1	TITLE: The influence of gap size on the development of fracture union with a micro
2	external fixator

- AUTHORS: Richard Meeson^{1,2} Mehran Moazen^{1,3,} Anita Sanghani-Keri¹, Liza Osagie-Clouard¹,
 Melanie Coathup^{1,4} Gordon Blunn^{1,5}
- 5 ¹Division of Surgery, University College London, Stanmore, UK; ²Royal Veterinary College,
- 6 Hertfordshire, UK; ³Mechanical Engineering, University College London, ⁴University of Central
- 7 Florida, USA; ⁵University of Portsmouth, Portsmouth, UK
- 8
- 9 Corresponding Author: Richard Meeson, r.meeson@ucl.ac.uk
- 10 Principal Clinical Research Fellow, Division of Surgery, Institute of Orthopaedics and
- 11 Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital,
- 12 Stanmore, HA7 4LP
- 13
- 14
- 15
- 16
- 10
- 17
- 18

19

- 20
- 21

22 **Abstract** (250)

Increasingly, the rat femoral fracture model is being used for preclinical investigations of fracture healing, however, the effect of gap size and its influence on mechanobiology is not well understood. We aimed to evaluate the influence of osteotomy gap on osteotomy healing between the previously published extremes of guaranteed union (0.5mm) and non-union (3mm) using this model.

28 A femoral osteotomy in 12-14 week old female Wistar rats was stabilised with a micro fixator (titanium blocks, carbon fiber bars) with an osteotomy gap of 1.0mm (n=5), 1.5mm (n=7), 29 30 2.0mm (n=6). After five weeks, the left femur was retrieved. The osteotomy gap was scanned 31 using X-ray microtomography and then histologically evaluated. The radiographic union rate 32 (complete mineralised bone bridging across the osteotomy) was three times higher for the 33 1.0mm than the 2.0mm gap. The 1.0mm gap had the largest callus (0.069um³) and bone volume (0.035um³). Callus and bone volume were approximately 50% smaller within the 34 35 2.0mm gap.

36 Using cadaveric rat femurs, stabilised with the external fixator, day 0 mechanical assessment 37 of construct stiffness was calculated on materials testing machine displacement vs load output. 38 The construct stiffness for the 1.0, 1.5 and 2.0mm gaps was 32.6 ± 5.4 , 32.5 ± 2.4 , and 32.4 ± 8.3 39 N/mm (p=0.779). Interfragmentary strain (IFS) was calculated using the change in osteotomy 40 gap displacement as measured using microstrain miniature differential reluctance transducer 41 spanning the osteotomy gap. Increasing the gap size significantly reduced the interfragmentary strain (IFS) (p=0.013), The mean 'day 0' IFS for the 1.0, 1.5 and 2.0mm 42 43 gaps were 11.2±1.3, 8.4±1.5 and 6.1±1.2% respectively.

A 1.5mm gap resulted in a delayed fracture healing by 5 weeks and may represent a useful
test environment for fracture healing therapy. Increasing gap size did not affect construct

stiffness, but did reduce the 'day 0' IFS, with a doubling of non-union and halving of bone
volume measured between 1.0 and 2.0mm gaps.

48 KEYWORDS (6)

49 Interfragmentary strain, Fracture biomechanics, Rodent, Delayed-union, Non-union, Fracture50 healing

51 **1.1 Introduction**

52 Pre-clinical experimental studies frequently use delayed or non-union models to evaluate a 53 therapy (Garcia et al., 2013). These are typically created by either mechanical instability, 54 damaging the vascular supply or introducing material to prevent bridging (Mills and Simpson, 55 2012). The most common method is to establish a critical sized defect, which is defined as the minimum amount of bone loss that will not heal by bone formation during the animals 56 lifetime (Schmitz and Hollinger, 1986). Historically, studies investigating fracture biology 57 58 and mechanics have been dominated by large animal models, typically sheep and goats, however the use rodent models has significantly increased to nearly 50% of all fracture 59 studies over the last two decades (Garcia et al., 2013), and the rat is used for around one third 60 61 of all in vivo fracture studies (Mills and Simpson, 2012). The size of a 'critical sized defect' in rats varies between studies, and reflects in part the differing mechanics of their chosen 62 63 stabilisation, and whether periosteal stripping is performed. Typically, researchers have used defects of up to 8mm and as low as 0.5mm in rat fracture studies (Garcia et al., 2013; Mills 64 65 and Simpson, 2012).

