouts 219 

of C. parvum infections; with immunity only covering individual genotypes. Notably, multiple farms have 220 

shown the same pattern of early dominance by IIaA15G2R1, followed by the emergence of 221 

IIaA17G1R1. This might be linked to geo-regional clustering which is common with C. parvum 222 

genotypes (Brook et al., 2009) and might be associated with wildlife, livestock, human and/or machinery 223 

movements.  224 

 225 
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5. Conclusion  226 

This study indicates that the collection of paired samples from one and two week old calves is 227 

appropriate to detect variation in C. parvum genotypes with relevance to the assessment of prophylactic 228 

drug efficacy. A distinct genotype shift was recorded in neonatal calves for the first time, with possible 229 

drivers including drug resistance or host maturation. Evidence for geo-regional clustering and repeat 230 

bouts of infection have also been considered. Further research is needed to analyse genotype 231 

association with the outcome of halofuginone treatment in a larger sample set, including a broader 232 

genome wide genetic analysis with additional sampling points during and after treatment. 233 

 234 
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Tables 304 

Table 1. Summary of Cryptosporidium parvum genotypes detected in one and two week old calves. 305 

The numbers in brackets indicate the number of calf samples submitted per farm. 306 

gp60 genotype Farm Number of calves positive for C. parvum (total 
calves) 

  Final day of treatment 7 days post-treatment 

IIaA15G2R1 A 0 (8) 2(7) 

 B 3(10) 1(9) 

 C 7(10) 1(10) 

 D 0(6) 0(6) 

 E 0(5) 2(5) 

 F 0(5) 0(5) 

 G 2(10) 0(10) 

 Total 12 (54) 5 (52) 

IIaA17G1R1 A 0(8) 0(7) 

 B 0(10) 5(9) 

 C 0(10) 3(10) 

 D 0(6) 2(6) 

 E 0(5) 2(5) 

 F 0(5) 1(5) 

 G 0(10) 4(10) 

 Total 0 (54) 16 (52) 

IIaA16G3R1 G 0(10) 1(10) 

 Total 0 (54) 1 (52) 

 307 

 308 

309 
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Table 2. gp60 genotypes for calves found to be Cryptosporidium positive at the conclusion of 310 

halofuginone treatment and seven days later. Calves positive at a single time point are not shown. 311 

Farm Calf ID Final day of treatment  7 days post-treatment  

B 2.7 IIaA15G2R1 IIaA17G1R1 

B 2.8 IIaA15G2R1 IIaA15G2R1 

C 3.2 IIaA15G2R1 IIaA15G2R1 

C 3.4 IIaA15G2R1 IIaA17G1R1 

C 3.8 IIaA15G2R1 IIaA17G1R1 

G 7.9 IIaA15G2R1 IIaA17G1R1 

 312 


