
Rev. Sci. Tech. Off. Int. Epiz., 2019, 38 (1), ... - ... 

12250_Searching-for-the-source-of-Ebola_Accepted 31.07.19 (11:07) 1/15 

Searching for the source of Ebola: the elusive factors driving 
its spillover into humans during the West African outbreak of 
2013–2016 

R.A. Kock (1)*, M. Begovoeva (1, 2), R. Ansumana (3) & R. Suluku (3) 

(1) Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, 

United Kingdom 

(2) Department of Veterinary Medicine, University of Turin, Vicolo Benevello 3/A – 10124 Torino, 

Italy 

(3) School of Community Health Sciences and Animal Science Department, Njala University, Private 

Mail Bag, Freetown, Sierra Leone 

* Corresponding author: rkock@rvc.ac.uk 

Summary 

The natural ecology of Ebola virus infection remains enigmatic. No clear reservoir species has been 

confirmed but there is evidence of infection in a wide spectrum of mammals; including humans, non-

human primates, domestic and wild ungulates and a variety of bat species, both frugivorous and 

insectivorous. Humans and most other species examined appear to be spillover hosts and suffer 

disease. Bats are the exception and are tolerant to infection in some laboratory studies. Some surveys 

show a low prevalence of antibodies against Zaire Ebola virus (ZEBOV) strains in bats during human 

outbreaks and inter-epidemic periods, and this order of mammals is considered to be the likely 

reservoir for the virus. Other putative sources include insects but this hypothesis is unproven in the 

field or laboratory. Moreover, some potential sources, such as aquatic species, have yet to be 

investigated. There are a number of environmental, human behavioural and ecological risk factors 

proposed with respect to spillover and spread. In the West African outbreak, which was unprecedented 

in scale and geographic spread, the source of the spillover remains unproven, although an association 

exists between the proposed index case and a colony of insectivorous bats. In all but a few Ebola virus 

disease events, spillover has only been superficially investigated and this was also the case in the West 

African epidemic. The authors suggest that, to address risks at the human–animal–environmental 

interface, using a One Health approach, more effort is needed to investigate spillover factors at the 

time of a ZEBOV epidemic, in addition to conducting inter-epidemic surveys in peri-domestic 

environments. The true prevalence of ZEBOV infection in any species of bats remains unknown. 

Large-scale, expensive, non-randomised surveys, with low sampling numbers per species, are unlikely 

to provide evidence for Ebola virus reservoirs or to improve our epidemiological understanding.  
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Introduction 

Putative wildlife reservoirs of Zaire Ebola virus 

To date, the only wildlife species in which evidence for Zaire Ebola virus (ZEBOV) infection has been 

detected, either by direct (antigen) or indirect (antibody) diagnostic methods, are non-human primates 

(NHPs), duikers and bats. The full epidemiological role which each of these might play in maintaining 

and/or circulating the virus is still unclear. The high mortality rates reported in western lowland gorillas 

(Gorilla gorilla gorilla) and common chimpanzees (Pan troglodytes) in western and Central Africa, 

and in duikers (Cephalophus spp.) in Central Africa (1, 2, 3), suggest that these species act only as 

dead-end hosts (4), although they also act as a bridge to human infection through the consumption of 

bushmeat (2). Additionally, Leroy and others found that infectivity is brief in apes and physical contact 

with other groups of apes is rare, resulting in difficulties in virus transmission between different groups 

of animals. This also seems to indicate that NHPs are not reservoir species (2). 

On the other hand, experimentally infected frugivorous (Epomophorus wahlbergi) and insectivorous 

(Chaerephon pumilus and Mops condylurus) bats have been shown to tolerate ZEBOV infection 

without clinical signs under experimental conditions (5). Several studies subsequently detected 

antibodies at a very low prevalence in many different frugivorous and insectivorous species living in 

Central and West Africa (Eidolon helvum, Epomops franqueti, Epomophorus gambianus, 

Hypsignathus monstrosus, Micropteropus pusillus, Mops condylurus [=Tadarida condylura], 

Myonycteris torquata, Rousettus aegyptiacus, Rousettus leschenaultia) (4). 