External fixators are commonly used to stabilise a defect due to their ease of application, minimal interference with subsequent analysis and their potential to alter the mechanical environment throughout the experiment. However, the literature on rodent fracture 69 biomechanics using external fixators is limited. The most common fixators in use for rodents 70 are the thermoplastic polyether ether ketone (PEEK) Glatt fixator from the AO Research 71 Institute Davos (Glatt and Matthys, 2014), which is commercially available and the titanium 72 alloy 'Harrison style' fixator(Harrison et al., 2003; Ho et al., 2014; Lee et al., 2005; Smitham 73 et al., 2014). The more rigid Harrison fixator (Osagie-Clouard et al., 2018), is a unilateral 74 uniplanar fixator with a double carbon fiber connecting bar, which has the novel function of 75 permitting variable gap size, by sliding the adjustable distal titanium block along the bar. This 76 approach to varying gap size maintains the pin to osteotomy gap distance irrespective of gap 77 size, whereas other micro fixators require an ostectomy of the desired gap distance to vary 78 said gap. Increasing osteotomy size may also influence bone healing by a potential variation 79 in bone biology along its length (diaphyseal to metaphyseal). The Harrison style fixator has 80 previously showed consistent union with a 0.5mm gap and consistent non-union with a 3mm 81 gap with a rat femoral osteotomy after 5 weeks (Harrison et al., 2003) and in female adult 82 wistar rats (Lee et al., 2005; Smitham et al., 2014). The AO fixator is considerable less stiff 83 (Osagie-Clouard et al., 2018) and although studies generally use controls, direct comparison 84 of results on the biology of fracture fixation using different fixators is probably inappropriate 85 due to the difference in their mechanics and hence differences in healing.

86 Numerous studies have tested their hypotheses using osteotomy gaps in the range of 1-2mm 87 in rats, however the biomechanics have only been evaluated with FE modeling (Wehner et al., 88 2014). Currently, no studies have made a sequential evaluation of intermediary gap sizes 89 between guaranteed healing, delayed union and non-union, to identify the point at which 90 delayed union occurs. Inherently, the biomechanics of the fixator, including the fracture 91 (osteotomy) gap interfragmentary strain (IFS) (Perren, 1979), and overall construct stiffness, 92 will affect the outcome. In order to understand the findings from one study to another, 93 evaluation of the fracture biomechanics would be highly informative.

94 Clinical fractures heal more slowly than expected and are termed delayed unions and some 95 may fail to heal at all and are termed non-unions. Many pre-clinical studies evaluate 96 interventions in models that go on to successful union, and therefore may not be an 97 appropriate test scenario. Likewise, the non-union pre-clinical model may be too challenging 98 to demonstrate efficacy of a new treatment and therefore the delayed union may a useful test 99 environment in pre-clinical studies.

The hypothesis for our study was that a delayed union type healing would be seen in a gap size midway between the published established union at 0.5mm and non-union at 3mm when using the Harrison style fixator at 5 weeks (Harrison et al., 2003; Ho et al., 2014; Smitham et al., 2014). The objectives were to assess the fracture healing with three intervening gap sizes and to determine the potential variation in initial mechanical environments in terms of construct stiffness and interfragmentary strain.

106

107 **2.1 Methods**

108

109 2.1.1 Fixator Design & Application

The Harrison style fixator is a unilateral uniplanar (Type Ia) external fixator with two transcutaneous intraosseus pins proximal and two pins distal to a surgically created osteotomy. It has a double connecting bar (2mm diameter carbon-fiber; epoxy resin matrix bars) with two titanium connecting blocks which can slide axially along the bar, and secured in position using miniature grub screws, allowing alteration of the osteotomy gap size (Figure 1). This gives a consistent positioning of the pins in the bone and a consistent distance from the osteotomy, but varies the bar working length (bar length between the two fixator blocks), asthe osteotomy is increased.

118 Female Wistar rats, 12-14 weeks old (230-300g) had the fixator placed on the left 119 craniolateral femur following a lateral surgical approach (Harrison et al., 2003). Using a 120 precision jig-guide, four bicortical 1.4mm diameter end-threaded self-tapping stainless steel 121 pins were placed in predrilled 1.0mm holes in a cranial to caudal orientation. Consistent 122 proximodistal positioning was based on the distal extent of the greater trochanter. Pins were 123 exited through separate skin incisions and the custom variable spacing fixator was attached, 124 using a precision spacer to ensure a fixed distance between the near cortex and connecting 125 blocks of 9mm. A mid-diaphyseal femoral osteotomy, with no periosteal stripping was made 126 using a diamond tipped hand-saw, whilst applying sterile saline coolant/lubricant. Rats were 127 then randomly assigned to have a 1.0mm, 1.5mm or 2.0mm osteotomy gap using an 128 appropriately sized precision spacer placed between the ends of the osteotomised bone, and 129 the grub screws were tightened. The biceps femoris was closed over the osteotomy with a 130 single horizontal mattress suture (1.5M PDS II, Ethicon), and the skin was closed with an 131 intradermal continuous suture (1.5M monocryl, Ethicon). Analgesia was provided with 132 subcutaneous administration of buprenorphine 0.05mg/kg prior to surgery, then three times 133 daily for 48 hours per os, within a sweetened jelly. Activity was unrestricted post surgery for 134 5 weeks until euthanasia. All procedures were carried out in accordance with the Animals 135 Scientific Procedures Act 1986, were approved by the University's Animal Welfare Ethical 136 Review Board and were aligned to the ARRIVE guidelines. Those taking part in any surgical 137 procedure held UK Home Office licences.

