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Abstract 

 
Aquaculture systems are highly complex, dynamic and interconnected systems influenced by 

environmental, biological, cultural, socio-economic and human behavioural factors. 

Intensification of aquaculture production is likely to drive indiscriminate use of antibiotics to 

treat or prevent disease and increase productivity, often to compensate for management and 

husbandry deficiencies. Surveillance or monitoring of antibiotic usage (ABU) and antibiotic 

resistance (ABR) is often lacking or absent. Consequently, there are knowledge gaps for the 

risk of ABR emergence and human exposure to ABR in these systems and the wider 

environment. The aim of this study was to use a systems-thinking approach to map two 

aquaculture systems in Vietnam – striped catfish and white-leg shrimp – to identify hotspots 

for emergence and selection of resistance, and human exposure to antibiotics and antibiotic- 

resistant bacteria. System mapping was conducted by stakeholders at an interdisciplinary 

workshop in Hanoi, Vietnam during January 2018, and the maps generated were refined 

until consensus. Thereafter, literature was reviewed to complement and cross-reference 

information and to validate the final maps. The maps and component interactions with the 

environment revealed the grow-out phase, where juveniles are cultured to harvest size, to be 

a key hotspot for emergence of ABR in both systems due to direct and indirect ABU, 

exposure to water contaminated with antibiotics and antibiotic-resistant bacteria, and 

duration of this stage. The pathways for human exposure to antibiotics and ABR were 

characterised as: occupational (on-farm and at different handling points along the value 

chain), through consumption (bacterial contamination and residues) and by environmental 

routes. By using systems thinking and mapping by stakeholders to identify hotspots we 

demonstrate the applicability of an integrated, interdisciplinary approach to characterising 

ABU in aquaculture. This work provides a foundation to quantify risks at different points, 

understand interactions between components, and identify stakeholders who can lead and 

implement change. 
 

 
 
 

Key words 

 
Antimicrobial resistance (AMR); Cá Tra; Mekong Delta; One Health; Pangasianodon 

hypophthalmus; Penaeus vannamei 
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Highlights 
 

 The contribution of aquaculture to antibiotic resistance is not well understood 
 

 Systems mapping was used for two aquaculture systems in Vietnam 
 

 Hotspots were identified for the emergence/selection of antibiotic resistance 
 

 Human exposure points to antibiotics and antibiotic-resistant bacteria were mapped 
 

 Findings inform risk quantification and identification of stakeholders to effect change 
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1. Introduction 

 
Aquaculture produces more than half of the world’s seafood for consumption, and production 

(tonnage) has grown globally at 6% per year since 2001 (FAO, 2018). Much of this growth is 

attributable to farms undergoing increasing intensification in low and middle income 

countries (LMICs), which are now well integrated in the global seafood trade, particularly in 

Asia (World Bank, 2013; Belton et al., 2018; FAO, 2018). Aquaculture comprises highly 

complex, dynamic and interconnected systems influenced by environmental, biological, 

cultural, socio-economic and human behavioural factors. Like other food animal production 

sectors, aquaculture uses antibiotics not only to combat infectious diseases, but also for 

prophylactic and growth promotion purposes to help maintain aquaculture stocks (Tuševljak 

et al., 2013; Pham et al., 2015; Van Boeckel et al., 2015; FAO, 2018; Henriksson et al., 

2018; Santos and Ramos, 2018). However, the widespread use of antibiotics in animals and 

humans has led to the emergence and selection of antimicrobial resistance (AMR). 

 
 

The tripartite collaboration on AMR between the Food and Agriculture Organization of the 

United Nations (FAO), the World Organisation for Animal Health (OIE) and the World Health 

Organization (WHO) recognises the importance of a One Health approach to tackling AMR, 

and one of the aims of this collaboration is to promote prudent and responsible use of 

antimicrobial agents (WHO, 2015). While the development of resistance to antibiotics is a 

natural phenomenon, increasing antibiotic exposure increases selection pressure, and so 

reducing exposure by limiting total antibiotic usage (ABU) is an important strategy to reduce 

selection pressure for AMR (O’ Neill, 2015). 

 
 

Little is known about the role that ABU in aquaculture plays in the global problem of antibiotic 

resistance (ABR). At the greatest levels of intensification, ABU is generally low as the 

enterprises operating and managing such farming systems have greater resources to 

implement more effective biosecurity measures, train workers in better husbandry and 

management practices, and employ other disease prevention measures such as vaccination 

(Rico et al., 2013; Phu et al., 2016; FAO, 2018). These highly intensified systems often 

produce for export and typically products have to meet high standards demanded by 

importing countries; for example, the European Union requires exporting countries to 

demonstrate adherence to standards covering animal health, hygiene and residues in food 

(European Union, 2019). Access to export markets provides an important financial incentive 

to adapt management strategies in production systems to comply with regulations designed 

to avoid antibiotic residues that may, at least in part, reduce total ABU (Phu et al., 2016; 

Goutard et al., 2017). At the other end of the spectrum, small-scale farms operating at low 
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stocking densities, and often culturing multiple species in the same system, use low 

quantities of antibiotics because disease prevalence is typically low. However, much of the 

growth in global aquaculture output stems from farms transitioning from such small-scale, 

low intensification systems to systems operating at greater intensification, where the risks of 

an infectious disease outbreak are greater and farmers often rely on antibiotics to resolve 

these issues (Rico et al., 2013; Henriksson et al., 2018). Initially, these intensifying farming 

systems in LMICs generally produce for domestic rather than export markets (Belton et al., 

2018). 
 

 
 

In aquaculture, antibiotics are usually mixed with feed before administering to animals but 

drugs may also be applied directly into the aquatic environment (Pham et al., 2015; Okocha 

et al., 2018). This can lead to the dispersal and leaching of antibiotics into the environment, 

exposure of both sick and healthy animals and other aquatic organisms to antibiotics, and 

potentially an increase in the likelihood of human exposure to antibiotics and antibiotic- 

resistant bacteria (Shen et al., 2018). Extensive and imprudent use of antibiotics in 

aquaculture can occur in LMICs to treat a myriad of health issues and increase productivity, 

often to compensate for management and husbandry deficiencies (Van Boeckel et al., 2015; 

Phu et al., 2016). The lack of diagnostic capacity, vaccines and other effective alternatives to 

antibiotics (e.g. probiotics) compounds the problem (Henriksson et al., 2018). Enforcement 

of regulations for the responsible use of antibiotics is often inefficient and surveillance or 

monitoring of ABU in livestock and aquaculture in many countries is very limited or absent 

(Cabello, 2006; FAO, 2016; Goutard et al., 2017; Mo et al., 2017; Shah et al., 2017). Where 

regulations and enforcement do exist, these are largely coordinated by industry and confined 

to export-oriented commodities, leaving the food animal production systems destined for 

domestic consumption more vulnerable to inappropriate ABU. There are currently no 

guidelines on appropriate ABU in relation to the risks of environmental contamination, and a 

large gap in knowledge exists of the extent to which the environment contributes to ABR in 

humans (Berendonk et al., 2015; O’ Neill et al., 2015; Thanner et al., 2016; Goutard et al., 

2017; Lundborg and Tamhankar, 2017; Bengtsson-Palme et al., 2018). 
 