To the best of the authors’ knowledge, true prevalence has not been established in any species of 

animal thought to be susceptible to ZEBOV and in which the virus might be cycling. Viral RNA from 

ZEBOV has been found in only one published study, detected by reverse transcription polymerase 

chain reaction (RT–PCR) from homogenised liver and spleen samples (6). Recent unpublished reports 

of partial sequences from bats in Liberia remain to be confirmed. These findings suggest that bats may 

play a central role that warrants further investigation. However, considerable efforts to find populations 

of bats harbouring or excreting ZEBOV have been surprisingly unproductive to date, if these species 

do indeed act as a reservoir.  

Haematophagous and non-haematophagous arthropods have also been proposed as possible host or 

reservoir species (7): this hypothesis has been only partially investigated. To date, no field (8) or 

laboratory (5, 9) studies have proven the involvement of insects in the viral transmission chain. 
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Similarly, the role of aquatic and semi-aquatic animals, including aquatic insects, has never been 

assessed and cannot be excluded (10). 

In the case of the West African outbreak, which originated in Guinea in 2013 (11), a wildlife survey 

did not reveal any obvious decline in populations of large mammals living in two protected areas close 

to the site where the epidemic originated (12). Large autochthonous fauna are rarely hunted in the 

region and most bushmeat is smoked and imported from distant locations. These findings, coupled 

with the lack of involvement of hunters in the first cases of the disease, suggest that large mammals 

are an unlikely source of the spillover (12).  

However, in the area affected by the epidemic, frugivorous bats are a common source of meat and 

insectivorous bats, although not commonly hunted because of their bad smell and the belief that they 

feed on human excreta, have been reported by an anthropological investigation as occasionally being 

captured by children and grilled over fires (12). A sampling of 13 different species of bats close to the 

index case did not detect ZEBOV RNA or antibodies (12). The only clue about a possible spillover 

event is the presence of insectivorous bats (M. condylurus) in the area frequented by what is assumed 

to be the index case: a two-year-old boy who was reported to play in a hollow tree inhabited by a 

colony of these bats. This species was previously reported to be seropositive for antibodies against 

ZEBOV in Gabon (13) but, in the case of the West African outbreak, the link remains speculative. 

Spillover and host spectrum in relation to zoonotic events 

The peculiar tolerance of bats to viral infection is presumably mediated by a unique behaviour (flight) 

(14); seasonality (periods of torpor); and an unusual immune system (15). As regards their immune 

system, long-standing co-evolution with these viruses has generated multiple adaptive mechanisms. 

On the one hand, certain species seem to minimise and accurately modulate the antiviral and 

inflammatory response to prevent cell and tissue damage. On the other hand, other species seem to 

manifest a strong innate antiviral response, when compared to primates, which is able to limit viral 

replication earlier in the infection (16). 

Even if the exact mechanism underlying this tolerance is not yet understood, these features suggest 

that bats may be a key element in the epidemiology of several different zoonotic viruses, including 

ZEBOV (17, 18, 19, 20). Bat species that have a greater body mass, a long lifespan, gregarious habits 

and larger but fragmented distribution areas seem more likely to host zoonotic viruses (21, 22). 

However, analyses of the influence of sympatry with other bat species generated conflicting results 

(21, 22), and the variance in the number of zoonotic viruses per bat species remains largely unexplained 

(22). Bats are implicated in the ecology of the virus but their association with human Ebola virus 

disease (EVD) events (13) remains speculative and unclear. No bat hunter has ever been reported to 

be an index case and, even when human outbreaks occur, people involved in massive bat hunting and 

slaughtering in the same region have not been affected by the disease (23). 
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Certain surveys suggest that bats are able to clear ZEBOV infection (6, 23) but the mechanisms for 

virus persistence at a population level are not clearly understood. It is uncertain if a particular 

physiological state, e.g. pregnancy, or certain environmental conditions could suppress the immune 

system, triggering epidemic viral shedding (6). Large surveys of bats (4,022 blood samples and 665 

tissue samples from 39 species) associated with ZEBOV outbreak areas in Central and West Africa 

(24) have shown very little evidence of the virus, either by antibody or antigen detection methods, with 

levels of antibody at less than 1% and no samples testing positive by PCR (24). Essentially, there is an 

absence of evidence for virus circulation in these populations. 