138 2.1.2 X-ray microtomography (MicroCT) and Radiography

139 After 5 weeks, the left femur with the fixator in place was retrieved. In order to reduce 140 microCT beam-hardening artifact generated from the interaction of the X-ray beam and the metallic implant, a radiolucent PEEK fixator block was connected externally to the fixator 141 142 pins after careful removal of the skin with surrounding soft-tissues, and then without 143 disturbing the fracture callus the titanium block fixator was then removed. Samples were 144 fixed in 10% buffered formaldehyde for up to three days. The formalin fixed samples were 145 wrapped in cling-film to prevent dehydration and mounted into a sample holder for microCT 146 scanning. Samples were scanned using a Bruker Skyscan 1172 micro-tomograph (Bruker, 147 Belgium), at 60KV, 167uA with a 0.5mm aluminum filter. A rotation step of 0.5 degrees, 148 without frame averaging, and an image pixel size of 4.89um was used. A single image capture 149 image was taken with the image intensification 'scout' prior to scanning, for 2D radiographic 150 assessment of the osteotomy union. Radiographic scouts were randomised and blinded to 151 score healing according to the AO-ASIF recommendations for long bone fractures; united, not 152 united or uncertain (Müller et al., 1979) as follows: Ununited (Figure 2, 2.0mm osteotomy b)) 153 where there was no mineralized tissue bridging between the ends of the osteotomy; uncertain 154 (Figure 2, 1.5mm osteotomy b)) where there was new bone formation, however a radiolucent 155 line remained between the proximal and distal segments, and *united* (Figure 2, 1.0mm 156 osteotomy b)) where no gap between bone ends was visible.

MicroCT scans were reconstructed using NRecon (Bruker, Belgium) with smoothing=2, ring artifact reduction=12% and beam hardening artifact=41%. Analysis was performed with CTAn (Bruker, Belgium). Using the measuring tool, the centre point of the osteotomy was determined and the transverse slice at that point was selected as the reference slice. The callus was isolated using a 2D ROI shrink wrap stretching over holes <40 pixels, despeckled <150 voxels and then 3D analysis was performed. In order to make a direct comparison of healing between the differing gap sizes, the central 60% of the osteotomy gap. i.e. only new bone formation within the osteotomy was analysed for each size, which translated to 120, 180 and 240 slices at 5um slice thickness, giving 0.6mm, 0.9mm and 1.2mm osteotomy gap analysis for the 1.0, 1.5 and 2.0mm gap respectively. Where absolute measures were made in quantitative morphometrics, such as total bone volume (BV), these were divided by the number of slices contributing the analysis for each gap size, to allow for a direct comparison of bone formation despite analysing different volumes.

170 *2.1.3 Histology*

171 decalcified Following CT imaging, bones were in а 12.5% solution of 172 ethylenediaminetetraacetic acid then sequentially dehydrated for 24 hours, followed by de-173 fatting with chloroform for 48 hours and embedded into wax, with the fixator pins orthogonal 174 to the facing surface of the block. Fixator blocks and pins were removed once the wax had set 175 and a microtome (ThermoFisher Scientific, UK) was used to make 5µm thick slices. The 176 alignment of the blocks within the microtome was altered as necessary to ensure a central 177 sagittal slice through the femur. The position of a mid-sagittal section through the fracture gap 178 was assessed using the fixator pin tract holes. Wax slices were mounted onto positively 179 charged glass slides (X-tra, Leica biosytems, UK), de-waxed and then hydrated. Samples 180 were then stained with Haematoxylin (Sigma-Aldrich, UK) nuclear stain for five minutes. 181 Excess stain was removed by gentle washing with water for five minutes. Slides were 182 counterstained in 1% Eosin (Sigma-Aldrich, UK) for four minutes and then washed and 183 dehydrated in increasing concentrations of alcohol. Slides were cleaned in xylene and 184 mounted under 40mm coverslips using Pertex Mounting Medium (CellPath plc, UK).

185 2.1.4 Histomorphometric analysis

186 Slides were observed under a light microscope (KS-300 Zeiss, UK). Histomorphometric187 analysis at 2.5x magnification was performed on the most central slice, using a line-intercept

188 method with a grid scaled to the graticule and drawn using PowerPoint (Microsoft, USA). 189 The grid covered the entire visual field from top to bottom (lateral to medial cortex) and was 190 centered over the osteotomy; its width was equivalent to the original 1.0, 1.5 or 2.0mm 191 osteotomy. Grid squares were 160um in both directions and intersections, giving 75, 120 and 192 165 intersections evaluated for the 1mm, 1.5mm and 2.0mm gaps respectively. Intersections 193 were then scored as bone, cartilage, fibrous tissue, vascular (red blood cells seen not within 194 tissue matrix) or void based upon Hematoxylin and Eosin uptake and cell morphology to 195 provide a percentage tissue formation.