 
 

Aquaculture systems are highly diverse in terms of the production systems used and the 

species cultured (FAO, 2018), and are often highly interconnected with other food production 

systems through multiple wide-reaching pathways (Chuah et al., 2016; Watts et al., 2017; 

Shen et al., 2018). This makes the aquaculture environment particularly vulnerable to the 

introduction and spread of ABR. A number of studies have demonstrated that resistance can 

be transferred between fish pathogens, aquatic bacteria and human pathogens (Kruse and 

Sørum, 1994, Kruse et al., 1995, Rhodes et al., 2000, Molina-Aja et al., 2002, Furushita et 
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al., 2003, Sørum, 2006). Antibiotic resistance genes (ARG) and antibiotic-resistant bacteria, 

including zoonotic pathogens, have been isolated from water, products and farmers from 

aquaculture systems across the globe (Cabello et al., 2013; Miranda et al., 2013; Grema et 

al., 2015; Chuah et al., 2016; Watts et al., 2017; Santos and Ramos, 2018; Shen et al., 

2018). However, there is currently little understanding of the human health risks posed by 

emergence of ABR in aquaculture systems. Moreover, there is a general lack of knowledge 

and clarity about how aquaculture systems operate and how changes to the drivers of ABU 

would affect ABR in the system as a whole (Berendonk et al., 2015; Bengtsson-Palme et al., 

2018). This reflects a wider failure of existing ABR research to adequately address the 

challenge from an ecosystems perspective (Berendonk et al., 2015; Hinchcliffe et al., 2018). 

Using an ecosystems approach to identify the possible human exposure points to antibiotics, 

antibiotic-resistant bacteria and ARG in aquaculture production is key to reducing human 

health risks from aquaculture, though data and evidence are lacking in this regard (Miranda 

et al., 2013; Berendonk et al., 2015; Chuah et al., 2016; Phu et al., 2016; Watts et al., 2017). 

 
 

Such a thorough understanding of how aquaculture systems operate is required in order to 
 

‘follow’ the actual and potential dissemination of antibiotics, antibiotic-resistant bacteria and 

ARG throughout the production systems. Complex ecological problems such as ABR cannot 

be solved by focusing on individual processes (Hinchcliffe et al., 2018); rather, a focus on 

understanding entire systems is needed in order to identify different components, assess 

feedback loops and predict behaviours. This requires a systems-thinking approach to 

describe and understand the complex processes (Hinchcliffe et al., 2018). Systems thinking 

is the consideration of systems in their totality, as their constituent parts and their 

interactions, as well as their interaction with the wider environment (Peters, 2014). Systems- 

thinking approaches, utilising tools such as system dynamics modelling, have been used to 

understand the behaviour of complex dynamic systems spanning areas such as climate 

change, environmental policy and disease eradication programmes (BenDor et al., 2018; 

Kapmeier and Gonçalves, 2018; Tebbens and Thompson, 2018). The participation of a 

multitude of stakeholders when using a systems approach can maximise stakeholder 

engagement and ownership of the new knowledge generated, allow for the incorporation of 

different perspectives on a problem, reveal hidden or undescribed drivers, and encourage 

networking, interdisciplinarity and systems thinking (Vennix,1996; Siokou et al., 2014). A 

recent study showed the potential benefits of this approach in relation to sustainable ABU in 

cattle farming (Lhermie et al., 2017), but systems thinking is under-used in addressing 

antibiotic resistance in aquaculture (Hinchcliffe et al., 2018). 
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The main aim of this study was to apply a participatory systems-thinking approach to map 

two distinct aquaculture systems and identify potential hotspots for: 1) the emergence and 

selection of resistance; and 2) human exposure to antibiotics, antibiotic-resistant bacteria 

and ARG, and to compare potential routes of human exposure to antibiotics in these 

systems. In addition, we aimed to identify potential drivers of ABU and interventions to 

reduce ABU through the mapping process. 

 
 

2. Methods 

 
2.1 Workshop to map aquaculture systems 

 
A workshop was held with invited experts with experience of the aquaculture sectors in 

Vietnam and Bangladesh. The workshop had four aims: 1) to develop systems thinking and 

experience in mapping systems; 2) build collaborations and understanding of different 

expertise; 3) create maps of the aquaculture sector and the drivers of ABR; 4) identify the 

most likely routes of exposure to ABR for humans. The workshop took place over two days 

(18–19 January 2018) in Hanoi, Vietnam and involved 23 attendees from Vietnam, 

Bangladesh, international agriculture research organisations and the research team based in 

the United Kingdom (UK) (Table 1). It was carried out as part of a larger project exploring the 

contribution of aquaculture to ABR with funding from the UK Medical Research Council. The 

range of disciplines among attendees included epidemiology, veterinary sciences, 

microbiology, environmental science, anthropology, economics, politics, public health, 

pathology, aquatic science, aquaculture and biotechnology. The workshop was a 

combination of presentations, focus group activities and plenary discussions. 

 
After an introduction to the aims of the workshop and presentations from researchers based 

in Vietnam, Bangladesh and WorldFish, workshop participants were given a brief 

presentation on systems thinking and presented with an example of previous mapping work 

in the poultry value chain in Bangladesh. Then a group exercise was used to introduce the 

participants to the mapping process where each group was asked to draw out a simple 

system. Participants were given suggestions on how to illustrate different components of the 

system such as tangible and intangible components, governance systems and relationships, 

economic factors, actors, infrastructure and environmental factors. The exercise highlighted 

important aspects of stakeholder mapping such as consideration of boundaries (i.e. edges) 

with other systems. 

 
 

2.2 Selection of aquaculture systems 
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Following the introductory activities, attendees were split into three groups balanced to 

contain a range of disciplines and experience. The groups were asked to identify 

aquaculture systems that would be of greatest importance to explore, in terms of the 

potential role of antibiotics within the systems and relevance of the cultured species. The 

systems selected by consensus were striped catfish (Pangasianodon hypophthalmus) and 

white-leg shrimp (Penaeus vannamei) production, both located in the Mekong Delta region 

of Vietnam, and tilapia farming in Bangladesh (data not presented here). The two 

Vietnamese systems were considered to be both of major importance to the aquaculture 

industry and distinct in terms of their disease challenges and from an ecosystem 

perspective. For example, striped catfish have more bacterial diseases and a freshwater 

ecology, while white-leg shrimp tend to have more viral diseases and a brackish water 

ecology. 