Over all, these sample sizes are still relatively small, since bat populations number in the millions, and 

the data are still deficient. As a result, it remains impossible to determine the role of bats in ZEBOV 

outbreaks, at least for now (17, 23). For the same reason, genetic sequencing of the isolated viral strains 

can only provide partial knowledge of the phenomenon, which is insufficient to prove or disprove the 

various transmission theories (25). Bats have also been proposed as a source of ZEBOV transmission 

to NHPs and duikers, which subsequently act as bridge species, transmitting the virus to humans when 

these animals are hunted and slaughtered or handled when found dead (2). As an alternative, NHPs 

and duikers could simply be dead-end hosts, without transmitting ZEBOV to humans. 

One theory is that primates and duikers are infected by the ingestion of fruits contaminated by bat 

saliva, urine or faeces that fall on the ground around the trees where bats feed. This is a proven mode 

of transmission for other bat viruses, such as Nipah virus. It has even been shown that humans can 

become directly infected with Nipah virus from bats via harvested fruits (26). In five different cases, 

Ebola outbreaks among the Great Apes of Gabon have been reported to occur at the beginning of the 

dry season (2), and it is suggested that this might be associated with the increased contact between the 

different species that compete for food during this period (6). This mechanism has been proposed as a 

possible functional link between plant phenology and spillover events, to explain the detected 

association between local flowering and fruiting patterns and reported EVD outbreaks in humans and 

non-human animals (27). 

Given the possibility of fruit-mediated transmission, it may be that agricultural production in forest 

zones has the potential to act as a driver for outbreaks, and this has been postulated in the case of the 

West African outbreak (28). In this particular case, it is suggested that global economics and 

development responses have led to rapid environmental change, new agriculture, and expanding and 

shifting food sources. It is speculated that this, in turn, might influence bat and other wildlife 

distributions and behaviours, and thus the risk of spillover. This was proven as a major factor in the 

Nipah virus spillover to pigs and humans in the Philippines (29) and, since this risk factor was 

addressed, there has been no repetition of this devastating event. 

Another food-related transmission chain might involve the scavenging for meat of dead apes by other 

species, potentially including humans. Duikers could also be infected in this way (2). Direct predation 



Rev. Sci. Tech. Off. Int. Epiz., 38 (1) 5 

12250_Searching-for-the-source-of-Ebola_Accepted 31.07.19 (11:07) 5/15 

of monkeys was also reported to be a risk factor for ZEBOV infection in wild chimpanzees in Côte 

d’Ivoire (3). 

The chain of factors needed to produce a spillover event is likely to be complex. In the case of ZEBOV, 

it may require the presence of intermediate host species that not only transmit the virus but also amplify 

it (18). Generally speaking, in such a complex system, a spillover event results from the alignment of 

multiple, hierarchical enabling conditions that also involve environmental and ecological factors (18). 

The role of human behaviour may also be central to the spillover event, bringing humans into contact 

with the reservoir, whether as a hunter or gatherer, or through agricultural, recreational or other 

activities. Interest in the influence of climate and phenology on viral dynamics is also growing rapidly; 

an association between seasonal and environmental factors and spillover has already been revealed for 

Ebola virus (20, 27). Understanding the exact mechanism by which this effect is produced could help 

to explain why certain outbreaks, such as the 2013–2014 West African outbreak, were traced back to 

a single spillover event (11, 12), while others were associated with multiple and independent 

transmission events (2, 30). 

Viral adaptations to human hosts were also described in the 2013–2016 West African outbreak. These 

adaptations increased viral transmissibility between humans; at the same time reducing tropism for 

bats (31, 32). Despite the impossibility of assessing the role played by these mutations in producing 

the most extensive human outbreak of ZEBOV thus far, this finding highlights the necessity of 

considering a range of factors that affect the dynamics of viral transmission. It also underlines the 

relative importance of human-to-human transmission in the epidemic, as opposed to zoonotic 

transmission.  