196

197 2.1.5 Assessment of fixator biomechanics and immediate IFS at day 0

198 The fixator was placed as per the surgical description on the femora of cadaveric 18-20 week 199 old Wistar rats (n=4). Femora with the fixator still attached were then disarticulated at the hip 200 and stifle and stripped of soft-tissue attachments. An orthogonal (lateral to medial orientated) 201 0.8mm bicortical hole was drilled between the two proximal and two distal fixator pins. A 202 microminiature differential variable reluctance transducer (DVRT - accuracy 0.001mm) (Lord 203 MicroStrain, model 6101-0200, Williston, USA) was then inserted and fixed in position using 204 cyanoacrylate glue, to quantify fracture movement (Figure 1). Femurs were biomechanically 205 tested using a materials testing machine (Zwick Roell 5T, UK). They were mounted in an 206 axial loading jig with the femoral condyles centred over the lower mount and the upper mount 207 was centred over the femoral head to simulate a physiological loading axis of the femur along 208 its mechanical axis. This set-up effectively tested the entire construct of fixator and bone as a 209 single unit. Three gap sizes were evaluated per specimen; 1.0mm, 1.5mm and 2.0mm. The 210 distal fixator connecting block was loosened to allow insertion of the precision titanium 211 spacer and then tightened again. The space was then checked a second time prior to loading and again between each repeat by 'offering-up' the spacer to the gap. Care was taken toensure the gap was even across the width of the osteotomy.

The peak vertical force for each hind limb in rats is 60% bodyweight at the walk(Clarke, 214 215 1995). A maximum weight of 300g for an individual rat was seen in the in vivo study and 216 therefore peak-walking load was assumed to be 1.8N. A single cycle non-destructive test was 217 performed, with a preconditioning load of 0.5N, followed with loading to a maximum of 10N 218 in compression at 5mm/min, sampling rate of 50Hz. The first cycle was disregarded and then 219 four repeats were performed per gap size, per sample. The sensor (DVRT) output (i.e. 220 millivoltage changes) was recorded and the difference pre and at peak load was determined. 221 This was then converted into a displacement according to manufacturers calibration equation. 222 The pre load and peak load lengths were then used to calculate IFS based on change in length 223 divided by the original length. Fixator-bone construct stiffness was determined from the load-224 displacement graphs obtained from TestXpert software (Zwick, Roell, UK). A linear 225 regression line (r^2) was calculated for the linear portion and $r^2 > 0.99$ was considered appropriate for the linear elastic region. The gradient (m) was determined based on a y=mx+c 226 227 equation and gave the stiffness.

228

229 2.1.6 Statistical Analysis

Fishers Exact was used to compare the fracture healing outcome. Normality was determined using a Shapiro Wilk test and non-parametric tests were performed to compare groups using Kruskal-Wallis (KW), and Mann-Whitney U (MWU) performed with Bonferroni correction applied (alpha = 0.05 / number of comparisons). Results were expressed as means ± standard deviations. Tests were analysed with SPSS version 24 (IBM, Chicago, USA). 235

236 **3.1 Results**

237 *3.1.1 Radiographic and microCT assessment of healing*

238 As the gap size increased there was an increase in the AO classification of ununited and 239 uncertain fracture classifications and a concomitant decrease in united rates, with the ununited 240 rate more than doubling (Table 1, Figure 2b), however this was not significantly different 241 with Fishers Exact comparison. On MicroCT quantitative morphometric analysis, the 1.0mm gap size had a larger callus volume $(0.069\pm0.04\text{um}^3)$ and bone volume per slice 242 $(0.035\pm0.02$ um³); than for the 2.0mm gap size $(0.029\pm0.03$ and 0.026 ± 0.02 um³ respectively -243 244 Figure 2a & 3). Tissue surface area per slice, giving an index of callus size, was higher in the 245 smallest 1.0mm gap $(0.41\pm0.22\text{um}^2)$ than the largest 2.0mm $(0.14\pm0.12\text{um}^2)$. The measured 246 trabecular thickness was higher in the smaller 1.0 gap than the larger 1.5mm gap 247 (0.055±0.01um and 0.044±0.01um), however it increased again when the gap size increased 248 to 2.0mm (0.057±0.02um). Full microCT results are summarised in Table 2.

249

250 *3.1.2 Histomorphometric analysis*

As gap size increased, the area occupied by bone within the callus decreased, and fibrous tissue increased (Figure 2c, d). Cartilage tissue was highest in the mid-sized gap, however, the amount of fibrous tissue was still lower than the biggest gaps. None of these trends were statistically significant (Table 3 and Figure 4), however clear trends were identified.