 
 

The striped catfish industry in Vietnam, located mainly in the Mekong Delta, has undergone 

recent rapid development, expansion and consolidation through vertical integration (Nhu et 

al., 2016). With 5,400 ha of farms, in 2018 Vietnam produced 1.42 million tons of striped 

catfish, increasing 8.4% compared to 2017, and its export value was 2.26 billion USD (D- 

Fish, 2019). This important sector employs about 100,000 people in this region of Vietnam 

(around 0.5% of the workforce) and much of its product is exported to the United States, the 

European Union, China and elsewhere in Southeast Asia (Holmyard, 2013; Rico et al., 2013; 

Ministry of Agriculture and Rural Development [MARD], 2015; Vietnam Association of 
 

Seafood Exporters and Producers [VASEP], 2017a; Nguyen and Jolly, 2018). This export- 

orientated industry has transitioned successfully to highly intensive production and has 

benefited from considerable recent investment in improved infrastructure, good governance 

and adherence to national regulations on food safety and environmental protection 

(Holmyard, 2013; Phu et al., 2016; Nguyen and Jolly, 2018). However, a survey of 

aquaculture farms across Asia found that the percentage of farms using antibiotics and the 

number of compounds used per farm was significantly greater on striped catfish farms in 

Vietnam compared with some other aquaculture systems (Rico et al., 2013), though there 

was no suggestion or evidence that antibiotics were used inappropriately or that food safety 

was in any way compromised. Indeed, one characteristic of striped catfish valued most by 

consumers is the safety of the product, especially with regard to the lack of contamination by 

antibiotics, as strict monitoring is currently in place for chemical residue concentrations in 

flesh (including antibiotics) in products destined for export (Little et al., 2012; Nguyen and 

Jolly, 2018). 
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The striped catfish industry of Vietnam was deemed suitable as a case study to identify 

possible routes of human exposure to antibiotics because the highly intensive systems are 

relatively consistent, and the need for high volumes of water exchange necessary for 

production means pathogens are introduced continually, making ABU more likely (Phu et al., 

2016). Importantly, the recent improvements implemented in striped catfish production in 

Vietnam provide a blueprint for increasing output from other aquaculture systems. Thus, 

findings from this system could be applied to improve production systems elsewhere during 

transition to more intensive practices. 

 

In comparison, white-leg shrimp is cultured in Vietnam for local consumption as well as 

export markets. Vietnam produced 427,000 tons of white-leg shrimp in 2017, up 8.5% 

compared to 2016 (VASEP, 2017b), and its export value in 2018 was 2.48 billion USD (D- 

Fish 2019). Unlike fish producers, shrimp producers cannot rely upon vaccines for disease 

prevention because crustaceans lack the necessary adaptive immune response for long- 

term protection against pathogens (Witteveldt et al., 2004). As such, these producers may 

rely more heavily on antibiotics to ensure the health of stocks, and effective approaches 

other than vaccination are required in shrimp culture systems to prevent and treat bacterial 

diseases. 

 

2.3 Mapping of the system by stakeholders 

 
We defined ‘mapping of the system’ as the process by which the key components of the 

striped catfish and white-leg shrimp systems were identified, and connections between 

components were made based on the flow of inputs, outputs, information and governance. 

The methodology used here was based on the Network for the Evaluation of One Health 

(NEOH) approach, which is rooted in systems thinking (Rüegg et al., 2018). Each group 

contained two members of the project team who played the roles of facilitator and recorder. 

The role of the facilitator was to ask questions, draw out the system and reflect the map back 

to the group, while the role of the recorder was to capture the discussions and seek 

clarification on points of uncertainty and detail. 

 

Large whiteboards or paper sheets affixed to the wall were used to draw out the maps. 

Different colours were used to distinguish different components of the system (e.g. 

governance, pre- and post-harvest activities), and sticky notes were affixed to the drawn 

maps to highlight potential human exposure pathways and hotspots for the emergence and 

selection of ABR. Aside from spontaneous mutations that confer resistance to an antibiotic, 

emergence of ABR also concerns the horizontal transmission of ARG between bacteria 

species, whereas selection is the enrichment of antibiotic-resistant bacteria containing ARG 

(typically to the detriment of susceptible bacteria). Among other factors, conditions favouring 
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emergence and selection of ABR is exposure to sub-inhibitory and non-lethal concentrations 

of antibiotics. 

 

The mapping exercise consisted of several iterations, with maps presented to all participants, 

discussed and modified where necessary to obtain whole-group consensus. In each iteration, 

the groups mapped out the structure of the system (e.g. hatcheries, nurseries, grow-out 

ponds, markets and feed mills), recorded inputs and outputs, described the governance 

structure and how this interacted with the system, and identified potential hotspots for ABR 

emergence, and for human exposure to antibiotics, antibiotic-resistant bacteria and ARG. At 

the end of the workshop, the maps were photographed and translated into digital diagrams 

using the web-based Lucidchart software (https://www.lucidchart.com/). 

 

2.4 Validation of the system maps 

 
After the workshop, the discussion notes captured by the recorders were interrogated to 

identify key hotspots, drivers of ABU, potential interventions to reduce ABU and key 

knowledge gaps. A summary of the findings, including the digital maps, was shared with the 

workshop attendees, and feedback invited, collated and analysed. This acted as a basis for 

validating the finished output. Peer-reviewed and other published literature were reviewed to 

complement and cross-reference the information obtained in the workshop activities and 

serve for triangulation purposes. Feedback from attendees, cross-referencing of literature 

and discussions with colleagues, other subject experts and selected stakeholders were used 

to clarify areas of uncertainty and produce the final maps. Ultimately, validation of the maps 

and information extracted from these was achieved through the group of experts that 

attended the workshop reaching consensus after circulation of final versions of maps for final 

comments and agreement. 

 

3. Results 

 
3.1 Mapping of the systems by stakeholders 

 
The final consensus maps for the striped catfish and white-leg shrimp production systems 

are presented in Figure 1 and Figure 2, respectively. The various components of each 

system map and their flow or connection were grouped broadly into categories, specifically: 

1) the environment within which organisms are cultured and other pre-harvest activities (in 

green); 2) the production, supply and use of antibiotics (in red); 3) activities during and post- 

harvest including transportation, product sales and consumption (in blue); 4) waste products 

and their fate (in brown); 5) the network of governance organisations and flow of information 

(in black). Each system included an intricate set of structures involved in governance of the 

system and provided an overview of other elements of the system which could be important 

http://www.lucidchart.com/)
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points for interventions to reduce ABU and ABR, but may not have been identified using a 

traditional linear thinking approach to follow the flow of antibiotics. For example, 

improvements to water quality could lead to a reduction in the burden of disease, and 

therefore to a decrease in the use of antibiotics and disinfectants in the culture systems. 

 

In both maps, the Mekong River was a key boundary to the system. The boundaries ranged 

from the inputs of water from the Mekong River, feed, drugs, and products from other culture 

systems, to the outputs of waste products back in to the Mekong River. The maps did not 

extend beyond these boundaries to consider or map components of wider systems 

associated with: 1) delivering certain inputs required for culture (i.e. seed, broodstock and 

biofloc; production of components used in feed; and other systems that input or use the 

water source); 2) the post-harvest consumption of products by people at home or in 

restaurants, or after export; 3) waste products and their disposal (e.g. waste products used 

in other types of livestock or crop production); 4) energy generation and consumption. 