In any case, the significant number of reported spillover events suggests that host adaptation is not a 

prerequisite for animal-to-human infection (31), and that, once such transmission has occurred, an 

urban setting and socio-economic factors have a strong influence on the development of the outbreak 

(33). 

Bushmeat as a possible source of the West African Ebola virus disease outbreak 

Bushmeat, including bats, is widely eaten in West Africa (34). There is evidence that, despite attempts 

to eliminate this custom (for example, a government ban on bushmeat in Guinea in March 2014), it 

continues as a traditional practice. There is also evidence that individuals will deny consumption when 

questioned by officials, perhaps because of widespread criticism or criminalisation of this activity (35). 

Unpublished work (R. Suluku, personal communication, 2018) conducted in 31 villages among 6,000 

people in the north, south and east of Sierra Leone revealed that a majority of the people in these areas 

ate bats during the Ebola outbreak because they had never seen or heard of anyone dying after eating 

bats since the time of their ancestors. However, it was common for people to deny eating bats when 

asked by representatives of non-governmental organisations (NGOs) and government officials. 
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There is no evidence from the West African outbreak that bushmeat was the source of infection to 

humans. This statement is based on epidemiological investigations of the emergence and spread of the 

virus. Samples were taken from bats soon after, and in the locality of, the presumed index case: 169 

bats were captured from 13 species and all tested negative for ZEBOV antibody and antigen (12). 

Wildlife as a source of the West African Ebola virus disease outbreak 

The evidence gathered from the first known infected household in Meliandou suggests a possible 

zoonotic source (12). A two-year-old child, the purported index case, is described as playing in a tree 

hole before the infection, where a colony of insectivorous bats (M. condylurus) were living. It is ironic 

that this colony was burned out before any investigation could take place and the only confirming 

evidence, found using forensic techniques, was that the remnant DNA found in the charred areas of 

the tree was consistent with the species  described by the householder. In this post hoc study, attempts 

to measure perturbations in the local wildlife population were crude. A short transect survey was 

undertaken in local protected areas, including broad categories of mammal (described as carnivores, 

chimpanzees, primates, duikers and other unspecified mammals). This survey was then compared to 

earlier biodiversity samples that used a similar method. This was interpreted as indicating that there 

had been no major change in any of these populations that might suggest a large decline associated 

with disease mortalities. However, the lack of specificity and sensitivity of this method and the absence 

of a bat census should be noted. No attempt was apparently made to identify the virus in other peri-

domestic animal species (e.g. small ruminants, dogs, cats, poultry or peri-domestic rodents) that were 

present in the village. In general, during this extended and extensive outbreak, no effort was made to 

establish any secondary epidemiological cycles other than the one in humans. This was perhaps 

understandable, given the severity of the epidemic in humans and the small number of veterinarians 

involved in the management of the crisis. Nevertheless, it was a missed opportunity and somewhat 

ironic, given that this was a disease of animal origin. 

Other possible socio-ecological factors driving spillover, such as ecological niche, 

forest fragmentation, agriculture, and settlement 

Ebola has long been associated with the Central African forest. Attempts at defining the ecological 

niche and environmental co-variates of outbreaks (19) bring various parameters to the fore, including: 

vegetation, elevation, evapotranspiration, temperature and suspected reservoir bat distribution. 

However, none of these factors seemed to be consistent with the West African outbreak, which defied 

prediction along these co-variates. Others have suggested that forest fragmentation, slash-and-burn 

subsistence agriculture and settlement, and/or commercial agriculture are characteristic of all EVD 

outbreaks since the 1970s (28, 36, 37).  
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Discussion 

The various observations and studies that emerged from the unpredicted and catastrophic EVD 

epidemic in West Africa have all focused on the post-spillover event. Most publications examined the 

role of socio-cultural factors in the virus’s spread, and the failure of Health Services to prevent the 

virus from moving along a socio-ecological gradient from the rural villages to the cities. Interventions 

were basically too late to prevent the wide dissemination of cases in the first place but, as the outbreak 

grew larger, efforts rapidly improved. Epidemiological control efforts concentrated on tracing cases in 

the infected human population and isolating infected individuals as a means of stamping out Ebola’s 

spread, essentially through preventing contact. This, along with the recovery or death of infected hosts, 

eventually led to the elimination of the virus (38).  