255

256 *3.2 Mechanical analysis*

The mean \pm SD stiffness of the four osteotomised femurs with the fixator in situ for the 1.0, 1.5 and 2.0mm gaps were 32.6 \pm 5.4, 32.5 \pm 2.4, and 32.4 \pm 8.3 N/mm (Figure 5); the gap size over the ranges tested had no impact on the construct stiffness (p=0.779), however gap size did significantly reduce the IFS in the gap (p=0.013), (Figure 6). The mean \pm SD % IFS for the 1.0, 1.5 and 2.0mm gaps were 11.2 \pm 1.3, 8.4 \pm 1.5 and 6.1 \pm 1.2% respectively.

263 4.1 Discussion

264

265 Using the rigid Harrison style micro external fixator, this study demonstrated a predominant 266 delayed union scenario with an osteotomy gap of 1.5mm after 5 weeks, when compared with 267 previously published studies using the same fixator and a 0.5mm gap (Harrison et al., 2003; 268 Smitham et al., 2014). This study also showed a 1mm gap leading to a predominance of 269 union and the 2mm resulting in a delayed union with an atrophic appearance, indicating non-270 union, but our study duration was not of sufficient length for an unequivocal definition. 271 Within each group there was greater variation in healing pattern than shown in the published 272 0.5mm and 3mm gaps. Most of 2mm fracture gaps had an atrophic style non-union with 273 medullary capping and a fibrous tissue connection, however it must be considered that a 274 longer duration study would be required to fulfill current time definitions of delayed union 275 (Garcia et al., 2013). This study had an end point of 5 weeks to allow comparison to previous 276 studies that used the same fixator and showed a non-union with a 3mm and union with a 277 0.5mm osteotomy and the same fixator (Harrison et al., 2003; Ho et al., 2014; Smitham et al., 278 2014). Under normal circumstances, rat femoral fracture healing should be achieved by 5 279 weeks, therefore lack of union indicates delayed or non-union at this stage. Uncertain and un-280 united radiographic categories are determined by the radiographic appearance of the fracture

are technically both delayed union, as our study is not of sufficient duration to use the term non-union, and hence it was avoided. A longer study with sequential culling may have given more information on the rate of healing. This would have allowed us to understand whether fracture healing is reduced by increasing the gap or totally arrested, however in terms of being informative for rodent fracture healing studies with typically end points of 5-6 weeks, this was considered unnecessary, and would have used more animals, contrary to the principles of the 3Rs.

288 The fixator used in this study has been shown to be significantly stiffer at 4.7 times the axial 289 stiffness of the commercially available AO fixator (Osagie-Clouard et al., 2018), and hence 290 will have provided a relatively more rigid fixation. Interestingly, increasing the fracture gap, 291 which increases the working length of the carbon fiber bars did not have any statistically 292 significant effect on construct stiffness, indicative of the relatively rigid fixator design 293 compared with the physiological forces it withstands. Very minor influence on stiffness is 294 possible, however the group sizes required to determine if extremely small changes were 295 statistically significant would be prohibitively large. This is useful as it provides an ability to 296 investigate the influence of gap size in terms of its biological impact and the variation in IFS, 297 without influencing construct stiffness.

298 The impact of gap size on the healing in this particular model system may be driven by the 299 biological impact of the gap size on tissue healing, rather than its mechanical effects. Large 300 animal models have shown that increased fracture gaps with the same IFS had reduced 301 vascularisation and hence diminished biological ability to heal (Claes et al., 2003). However, 302 other studies quantifying blood vessel formation have shown no difference between atrophic 303 non-unions, hypertrophic non-unions and healing fractures (Reed et al., 2002), although 304 vessels appear at a later stage and therefore early vascularisation may be key (Reed et al., 305 2003). The histology in this study also showed a consistent level of vascularisation between 306 different gap sizes and their subsequent healing fates. However, the histologic analysis was 307 performed at five weeks and therefore it is conceivable with an increasing gap size that the 308 time required for vascular development could be longer and perhaps critical blood vessel 309 density it not reached at a sufficiently early time frame.

310

311 Despite the commonplace role of rodents in fracture healing research, most studies have 312 evaluated the influence of IFS on fracture healing with large animal models in vivo (Claes et 313 al., 2003, 1997; Claes and Heigele, 1999) or using FE model (Comiskey et al., 2010; Steiner 314 et al., 2014; Wehner et al., 2014). With the increasing use of rodents in bone healing studies, 315 an understanding of the mechanical environment is needed in rodents. This is the first time 316 such measures have been directly and accurately measured in an ex vivo study in rats, with a 317 micro-miniature differential variable reluctance transducer (accuracy 0.001mm). The use of a 318 highly sensitive displacement transducer should give a more accurate measure than those 319 based on the materials testing machine actuator displacement. However, we acknowledge that 320 the transducer is measuring displacement in the axis of the transducer and this could vary 321 across the bone gap itself. Additionally, the exact femoral alignment would also differ in vivo, 322 but approximations are required to test in a material testing machine. The in vitro tests to 323 measure IFS were carried out with the load axially aligned. Due to the orientation of the 324 femur in the live animal, bending and torsional moments would induce strain. Alignment of 325 the transducer along a different plane on the femur again may have produced differing results, 326 however our tests showed that a reduction in IFS was related to an increase in delayed union 327 indicating that the IFS may be an oversimplification. Critically, the set-up considerations 328 noted are consistent across the gaps tested, and hence their comparison is still informative. 329 Future studies could make consideration of multiple gauge assessment to build a composite

assessment of interfragmentary motion. It would also be useful to make an ex and in vivocomparison this fixator to AO/Glutt fixator for healing over different gap sizes.