 

The maps illustrate broad similarities between the two systems particularly in the flows of 

materials needed for production, antibiotics, harvested products and waste. In both systems, 

antibiotics were deemed most likely to be used during the grow-out phase through 

application of medicated feeds and during culture at early life stages (hatchery and nursery 

in striped catfish and seed company in white-leg shrimp system) through addition to water or 

inclusion in feeds. Medicated feeds are manufactured at the feed mills but shrimp farmers 

may also prepare their own antibiotic feeds. Antibiotics are sourced generally from drug 

shops, though human pharmacies represent a possible alternative source (Chi et al., 2017). 

It was suggested that occasionally antibiotics may be incorporated into the water containing 

animals after harvest to keep products fresh or to prevent mortality during transport to live 

markets, but only a fraction of striped catfish production is sold through these markets. 

 

Some key differences were observed between the striped catfish and white-leg shrimp 

systems. In the white-leg shrimp system, more ‘middlemen’ intermediaries are involved, 

which reflects the lesser vertical integration and consolidation of this sector compared to the 

striped catfish system (Figure 2). This introduces greater variability in production practices 

and standards within the shrimp value chain; hence, products are sold into a diverse 

domestic market as well as exported, whereas striped catfish is produced overwhelmingly for 

export. Some of these middlemen provide farmers with the provisions needed to farm the 

shrimp via a franchise-style model, including seed and feed, and typically they will purchase 

the harvested product. The white-leg shrimp farmers are more likely than striped catfish 

counterparts to use prophylactic health products such as probiotics, though these may be 

used to condition the culture water at early life stages of both systems. Interestingly, at post- 
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harvest stage in the striped catfish system, by-products are incorporated into the production 

of feed for other culture systems and these may ultimately feedback into the striped catfish 

system too (Figure 1). This represents a point of cross over and interconnectivity between 

the striped catfish and white-leg shrimp systems, where by-products might be used in the 

production of feed for shrimp. 

 

3.2 Governance 

 
Broadly, the formal structures of governance were similar between the striped catfish and 

white-leg shrimp systems (Figures 1 and 2). Participants described the role of the National 

Assembly in creating veterinary laws and enforcing legislation across both systems. Within 

the government agencies and departments, the three Research Institutes for Aquaculture 

(RIAs 1, 2 and 3 based in three regions of Vietnam) were identified as important sources of 

technical advice at the national level. MARD is in charge of regulations and coordination, 

and oversees the Department of Animal Health (DAH), Directorate of Fisheries (D-Fish) and 

National Extension Center (NEC) who are in charge of producing guidelines. Workshop 

participants indicated that there was flow of knowledge between farmers and government 

agencies, typically via extension officers. Government extension officers provide information 

and advice to farmers in both systems to improve production practices, while also conducting 

surveillance, audits and inspections. Meanwhile, private technical consultants and 

laboratories, and universities, are further sources of advice, information and support for 

producers. Under the governance of MARD is the National Agro-Forestry-Fisheries Quality 

Assurance Department (NAFIQAD) that assesses the standards and the quality of fish 

products. This department is particularly important in the striped catfish system as they 

provide testing and certification for producers and processing companies wanting to export. 

This includes testing for chemical residues in the products as required by the importing 

countries. 

 

MARD has regional and/or provincial level offices that are responsible for implementing 

guidelines. NEC is responsible for providing husbandry advice to farmers and promoting the 

sector. DAH is responsible for veterinary drug licensing (both imported and domestically 

produced drugs) and inspection of drug usage, as well as disease monitoring. DAH has legal 

powers to issue fines when the use of forbidden antibiotics is detected, but the frequency of 

such enforcement (e.g. number of inspections / fines issued) is not known. Participants 

considered there to be a good relationship between farmers and inspectors. D-Fish provides 

technical knowledge and may sometimes advise on ABU. A non-governmental organisation 

identified as providing governance within the systems was VASEP, and their role is to help 

companies in Vietnam to identify new markets and to promote products overseas. The role 
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of local government in land use and planning for aquaculture sites was discussed as a 

further authority with potential power to influence acceptability of locations for farming. 

 

Outside of formal governance, the roles of farmers, feed and drug companies were 

discussed. Many farmer cooperatives exist, but these do not always have a formal structure; 

however, these networks provide a platform for farmers to help each other, share 

knowledge, and manage themselves, although they do sometimes work closely together with 

extension officers. Feed companies provide technical support to various actors in the 

production chain. Drug companies distribute drugs to drug shops and other retailers for 

further use, and sometimes supply directly to producers. Drug shops also provide technical 

support to various actors in the value chain. There was a perception that different drug 

companies and drug shops may actively promote ABU as this generates profits. As well as 

producing drugs domestically, drug companies can import drugs. Participants reported that 

sometimes drugs are imported directly by drug sellers, that illegal importations may occur, 

and that illegally imported antibiotics can be supplied to farmers. Furthermore, consumers 

and importers may exert pressure on producers in aspects of product quality, often via 

VASEP, through introduction of standards and instruments such certification schemes, which 

can influence various actors including farmers, feed companies and processors. 

 

3.3 Identification of hotspots 

 
Two types of hotspot were identified on the maps: 1) hotspots where conditions favour the 

emergence and selection of ABR; 2) points of human exposure to antibiotics and antibiotic- 

resistant bacteria (Figures 1 and 2). In general, these different types of hotspot were co- 

located and found in the striped catfish and white-leg shrimp systems at similar points. 

Important hotspots for the emergence and selection of ABR included at the early and grow- 

out phases of production and in the Mekong River, and points where antibiotics inadvertently 

exert selection pressures on the environmental, animal or human microbiota (Table 2). The 

grow-out phase, where juveniles are grown to harvest size, was identified as the most likely 

hotspot for emergence of resistance in both systems due to the animals spending the 

greatest time at this stage in the production cycle (3 months for white-leg shrimp [Hai et al., 

2015]; 7 months for striped catfish [Khoi et al., 2008, Holmyard, 2013]) and the cumulative 

effect of ABU in the earlier production stages, which may have already selected and 

enriched for antibiotic-resistant bacteria and ARG. The Mekong River, with waste containing 

antibiotics discharging from various aquaculture and other activities, was a further key 

hotspot in the environment where the emergence of ABR may be more likely to occur. 

Associated with the grow-out phase is the settling pond into which solids and wastewater are 

drained during harvest. The settling pond is a key point of linkage between systems both as 
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an output, where waste from the settling pond is released into the Mekong, and as an input, 

where it is used as fertiliser in the cultivation of plant-based foods. 