Attempts by medical authorities to limit its spread through communications by text and other forms of 

messaging were initially confused. They emphasised bushmeat as a possible source of infection, 

despite the fact that this was clearly not a significant risk in this event. 

A series of by-laws instigated by national tribal chiefs helped to reduce the spread of the virus in the 

provinces but, because people in the cities did not observe these by-laws, the epidemic persisted in 

urban areas. Moreover, the disease spread rapidly because people were denied burial of their relatives 

in accordance with their traditions and beliefs in transcendence. Once this policy was reversed, and 

people were allowed to witness the burial of their family members, without physical contact, the 

situation improved (39). 

Local medical personnel had no knowledge about the disease and thus it killed many healthcare 

workers. In Nigeria, the medical staff left the hospital; it was only after involving a virologist and 

receiving specific training that they were able to control the virus and prevent any further spread. 

Vaccine development was fast-tracked at huge expense, and the resulting vaccine came into use late 

in the outbreak, when it was close to ending. However, this did provide an opportunity to evaluate the 

vaccine’s efficacy and safety (38, 40). 

Clearly, all of these aspects were and are extremely important for the future management of this 

disease. Nonetheless, the facts demonstrate a failure to stop the disease at its source. Moreover, due to 

the unprecedented nature of the virus’s spread, public messaging was often confused and sometimes 

inappropriate, and it took some time for both the national and international health systems to begin to 

be able to cope. The recent outbreaks in the Democratic Republic of the Congo in 2018 are also 

worrying, in their multiplicity of events and the extended period of the epidemic, suggesting that 

perhaps a similar trend in scale and impact is emerging there (41, 42). 

The absence of detailed studies on the presumed spillover of the virus from animals, and the relatively 

crude examination of the animal component of the West African outbreak, is concerning and, 
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unfortunately, consistent with efforts in most earlier outbreaks. After such outbreaks, studies and inter-

epidemic surveillance have included a number of broad, relatively unfocused attempts to identify 

infected and/or reservoir species for the virus, with – to date – little reward. It is clear from serological 

results that bats and other species are infected at times, but there is still only one convincing study on 

the presence of virus antigen, published by Leroy in 2005 (6). 

In this study, positive results for ZEBOV by nested PCR provided some confidence that a low level of 

viral RNA was present in three sampled populations of fruit bats (H. monstrosus, E. franqueti and M. 

tourquata) around an affected village in Mbomo, Gabon (6). None of the animals that tested positive 

by PCR returned positive results for immunoglobulin G (IgG), and animals giving positive IgG results 

tested negative by PCR. This result was reversed in a sampling from the same population five months 

later. 

These results were evidence that the first sample was taken early in an infection cycle in this population 

and the second was taken during the post-epidemic phase. This hypothesis cannot be rigorously tested 

as this was a convenience sample: it was not taken randomly and there is no certainty that the same 

population was sampled on the second occasion. H. monstrosus is known to make seasonal movements 

(43). The evidence for bats being the reservoir for Ebola virus remains weak and unsubstantiated, in 

Leroy’s or any other study, at least for the present.  

Nevertheless, the Leroy study remains the most convincing evidence yet for viral circulation in the 

environment at around the time that infection spilled over into humans. The fact that Leroy and his 

colleagues apparently sampled the bats during the early phase of the infection is key. A timely 

purposive sample around a known human (and Great Ape) outbreak site provided results, and this 

supports the proposition that, in the future, animals should immediately be sampled around such 

events, and in a structured manner. Despite this obvious interpretation, the Leroy study seems not to 

have been replicated.  