It should also be noted that the cadaveric femurs were in the 18-20 week range whereas the in vivo study rats were 12-14 weeks old. This was in part due to a consideration of 3Rs, and although the physes remain open throughout these ages (Roach et al., 2003), growth is substantially decelerating, and overall limb length was not expected to change much. Furthermore, the IFS was calculated using a displacement gauge and fixator which was placed at a standard distance from the osteotomy irrespective of the overall femoral length, hence creating a consistent biomechanical environment.

339 In a system where the fixator stiffness is unaffected by increasing gap size, and hence the 340 change in gap length for a given load is consistent, IFS will arithmetically reduce as the 341 denominator gap size increases. However, assessment of the initial IFS did not indicate the 342 subsequent pattern of healing as predicted by Perren's IFS theory of fracture healing (Perren, 343 1979). IFS theory predicts for a given interfragmentary movement, the bigger the gap, the 344 lower the IFS, if all other factors remain unchanged. However, large gaps and critical sized 345 defects, even when fixed very rigidly do not heal, and consistent with these findings, there 346 was a doubling of ununited fractures and halving of bone volume, with an associated increase 347 in cartilage in the 1.5mm gap and fibrous tissue within the 2.0mm osteotomy as the gap 348 increased from 1mm. This corresponded to a 'day 0 equivalent' measure of IFS from 12% to 349 6% respectively. Overall, the groups with the small gaps and an initial IFS >10% had 350 improved healing than those with big gaps and an IFS <10%, suggesting gap size biological 351 factors may overwhelm mechanical factors. Some large animal studies with known gap sizes 352 and interfragmentary movements have also shown good bone healing with IFS >2-10% 353 (Claes et al., 1995; Kenwright and Goodship, 1989). Claes et al showed that a high initial IFS, 354 above the Perren 10% threshold resulted in increased callus formation, however, a larger gap 355 had less bone formation for the same initial strain (Claes et al., 1997). However, although 356 initial IFS is important in the extreme, when a fracture occurs, an established sequence of 357 events follows (Elliott et al., 2016), with an initial deposition of strain tolerate tissue, such as 358 granulation tissue, followed by sequential deposition of more strain intolerant tissues. The 359 wide tissue cuff or 'callus', seen in indirect fracture healing, stiffens the gap, and further 360 increasing fracture stability and reducing IFS (Perren, 2015). When looking at the bone 361 surface measures (BS) and tissue surface (TS) measures on microCT, there was a trend for a 362 smaller callus as the strain reduced, potentially consistent with a bigger callus cuff being 363 required when there is a higher IFS. Various models have expanded upon the work of Perren. 364 Carter and Blenman, suggested that it is not only the amount of strain, but the way the strain 365 is applied, be it in compression, tension, shear, and further that the degree of vascularisation 366 plays influence (Carter et al., 1988). Their finite element model also accounted for eccentric 367 callus formation with an asymmetric cartilage deposition, which was noted in some of the 368 samples in this study. They suggested this was due to varying hydrostatic forces with a more 369 'compressive microenvironment' producing more cartilage and a 'tensile' environment would 370 have less callus with a more fibrous character. This is consistent with the types of loading 371 patterns that will be developed within an osteotomy of the rat femur with its eccentric 372 mechanical axis and the use of a unilateral external fixator. Prendergast suggested a further 373 iterative model with two biophysical stimuli; fluid velocity and shear strain components, 374 playing a role in the solid and liquid phases (Prendergast et al., 1997). However, these are all 375 models and typically approximate in vivo findings in their extremes.

Other complicating factors such as increasing animal age (STRUBE et al., 2008) or sex
appear to influence fracture healing in some studies, although in a study by Mehta et al (2010)
the large difference in bodyweight between female and male rats was not controlled (Mehta et

al., 2010). This study however, had a tightly controlled age range and hence weight, and allwere female Wistar rats.

381 In conclusion, the fixator design evaluated here provides stable construct/fracture stiffness 382 over a range of fracture gap sizes. Increasing gap size did not affect construct stiffness, but 383 did reduce the 'day 0' IFS from 12 to 6%, with a doubling of the incidence of non-union and 384 halving of bone volume measured. This is in contrast to the expected outcome based on IFS 385 theory, but may be due to the biological impact of the gap size over and above the mechanics 386 in this model system. This is the first study to evaluate and directly compare a range of gap 387 sizes between guaranteed union and non-union in a rodent femoral fracture model using the 388 Harrison style fixator, and the 1.5mm osteotomy gap provided a delayed-union at 5 weeks. 389 This study provides informative that will be informative to researches using Harrison style 390 fixators for fracture healing studies in rats, and may allow for more precise selection of gap 391 size for their investigations than the two extremes previously published (Harrison et al., 2003; 392 Ho et al., 2014; Smitham et al., 2014).