 

The large number of potential routes of human exposure to antibiotic-resistant bacteria and 

antibiotic residues that were identified across the two systems can be grouped into three 

categories: occupational (at the farm and different handling points along the value chain 

including production and retail), consumption (of food and water contaminated with residues 

and bacteria) and environmental (Table 3). In general, similar potential routes of exposure 

were identified for the striped catfish and white-leg shrimp systems, though the latter system 

appears to have more human exposure risk particularly post-harvest, mainly due to the 

greater abundance of product destined for domestic consumption. Points identified as 

potential hotspots for occupational human exposure to antibiotics and antibiotic-resistant 

bacteria included at hatcheries and nurseries in the striped catfish system (analogous 

activities are performed by the ‘seed company’ in the white-leg shrimp system) and during 

the grow-out phases of both systems, where farm workers may prepare and use medicated 

feeds and be exposed to culture water containing antibiotics (Table 3). Drug shops were 

identified as human exposure hotspots in both systems where repackaging of antibiotics by 

drug shop workers into smaller packets is common practice, while feed mill workers may be 

exposed to antibiotics when manufacturing medicated feeds (Table 3). ‘Middlemen’ in the 

white-leg shrimp system, transporters of some live striped catfish, as well as workers in 

processing companies and retailers (particularly for domestic supply), were all identified as 

being at risk of exposure to antibiotics and antibiotic-resistant bacteria though handling 

aquaculture products and ABU. Post-harvest processing is different for products destined for 

domestic consumption and the export market, therefore the risk of exposure varies. For 

products destined for the domestic market, most processes post-harvest are less likely to be 

carried out in a standardised and regulated manner, while for products destined for the 

export market activities are well-regulated and typically use sophisticated processing 

facilities and procedures to adhere to the appropriate regulations (Phan et al., 2009). In 

particular, the Mekong River is an environmental hotspot for exposure to antibiotic residues 

and antibiotic-resistant bacteria because white-leg shrimp, striped catfish and other 

aquaculture systems release wastewater into the river and take water from it, alongside 

other agricultural and household activities (Table 3). Recreational or domestic use of the 

river system may bring people into contact with antibiotic residues, antibiotic-resistant 

bacteria and ARG. In both systems, consumption of aquatic products contaminated with 

residues and/or antibiotic-resistant bacteria was deemed to be a potential hotspot for human 

exposure (Table 3). 

 

3.4 Drivers of ABU and ABR and potential interventions 
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Several drivers of ABU were highlighted and discussed (Table 4), and these were 

characterised by economic factors, which could either be incentives for use (e.g. growth 

promotion, therapeutic and prophylactic use, and market demand) or disincentives for using 

alternative approaches (i.e. capital required to invest in better production practices), and by 

individual and operational factors such as a lack of information at the farm level in terms of 

diagnosis and the impact of imprudent ABU on ABR. 

 

Drivers of ABR were hypothesised to be the direct use of antibiotics, or indirect use through 

the utilisation of manure from poultry and other species to enrich the water during the grow- 

out stage, as well as water and resources polluted with antibiotics or antibiotic-resistant 

bacteria. In the workshop discussions, some participants stated that the farmers only use 

antibiotics therapeutically and not to promote growth, and that losses due to outbreaks of 

disease are the main problem for the industry. However, other participants stated that 

antibiotics may sometimes be used prophylactically with the aim of improving growth or 

preventing disease outbreaks. A consensus was not reached, so further information needs 

to be sought from the relevant stakeholders in the field. Moreover, the value of the stock 

present at the grow-out stage was suggested to be an incentive for ABU at this stage. 

 

Potential interventions to reduce ABU and ABR in the white-leg shrimp and striped catfish 

systems were identified during the workshop (Table 5), along with the actor(s) deemed best 

placed to lead each intervention. Suggested interventions ranged from those targeted at the 

farm level, to those directed at market level and at consumers. Many of these interventions 

are likely to require leadership from government and industry, while some that relate to 

management practices could be led and implemented by individual farmers (Table 5). 

 

3.5 Knowledge gaps 

 
A number of knowledge and data gaps became apparent during the workshop. A critical 

problem is the inadequate data on ABU (quantities, quality, types and purposes) at different 

points of the aquaculture value chain, particularly at farm level, but also in terms of sales of 

drugs at the retail and wholesale levels. In addition, there is little information to allow 

quantification of the risk of exposure at different points in the system, such as the levels of 

residues or the prevalence of economically important fish and shrimp diseases, zoonotic 

bacteria and ARG at the different hotspots. This is due to a lack of surveillance meaning that 

management of disease outbreaks and ABR is currently reactive, and thus similar to the 

situation observed in many other countries and food production systems (Goutard et al., 

2017). In all, this makes it extremely difficult at this time to conduct risk analysis to determine 

the importance of the multiple potential pathways for exposure to antibiotic-resistant bacteria 

and residues in the system. 
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Another important area identified in which knowledge is lacking is on the drivers of human 

behaviour in relation to ABU, and the potential role and impact of incentives and other 

interventions designed to achieve changes in behaviour. Once again, this is a knowledge 

gap not only in aquaculture but across agricultural sectors. Workshop participants were 

unable to identify any social norms or values that would influence the behaviour of 

producers; instead, economic drivers were deemed likely to be most influential. 

 

In terms of the structure of the two systems, participants reported a lack of information on 

how production is related to, and integrated with, other agricultural systems such as pigs, 

poultry and crop production, and the effect that ABR in aquaculture can have on these other 

production systems and vice versa. Moreover, government policy at national and regional 

level is encouraging integration of different production systems through co-cultivation, such 

as rice and shrimp. While information on these systems is collected and detailed in 

government reports, this is not always available publicly. 

 

Finally, the participants reported a lack of denominator data for residue failures at testing of 

products destined for export. Residue testing is performed by NAFIQAD, but information on 

the number of tests performed is lacking, and typically importing countries will only report the 

number of shipments of a product that failed their own tests at the border. Further, as testing 

for residues in aquaculture-produced food for domestic consumption is not performed 

routinely, few data are available on this subject. 

 

 
 
 

4. Discussion 
 

 
 

The aim of this study was to map the components, interactions and flow of products in two 

distinct commercially important aquaculture systems to identify potential hotspots for the 

emergence and selection of ABR and hotspots for human exposure to antibiotics, antibiotic- 

resistant bacteria and ARG. Concomitantly, the study sought to identify potential drivers of 

ABU and interventions to reduce ABU and ABR in the selected systems, specifically striped 

catfish and white-leg shrimp production in Vietnam. 

 

A systems-thinking approach was taken to address this problem, as it helps to bring together 

the views of different stakeholders and fosters interactions between subject experts, while 

combining into the same analytical framework diverse concepts ranging from molecular 

microbiology to social sciences, thus allowing a comprehensive understanding of the 

complexities of systems and allowing identification of knowledge gaps (Peters, 2014). Such 

an approach was necessary to develop a thorough knowledge of how the systems operate, 

so that the emergence and transmission of ARG and antibiotics could be followed through 
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the production systems. Complex ecological problems such as ABR cannot be solved by 

focusing on individual processes; rather, a focus on understanding systems in their totality is 

needed in order to identify different components and their interaction, assess feedback loops 

and predict behaviours (Goutard et al., 2017; Hinchcliffe et al., 2018). 