Although the number of screened species, both in the West African outbreak and other studies, was 

remarkable, the number of sampled individuals from each species was limited. Moreover, since 

sampling takes place after the event and is ad hoc in all cases, this could affect the value of the results 

from all studies. The single investigation of a longitudinal sample of infection in animals around a 

human Ebola epidemic, again by Leroy (6), showed that prevalence was apparently very low: ~2% in 

the bats sampled within a few months. This was conducted in the precise period after human infection 

had first occurred in Guinea and before sampling of animals in the West African outbreak began, so 

perhaps it is not unexpected that negative results ensued. If a delayed response to the outbreak failed 

to provide solid evidence of infection at the animal source, it is not surprising that inter-epidemic 

studies are also fruitless. Discovering the reservoir of ZEBOV is proving to be rather like finding a 

needle in a haystack and, despite considerable expenditure of time and money, there is still little 

concrete evidence to explain this enigmatic virus’s natural ecology.  
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The evidence of apparently unaffected bats in the environment of the index case in Guinea in 2014, 

and of similarly unaffected chimpanzees in adjacent protected areas, provides the only significant 

wildlife survey data of interest in the West African outbreak of Ebola. The chimpanzee data, at least, 

suggest that this outbreak was not similar in epidemiology to that reported in outbreaks of the virus in 

the Great Apes in Central Africa, by Leroy (6). This does not rule out the possibility of spillover from 

wildlife, bushmeat or other animals, but it remains unproven. The efforts made to sample wildlife and 

take more general environmental samples in the West African outbreak were not extensive and may 

not have been adequate to prove the absence of a wildlife source or cycles of virus infection. An 

additional, more detailed survey of flora and fauna from the peri-domestic area, cleared secondary 

forest, agricultural areas and protected forest zones, during and after the outbreak, might have shown 

something but there was apparently little capacity for this with only one limited study. 

In 2016, for the first time in West Africa, a serological survey in Sierra Leone reported that three out 

of 400 samples from pigs (Sus scrofa domesticus) showed the presence of Ebola-virus-specific 

antibodies. Even if epidemiological analysis shows that pigs did not play a role in the West African 

outbreak, this finding highlights once again the need for new investigations in the peri-domestic area, 

especially before and during an active outbreak (44). There is little mention of environmental factors 

(for example, fruiting, flowering or other seasonal conditions) that might have been relevant in this 

event or that have been reported as being associated with EVD elsewhere. It is possible to infer that 

the West African outbreak occurred after the beginning of the plant fruiting season (around November, 

in this region) and during the dry season (December to May). This is a time when bats are very active, 

feeding on ripe fruit, and it is also consistent with the timing of all the Great Ape-associated outbreaks 

in the Congo Basin. 

One observation made in the West African outbreak that is consistent with other outbreaks is that there 

was evidence of considerable development and agricultural activity in the index-case zone, including 

various new settlements, clearances, roads, and planting of agricultural crops, such as palm oil, which 

is a preferred food of fruit bats. This habitat fragmentation and reduction of buffer areas might 

influence bat population distribution and concentration, generally bringing these animals into closer 

proximity to humans and domesticated species (45, 46). 

 

It appears that, understandably, the main focus in the West African Ebola outbreak was on human-to-

human transmission and controlling the outbreak. However, this meant that an opportunity was missed 

to take our understanding of the epidemiology of Ebola spillover events forward. This remains a 

contemporary challenge to the new One Health framework, now adopted by the World Health 

Organization (WHO), the World Organisation for Animal Health (OIE) and the Food and Agriculture 

Organization of the United Nations (FAO), and covered extensively in this publication. In future 

outbreaks, a more source-oriented study is warranted; one that includes the range of known risk factors 

for spillover in the immediate investigation, as well as in communications with communities at risk. 



Rev. Sci. Tech. Off. Int. Epiz., 38 (1) 10 

12250_Searching-for-the-source-of-Ebola_Accepted 31.07.19 (11:07) 10/15 

 

In the final analysis, finding the triggers for spillover using a One Health approach might be the key 

to preventing EVD in humans in the future, and for all time. The cost of not addressing the underlying 

drivers for EVD over the longer term might well outweigh any immediate costs involved in obtaining 

a fuller understanding of the disease, through more rigorous investigations and research into the 

outbreak’s source. This approach should be seriously considered, even while current efforts remain 

firmly focused on a vaccine, risk communication, and other response measures. The ecological 

complexity of EVD is daunting but, if sufficient One Health resources are not invested into clarifying 

its epidemiology, humanity might end up with a truly global disease challenge to rival human 

immunodeficiency virus infection and acquired immune deficiency syndrome (HIV AIDs).  
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