393

394 Acknowledgments

This work was funded by a Medical Research Council, UK, grant (MR/N002318/1).

397 Tables:

398

Table 1: Global radiographic scoring of fracture healing at 5 weeks based on the A0-ASIFsystem.

401

402	Table 2: MicroCT quantitative morphometry indices of bone formation within the 60% of the
403	osteotomy gap where TV (um ³)= tissue volume, BV (um ³) = bone volume, TV/BV (%) =
404	percentage bone volume, TS (um^2) = tissue surface, BS (um^2) = bone surface, Tb.Th (um)
405	= trabecular thickness, Tb.Sp (um) = trabecular separation, Tb.N (1/um) = trabecular number.
406	

Table 3: Quantification of tissue formed within the gap as percentage total tissue from lineintercept analysis of Hematoxylin and Eosin stained mid sagittal sections.

409

410 Figure Legends

Figure 1: Ex-vivo femur loaded from femoral head to condyles in a materials testing machine
with a cranially applied Harrison style fixator. A Lord microdisplacement sensor was applied
to the lateral surface (1a = lateral view, 1b = caudal view).

Figure 2: Representative images from the analysis of healing for each fracture gap size. 1a) Shows the central transverse 5um thick slice from the centre of the osteotomy from microCT analysis. b) Shows a lateral-medial radiograph centred over the two innermost fixator pins and the osteotomy. c) Shows a 1x magnification image of the central sagittal slice, Haematoxylin and Eosin stained. d) Shows a 2.5x magnification image of the central region of the femur with the histomorphometric grid applied for quantitative morphometry.

Figure 3: Boxplot showing (the average per 5um slice) microCT bone volume (BV um³),
with the BV reducing sequentially as the gap size increases.

Figure 4: Quantitative morphometric data from the central region of the osteotomy, from the
2.5x magnification Hematoxylin and Eosin stained slides, showing the mean±SEM reduction

- 424 in % bone formation as the gap size increases, with the 1.5mm gap showing a concomitant
- 425 increase in cartilage tissue, but the 2.0mm showing a concomitant increase in fibrous tissue.
- 426 Figure 5: Line graph showing the mean±SD construct stiffness (N/mm) measured, with no
- 427 significant change as the gap size increased.
- 428 Figure 6: Boxplot showing the change in day 0 immediate IFS (%) as the gap size increased.
- 429
- 430 References
- 431 Carter, D.R., Carter, D.R., Wong, M., Wong, M., 1988. Mechanical stresses and
 432 endochondral ossification in the chondroepiphysis. J. Orthop. Res. 6, 148–154.
- Claes, L., Augat, P., Suger, G., Wilke, H.J., 1997. Influence of size and stability of the
 osteotomy gap on the success of fracture healing. J. Orthop. Res. 15, 577–584.
- Claes, L., Eckert-H bner, K., Augat, P., 2003. The fracture gap size influences the local
 vascularization and tissue differentiation in callus healing. Langenbeck's Arch. Surg.
 388, 316–322.
- Claes, L.E., Heigele, C.A., 1999. Magnitudes of local stress and strain along bony surfaces
 predict the course and type of fracture healing. J. Biomech. 32, 255–266.
- Claes, L.E., Wilke, H.J., Augat, P., Rübenacker, S., Margevicius, K.J., 1995. Effect of
 dynamization on gap healing of diaphyseal fractures under external fixation. Clin.
 Biomech. (Bristol, Avon) 10, 227–234.
- Clarke, K.A., 1995. Differential fore- and hindpaw force transmission in the walking rat.
 Physiol. Behav. 58, 415–419.
- Comiskey, D.P., MacDonald, B.J., McCartney, W.T., Synnott, K., Byrne, J.O., 2010. The role
 of interfragmentary strain on the rate of bone healing—A new interpretation and
 mathematical model. J. Biomech. 43, 2830–2834.
- Elliott, D.S., Newman, K.J.H., Forward, D.P., Hahn, D.M., Ollivere, B., Kojima, K., Handley,
 R., Rossiter, N.D., Wixted, J.J., Smith, R.M., Moran, C.G., 2016. A unified theory of
 bone healing and nonunion: BHN theory. Bone Joint J. 98–B, 884–891.
- Garcia, P., Histing, T., Holstein, J.H., Klein, M., Laschke, M.W., Matthys, R., Ignatius, A.,
 Wildemann, B., Lienau, J., Peters, A., Willie, B., DUDA, G., Claes, L., Pohlemann, T.,
 Menger, M.D., 2013. Rodent animal models of delayed bone healing and non-union
 formation: a comprehensive review. Eur. Cell. Mater. 26, 1–4.
- 455 Glatt, V., Matthys, R., 2014. Adjustable Stiffness, External Fixator for the Rat Femur