 

Maps of components in the striped catfish and white-leg shrimp systems allowed the 

identification of potential hotspots for the emergence of ABR (which is more likely to occur in 

the presence of antibiotics) in bacteria, and human exposure to antibiotics and antibiotic- 

resistant bacteria. In general, similar hotspots were identified across both systems, 

particularly in terms of the roles of the grow-out stages and the Mekong River. Some 

differences were observed post-harvest, mainly due to the difference in intended markets. In 

line with our hotspots, previous studies have detected the presence of antibiotic residues in 

aquaculture production in Vietnam: Le et al. (2005) detected sulphonamides, quinolones and 

trimethoprim at black tiger shrimp farms located in the mangroves of Thai Binh Province, 

Nam Dinh Province, Can Gio district – Ho Chi Minh City, and Ca Mau Province, while 

Andrieu et al. (2015) detected enrofloxacin up to 680 ng L-1 at the wastewater discharge 
 

point from striped catfish farms. Further, Giang et al. (2015) reported the presence of at least 

one antibiotic in 91.6% of 154 surface water samples from areas of the Mekong Delta that 

receive aquaculture wastewater, while Nakayama et al. (2017) reported the presence of 

sulphonamides and ARG to sulphonamides and beta-lactams in freshwater and aquaculture 

sites in Can Tho city. Together, these observations support the grow-out stage and the 

Mekong River to be critical points for the potential emergence and dissemination of ARG in 

the environment. 

 
 

The environment is an often neglected pathway in ABR studies, assessments and policies. 

One study suggests that a lack of enforcement of legislation means that the disposal of 

wastewater from aquaculture into the environment is common practice in the Mekong Delta. 

In addition, the costs of wastewater treatment are greater than the fine imposed for 

environmental pollution so the incentive for change in the sector is low (Genschick, 2011). 

There remains a high degree of uncertainty as to the role of the environment as an output 

(potentially receiving and harbouring ARG and residues from the system and agricultural 

wastewater) and, simultaneously, as an input into the system through use of this 

contaminated resource for culture (Berendonk et al., 2015; Berglund, 2015; Chuah at al., 

2016; Thanner et al., 2016; Watts et al., 2017). The impact of antibiotics entering the 

environment is poorly understood (Binh et al., 2018), though the presence of antibiotics in 

wastewater discharged into the Mekong River is associated with reductions in bacterial 

diversity (Nakayama et al., 2017). Effects on bacterial communities may have important 
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implications for the functioning of environmental ecosystems and the emergence of ABR, 

with the impacts of this yet to be understood (Berendonk et al., 2015; Thanner et al., 2016; 

Watts et al., 2017). 

 

Industry consolidation in aquaculture in Vietnam has been driven by international trade 

requirements (Nguyen and Jolly, 2018), and this has created opportunities for entrepreneurs 

to meet the needs of the domestic consumers for affordable aquatic protein by producing 

animals more cheaply, as well as culturing alternative species (Belton et al., 2018). This 

divergence in producing for export and domestic markets is observed in the shrimp sector in 

Vietnam. Consumer perception can drive improvements in farming practices with respect to 

ABU and this is a potentially powerful force that can be exerted by consumers, either in- 

country or in the major export territories (Holmyard, 2013; Rico et al., 2013). Though this 

pressure may not be as intense in domestic production, it may be an important force to 

harness in future to encourage practice improvements, especially as aquatic products 

represent a considerable proportion of the diet in Vietnam (Pham et al., 2015). The 

importance of aquatic food is likely to increase and, along with it, so might the influence of 

the domestic consumer. Further research is needed to explore how the information gathered 

about the system and stakeholders in this present study could support an ex-ante 

assessment on how shaping consumer demand will impact the structure and operation of 

the system. 

 
A key question remains around the introduction of improved practices: will there always be a 

market for cheaper products produced to lower standards? This may be so, but there is a 

clear need to move towards more sustainable animal protein production to meet the 

demands of an expanding human population (FAO, 2018). The increasing intensification of 

production for domestic consumption perhaps paves the way to increased consolidation in 

future domestic supply (Belton et al., 2018). Such industrial consolidation of products for 

local consumption might deliver improved production practices that, in turn, could reduce 

reliance on antibiotics. However, there likely will still be a need for economic incentives or 

enforceable regulation on the use of antibiotics in this market to ensure prudent ABU and an 

effective reduction in total ABU (O’ Neill, 2015; Henriksson et al., 2018). In addition, it is the 

farms transitioning to intensive production that are most likely to require antibiotics to 

maintain production as culture intensity increases, but the ability to invest capital in improved 

biosecurity and disease prevention measures has yet to be realised through increased 

profitability (Nguyen and Ford, 2010; Rico et al., 2013). Support could be offered through 

temporary subsidies or attractive loans to producers who aim to change their production 

system. 
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The majority of potential interventions to reduce ABU and ABR identified at the workshop 

require leadership and support from government and industry. While the roles of government 

agencies were clearly defined at the workshop, the role of industry leaders was not so 

apparent. It is crucial that industry is engaged to provide leadership and support for 

interventions to reduce ABR. The feasibility and effectiveness of each intervention identified 

will vary according to the production system. The consolidation of the striped catfish sector 

to farm high-quality products for export has meant that the sector has been able to invest in 

improved biosecurity and disease prevention measures, which includes better training of 

farm workers, preparation of standard operating procedures and improved record keeping 

(Holmyard, 2013, Phu et al., 2016; Chuah et al., 2016). Certification of aquaculture products 

for securing international trade has been an important driver to improve biosecurity, farm 

management and animal husbandry practices, including responsible ABU, thus proving that 

this powerful incentive can improve farming practices (FAO, 2011; Henriksson et al., 2018). 

The resources for such investment in farming practice improvements are less readily 

available to farmers and organisations that may be producing for domestic consumption, as 

these generally produce smaller volumes of products for lower profit (Belton et al., 2018; 

FAO, 2018). Smaller farms are more likely to lack robust biosecurity and therefore might be 

more vulnerable to epizootic events when intensifying production, and consequently may 

rely more heavily on antibiotics to protect animal health as a cost effective option (Rico et al., 
 

2013; Phu et al., 2016). Some interventions to reduce ABU and ABR are aimed at 

addressing farmer knowledge of best practice and awareness of ABR. Pham et al. (2015) 

found that only 16% of farmers knew about regulations relating to ABU in aquaculture. 

However, in a recent survey, aquaculture producers had significantly (p<0.01) better 

knowledge of ABR compared to pig and poultry producers in Vietnam (Phuc et al., in 

preparation). Both studies suggested that farmers tended to rely on information on ABU and 

ABR from drug sellers and drug companies (Pham et al., 2015; Phuc et al., in preparation), 

and this is consistent with our present study, although other information providers ranging 

from government extension officers to feed companies to farmer cooperatives were also 

identified. There is a conflict of interest in the role of drug sellers as information providers 

because there is a financial incentive for drug companies to promote the use of their 

antibiotics to farmers, with drug sellers usually paid by commission. The provision of 

information by local government extension officers could help improve practices by farmers 

(Phu et al., 2016); however, Pham et al. (2015) reported that only 32% of farms surveyed 

were inspected by officials and this was usually only to assess water quality. Strengthening 

communication between farmers and government extension officers might offer an 

opportunity to reduce inappropriate ABU and ABR. 
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A key knowledge gap identified by workshop participants was the lack of information on ABU 

at different points of the systems. A study of various aquaculture systems across Asia found 

that all 17 striped catfish farmers surveyed in Vietnam used antibiotics (17 different 

antibiotics belonging to 10 classes) (Rico et al., 2013), while another reported that farmers in 

northern Vietnam used antibiotic tablets sold for human use to treat fish (Chi et al., 2017). 

Moreover, fluoroquinolones, which have been banned from use in aquaculture in Vietnam 

since 2009, are still reportedly used in striped catfish and white-leg shrimp farming (Andrieu 

et al., 2015; Chi et al., 2017). Phu et al. (2016) found that striped catfish farmers in Vietnam 

reported using 24 antimicrobials, and Rico et al. (2013) calculated that 93 g of antibiotics 

were used per tonne of harvested fish, which is actually lower than estimated for other meat 

production sectors such as pigs and chickens (Van Boeckel et al., 2015). A recent review by 

Binh et al. (2018) summarised knowledge of ABU and ABR from existing independent 

surveys, and highlighted the lack of structured monitoring and surveillance in the AMR 

National Action Plan of Vietnam. Binh et al. (2018) reported that more than 30 antibiotics are 

permitted for use in aquaculture in Vietnam, including those described as critically important 

antimicrobials for human medicine by the WHO (WHO, 2017), and the authors concluded 

that determining the prevalence of antibiotics in the aquatic environment is essential for the 

success of the National Action Plan of Vietnam. 

 

Another knowledge gap identified in this present study was how aquaculture production is 

integrated with other agricultural food production systems. Integrated agriculture-aquaculture 

systems, which are sustained by the addition of waste from livestock and human sources, 

have been encouraged in Vietnam due to their claimed economic efficiencies (Hai et al., 

2015). For example, integrated shrimp farming and rice farming accounted for 40,350 ha of 

the farming area in Ca Mau province in 2013, with a harvest size of 20-40 individuals/kg. It 

generated the second highest annual production yield among different types of agricultural 

production with 475.5 kg/ha/year (Department of Agriculture and Rural Development, 2013). 

While such integrated farming may be economically beneficial, it may also pose a risk for 

contamination of the aquatic environment with antibiotics, antibiotic-resistant bacteria and 

ARG from livestock and plant-based agriculture (Hoa et al., 2010, Hoa et al., 2011; Watts et 

al., 2017). 

 

Many farmers work with low margins so every dollar invested has to yield profit. Often 

alternatives are not perceived to be as effective as antibiotics, and even if individual 

interventions are low cost, the upfront outlay can be prohibitive. Vaccines, for example, may 

help to prevent disease but are often pathogen-specific, and so a farmer might need to 

invest in several while just one antibiotic may be used to treat a range of bacterial diseases 

(Phu et al., 2016; Henriksson et al., 2018). As identified in this present study, the key 
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hotspots for human exposure to antibiotics in white-leg shrimp and striped catfish culture are 

largely similar; however, the solutions that will lead to reduction and elimination of these 

human exposure points will likely be distinct between the systems. Though vaccines may be 

effective to reduce ABU in striped catfish culture if they are available and used correctly, 

alternatives (such as biofloc and pre- and probiotics) may be more effective in white-leg 

shrimp culture because these organisms do not possess adaptive immunity on which 

vaccination relies (Witteveldt, 2004). Other solutions not indicated on the maps but that may 

reduce or eliminate ABU would be the development of breeds that naturally resist bacterial 

pathogens (Cock et al., 2009; Moss et al., 2012). 

 

One limitation of this present study was the lack of industry (producers and input providers 

such as feed and drug sellers) and consumer-group representation at the workshop, as well 

as attendees from other governmental agencies. These stakeholders would have provided 

valuable additional insights into the structure and risk points in the systems, and helped to 

support some of the observations. It may be that alternative approaches such as interviews 

would be better suited to engage these stakeholders, and these will be incorporated into 

follow up activities. Furthermore, in this present study, we focused on two aquaculture 

systems in Vietnam and as such our findings are context specific. However, many of the 

observations, findings and conclusions can be generalised and applied to other systems with 

similar characteristics in different locations. Indeed, it is likely that bespoke strategies will 

need to be developed for different territories and sectors (O’ Neill et al., 2015). 

 

4.1 Conclusion 

 
By using systems thinking and mapping by stakeholders to identify hotspots we have 

demonstrated the applicability of an integrated, interdisciplinary approach to characterising 

ABU in aquaculture in order to understand fully the consequences of ABU, how this relates 

to the emergence and spread of ABR, and ultimately its public health impacts. This work 

provides a platform to quantify risks at different points, understand interactions between 

components, and identify key stakeholders who can lead and implement change. The maps 

generated from this participatory approach can be used to understand the flow of antibiotics, 

antibiotic-resistant bacteria and ARG in the system and they offer a basis for identifying 

points where an intervention may reduce ABU, antibiotic-resistant bacteria and ARG, while 

allowing evaluation of the effectiveness of interventions through identifying points that best 

allow quantitative monitoring (i.e. through surveillance measures) of these risks. 
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Figure 1. Map of the striped catfish production system in the Mekong Delta, Vietnam. 
 

 

RIAs (Research Institute for Aquaculture 1, 2 & 3), MARD (Ministry of Agriculture and Rural Development), MoH (Ministry of Health), NEC (National Extension Center), D-Fish (Directorate of 

Fisheries), DAH (Department of Animal Health), NAFIQAD (National Agro-Forestry-Fisheries Quality Assurance Department), VASEP (Vietnam Association of Seafood Exporters and Producers) 
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Figure 2. Map of the white-leg shrimp production system in the Mekong Delta, Vietnam. 
 

 
 

RIAs (Research Institute for Aquaculture 1, 2 & 3), MARD (Ministry of Agriculture and Rural Development), MoH (Ministry of Health), NEC (National Extension Center), D-Fish (Directorate of 

Fisheries), DAH (Department of Animal Health), NAFIQAD (National Agro-Forestry-Fisheries Quality Assurance Department), VASEP (Vietnam Association of Seafood Exporters and Producers); 

prophylactic health products refer to a range of feed supplements often added to feed such as prebiotics and probiotics 
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Table 1. Organisations represented at the workshop and broad areas of expertise. 
 

Organisation Expertise 

Royal Veterinary College, University of London 
Veterinary epidemiology, public health, agri-health and 
economics 

 

Institute of Aquaculture, University of Stirling Aquaculture, microbiology and biotechnology 
 

London School of Hygiene and Tropical Medicine Epidemiology and medical anthropology 
 

International Livestock Research Institute 
Veterinary epidemiology, agricultural economics, Eco health 
and food safety 

 

WorldFish Aquaculture and aquatic animal health management 

Chittagong Veterinary and Animal Sciences University, 
Bangladesh 

Veterinary epidemiology, microbiology, public health and 
aquatic biotechnology 

Research Institute for Aquaculture No. 1, Vietnam Aquaculture and aquatic animal health 

National Institute of Veterinary Research, Vietnam Veterinary hygiene and food safety 

Vietnam National University of Agriculture Veterinary medicine and animal science 

Hanoi University of Public Health 
Human medicine, epidemiology, public health and 
environmental health 

Can Tho University Aquaculture and aquatic animal physiology and health 

International University, Vietnam National University, Ho 

Chi Minh City 
Aquaculture and marine biotechnology
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Table 2. Putative key hotspots for emergence and selection of antimicrobial resistance genes and bacteria identified from the striped catfish and white-leg 
shrimp maps and the reasoning underlying their inclusion. 