- 456 Osteotomy and Segmental Bone Defect Models. J. Vis. Exp.
- Harrison, L.J., Cunningham, J.L., Strömberg, L., Goodship, A.E., 2003. Controlled induction
 of a pseudarthrosis: a study using a rodent model. J. Orthop. Trauma 17, 11–21.
- Ho, C.-Y., Sanghani, A., Hua, J., Coathup Melanie Jean, P., Kalia, P., Blunn, G., 2014.
 Mesenchymal stem cells with increased SDF-1 expression enhanced fracture healing.
 Tissue Eng. Part A 140924064904001.
- Kenwright, J., Goodship, A.E., 1989. Controlled mechanical stimulation in the treatment of
 tibial fractures. Clin. Orthop. Relat. Res. 36–47.
- Lee, O.K., Lee, O.K., Coathup, M.J., Coathup, M.J., Goodship, A.E., Goodship, A.E., Blunn,
 G.W., Blunn, G.W., 2005. Use of mesenchymal stem cells to facilitate bone regeneration
 in normal and chemotherapy-treated rats. Tissue Eng. 11, 1727–1735.
- Mehta, M., Schell, H., Schwarz, C., Peters, A., Schmidt-Bleek, K., Ellinghaus, A., Bail, H.J.,
 Duda, G.N., Lienau, J., 2010. A 5-mm femoral defect in female but not in male rats leads
 to a reproducible atrophic non-union. Arch. Orthop. Trauma Surg. 131, 121–129.
- Mills, L.A., Simpson, A., 2012. In vivo models of bone repair. J. Bone Jt. Surgery, Br. Vol.
 94, 865–874.
- 472 Müller, M.E., Allgöwer, M., Schneider, R., Willenegger, H., 1979. No Title, springer.com.
 473 Springer Berlin Heidelberg, Berlin, Heidelberg.
- 474 Osagie-Clouard, L., Kaufmann, J., Blunn, G., Coathup, M., Pendegrass, C., Meeson, R.,
 475 Briggs, T., Moazen, M., 2018. Biomechanics of Two External Fixator Devices Used in
 476 Rat Femoral Fractures. J. Orthop. Res.
- Perren, S.M., 2015. Fracture healing: fracture healing understood as the result of a fascinating
 cascade of physical and biological interactions. Part II. Acta Chir. Orthop. Traumatol.
 Cech. 82, 13–21.
- 480 Perren, S.M., 1979. Physical and biological aspects of fracture healing with special reference
 481 to internal fixation. Clin. Orthop. Relat. Res. 175–196.
- 482 Prendergast, P.J., Huiskes, R., Søballe, K., 1997. ESB Research Award 1996. Biophysical
 483 stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30, 539–
 484 548.
- 485 Reed, A.A.C., Joyner, C.J., Brownlow, H.C., Simpson, A.H.R.W., 2002. Human atrophic
 486 fracture non-unions are not avascular. J. Orthop. Res. 20, 593–599.
- 487 Reed, A.A.C., Joyner, C.J., Isefuku, S., Brownlow, H.C., Simpson, A.H.R.W., 2003.
 488 Vascularity in a new model of atrophic nonunion. J. bone Jt. Surg. Br. Vol. 85, 604–610.
- Roach, H.I., Mehta, G., Oreffo, R.O.C., Clarke, N.M.P., Cooper, C., 2003. Temporal analysis
 of rat growth plates: Cessation of growth with age despite presence of a physis. J.
 Histochem. Cytochem. 51, 373–383. https://doi.org/10.1177/002215540305100312
- 492 Schmitz, J.P., Hollinger, J.O., 1986. The critical size defect as an experimental model for

- 493 craniomandibulofacial nonunions. Clin. Orthop. Relat. Res. 299–308.
- Smitham, P., Crossfield, L., Hughes, G., Goodship, A., Blunn, G., Chenu, C., 2014. Low dose
 of propranolol does not affect rat osteotomy healing and callus strength. J. Orthop. Res.
 32, 887–893.
- 497 Steiner, M., Claes, L., Ignatius, A., Simon, U., Wehner, T., 2014. Numerical Simulation of
 498 Callus Healing for Optimization of Fracture Fixation Stiffness. PLoS One 9, e101370.
- 499 STRUBE, P., MEHTA, M., PUTZIER, M., MATZIOLIS, G., PERKA, C., DUDA, G., 2008.
 500 A new device to control mechanical environment in bone defect healing in rats. J.
 501 Biomech. 41, 2696–2702.
- Wehner, T., Steiner, M., Ignatius, A., Claes, L., 2014. Prediction of the Time Course of
 Callus Stiffness as a Function of Mechanical Parameters in Experimental Rat Fracture
 Healing Studies A Numerical Study. PLoS One 9, e115695.

505