 

 
Hotspot Reasoning 

 
 

Mekong 

 
Production of early life stages 
(broodstock, hatchery, nursery, 
seed company) 

 
 
 

 
Grow-out stage 

 

Waste  contaminated  with  antibiotic  residues  and  antibiotic-resistant  bacteria 
discharged from aquaculture, agriculture and human activities into environment 
may encourage emergence of antibiotic resistance and selection of ABR bacteria Use 
of medicated feeds and culture water containing antibiotics to prevent or treat 
disease may encourage emergence of antibiotic resistance and selection of ABR 
bacteria, particularly if not used correctly 
Use of medicated feeds containing antibiotics to treat or prevent disease (in large 
quantities, if used) may encourage emergence of antibiotic resistance and selection 
of ABR bacteria, particularly if not used correctly 
Introduction of water (and sometimes waste solids) contaminated with antibiotic 
residues and ABR bacteria from the environment 
Animals spend the greatest time at this stage of production and longer exposure 
increases the likelihood of emergence and selection for resistance Cumulative 
effect of antibiotic use in earlier stages of production may mean bacteria in the 
system at this stage are enriched already for ABR bacteria and ARG 

Harvest 
Antibiotics possibly used in liquid during transport of live animals may encourage 
emergence of antibiotic resistance and selection of ABR bacteria 

Consumption Antibiotic residues in contaminated food may act on the human microbiota to 
encourage the emergence of antibiotic resistance and selection of ABR bacteria 

Other agriculture Use of water and solid waste contaminated with antibiotic residues and ABR 
bacteria containing ARG may enter other food production systems 

Drug producers and sellers, feed 
companies 

Inappropriate handling and disposal of antibiotics during manufacture of 
antibiotics and medicated feeds may encourage emergence of antibiotic resistance 
and selection of ABR bacteria by acting on the human microbiota or bacteria in 
wastewater 

Wastewater Water   contaminated   with   antibiotic   residues   discharged   from   aquaculture, 
agriculture and human activities may encourage emergence of antibiotic resistance 
and selection of ABR bacteria 

ABR (antibiotic-resistant), ARG (antibiotic resistance genes) 
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Table 3: Possible human exposure points to antibiotics and antibiotic-resistant bacteria in striped catfish and white-leg shrimp production systems in Vietnam. 
 
 

Human exposure point Antibiotic ABR bacteria 
 

Occupational 
 

 Seed company operatives (shrimp only)  

 

 Hatchery and nursery operatives - preparation of medicated feed (striped catfish only)  
 

 Hatchery and nursery operatives - administration of medicated feed (striped catfish only)  

 Hatchery and nursery operatives - contact with contaminated culture water (striped 
 

catfish only) 
 Hatchery  and  nursery  operatives  -  contact  with  contaminated wastewater (striped 

 

catfish only) 
 Hatchery and nursery operatives - contact with contaminated inflow water from Mekong 

 

River (striped catfish only) 
 Hatchery and nursery operatives - removal of contaminated sediment (striped catfish 

 

only) 
 Hatchery and nursery operatives - contact with contaminated product (striped catfish 

 

only) 

 Grow-out farm workers - preparation of medicated feed  
 

 Grow-out farm workers - administration of medicated feed  
 

 Grow-out farm workers - contact with contaminated culture water  

 

 Grow-out farm workers - contact with contaminated wastewater  

 

 Grow-out farm workers - contact with contaminated inflow water from Mekong River  

 

 Grow-out farm workers - removal of contaminated sediment  

 

 Grow-out farm workers - contact with contaminated product  

 

 Harvesters - contact with contaminated product  

 

 Transporters in the supply chain - contact with contaminated product  

 

 Handlers in the supply chain - contact with contaminated product  

 

 Processing products for feed, by-products or food  

 Feed mill workers - preparation of medicated feed or feed with contaminated waste 
 

product 
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 Food preparers (chefs and cooks) - contact with contaminated product  


 



Medicine store workers - handling of antibiotics 
 

Fruits and vegetable growers - use of contaminated wastewater and sediment 



 





 



Environmental 
 

 Contact with contaminated wastewater through bathing and recreational use  

 

 Contact with contaminated wastewater through washing clothes  

 

 Contact with contaminated wastewater through washing food  

 Contact  with  contaminated  wastewater  through  domestic  cultivation  of  fruits  and 
 

vegetables 
 Contact with sediment from  the  system through domestic cultivation of  fruits  and 

 

vegetables 

 Preparation of contaminated product for consumption  

 

Consumption 
 

 Human consumption of contaminated product  

 Human consumption of contaminated water  

 Human consumption of fruits and vegetables cultivated with contaminated water  

ABR (antibiotic-resistant) 
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Table 4. Factors driving the use of antibiotics in striped catfish and white-leg shrimp production in the Mekong Delta, Vietnam. 

 
Drivers of antibiotic usage 

 

Economic factors 

 Lack of affordable and practical alternatives to antibiotics such as vaccines 

 Easy accessibility (availability, cost) to antibiotic products 

 Lack of capital to invest in producing a higher quality product (e.g. costs of certifications) 

 Increased market demand for products 

Individual factors 

 Low awareness of the broader impact of ABU and ABR 

 The influence of other farmers 

Operational and governance factors 

 High disease burden 

 Inadequate diagnostic capacity 

 Low level of effective assistance in the field by extension services to tackle aquatic diseases 

 The influence of pharmaceutical and feed companies 

 Seen as an easier (and lower cost) alternative to good biosecurity and better production management 

 Lack of/poor enforcement of existing regulation on ABU 
 

ABR (antibiotic-resistant), ABU (antibiotic usage) 
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Table 5. Potential interventions to reduce the use of antibiotics in striped catfish and white-leg shrimp production in the Mekong Delta, Vietnam 

 

 

Potential interventions Suggested stakeholder lead 

 
Improvement of hygiene and biosecurity Farmer / Industry 

 
Use of specific pathogen-free stock Farmer / Industry 

 
Promotion and application of better management practices e.g. Vietnamese Good 

Agricultural Practices (VietGAP) 
Farmer / Industry

 
 

Development of breeds less susceptible to bacterial diseases Industry 

 
Formalisation of farmer cooperatives for knowledge sharing Industry 

 
Improve availability of alternatives to antibiotics, such as vaccines, probiotics, 

prebiotics, immunostimulants, immunomodulators 
Industry / Research

 
 

Removal of commission structure for drugs sellers and drug company quotas Government 
 

Design and implementation of  disincentives for ABU and incentives to  produce 

antibiotic-free products 
Government / Industry

 

Development and application of certification systems for antibiotic-free products and 

harmonisation of third party existing schemes to improve enforcement 
Government / Industry

 
 

Creation and implementation of ABR awareness campaigns targeted at farmers Government / Industry 
 

Consumer awareness campaigns to encourage smart choices by consumers e.g. 

Food Clear Association 
Government / industry

 
 

Development of rapid tools and increased diagnostic capacity in the field 
Research / Government / 

Industry 

ABR (antibiotic-resistant), ABU (antibiotic usage) 
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