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1 Abstract

2

3 Effective communication between the maternal reproductive tract, gametes and the pre-

4 implantation embryo is essential for the successful establishment of pregnancy. Recent 

5 studies have recognised extracellular vesicles (EVs) as potent vehicles for intercellular 

6 communication, potentially via their transport of microRNAs (miRNAs). The aim of the current 

7 investigation was to determine the size, concentration and electrical surface properties (zeta 

8 potential) of EVs secreted by; (1) primary cultures of porcine oviductal epithelial cells (POECs) 

9 from the isthmus and ampullary regions of the female reproductive tract; (2) Ishikawa and 

10 RL95-2 human endometrial epithelial cell line cultures; and (3) the non-reproductive epithelial 

11 cell line HEK293T. In addition, this study investigated whether EVs secreted by POECs 

12 contained miRNAs. All cell types were cultured in EV-depleted medium for 24 or 48 hours. 

13 EVs were successfully isolated from conditioned culture media using size exclusion 

14 chromatography. Nanoparticle tracking analysis (NTA) was performed to evaluate EV size, 

15 concentration and zeta potential. QRT-PCR was performed to quantify the expression of 

16 candidate miRNAs (miR-103, let-7a, miR-19a, miR-203, miR-126, miR-19b, RNU44, miR-92, 

17 miR-196a, miR-326 and miR-23a). NTA confirmed the presence of EVs with diameters of 50-

18 150 nm in all cell types. EV size distribution was significantly different between cell types after 

19 24 and 48 hours of cell culture and the concentration of EVs secreted by POECs and Ishikawa 

20 cells was also time dependent. The distribution of EVs with specific electrokinetic potential 

21 measurements varied between cell types, indicating that EVs of differing cellular origin have 

22 varied membrane components. In addition, EVs secreted by POECs exhibited significantly 

23 different time dependant changes in zeta potential.  QRT-PCR confirmed the presence of miR-

24 103, let-7a, miR-19a, miR-203, miR-126, and miR-19b in EVs secreted by POECs (CT ≥29). 

25 Bioinformatics analysis suggests that these miRNAs are involved in cell proliferation, innate 

26 immune responses, apoptosis and cellular migration. In conclusion, reproductive epithelial 

27 cells secrete distinct populations of EVs containing miRNAs, which potentially act in 
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1 intercellular communication in order to modulate the periconception events leading to 

2 successful establishment of pregnancy.

3

4

5 Keywords: 

6 Extracelluar vesicle, oviductal epithelial, MicroRNA, exosome.
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1 1. Introduction

2

3 Beneficial communication between the female reproductive tract and the gametes is essential 

4 for the successful establishment of fertilisation [1]. In order for spermatozoa to fertilise an 

5 oocyte in the oviduct, they must first travel through the complex structures of the female 

6 reproductive tract, where they undergo biochemical modification and sperm selection [2]. 

7 Recent studies have sought to determine the complex molecular interactions between 

8 spermatozoa and the cells of the female reproductive tract, investigating mechanisms of 

9 gamete storage in the oviduct [2-3], the control of gamete maturation [4] and the selection of 

10 specific populations of spermatozoa for fertilisation [5]. While significant advances have been 

11 made in the understanding of the resultant effects of exposure of gametes to oviductal fluid 

12 and/or the binding of spermatozoa to oviductal epithelial cells, specific details regarding 

13 intercellular communication remain elusive [6-10]. 

14  

15 It is widely accepted that extracellular vesicles (EVs) are powerful vehicles for intercellular 

16 communication in a wide variety of physiological systems [11-14]. The term EV refers to a 

17 diverse classification of vesicles secreted by the cell and includes microvesicles (50-1000 nm 

18 in diameter and of plasma membrane origin), exosomes (50-150 nm in diameter, originating 

19 from endosomal cellular compartments) and apoptotic bodies (100-2000nm in diameter) [14-

20 18]. EVs are composed of a lipid bilayer containing transmembrane proteins and enclosing 

21 soluble proteins, DNA, and RNA (including microRNAs) [12, 15, 19-20]. Once secreted by 

22 their cell of origin, it is thought that recipient cells are able to target and bind EVs via their 

23 surface proteins thus mediating communication between cell types [21]. 

24
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1 In the mammalian reproductive system, EVs have been identified in semen [22], uterine fluid 

2 [23-24], oviductal fluid [25-26] and follicular fluid [27], where they have been reported to be 

3 involved in gametogenesis, fertilization, embryogenesis and embryo development [24, 28-29]. 

4 Data from our research group have demonstrated that EVs are secreted by both uterine and 

5 oviductal epithelial cells of the porcine female reproductive tract [30]. Moreover, in humans, 

6 endometrial epithelial cells have been shown to secrete EVs, which carry extracellular matrix 

7 metalloprotease inducer (EMMPRIN) for the production of matrix metalloproteinase in uterine 

8 stromal fibroblast cells, an essential component of endometrial remodelling during the 

9 menstrual cycle and during embryo implantation [23, 31-32]. In rodents, oviductal epithelial 

10 cell EVs are known to deliver essential fertility modulating proteins, including plasma 

11 membrane Ca2+ regulatory ATPase 4 (PMCA4), to the spermatozoa in order to modulate 

12 sperm storage, capacitation and acrosome reaction [25]. More recently, Alminana et al. [33] 

13 have shown that EVs secreted by bovine oviductal epithelial cells in vivo and in vitro, contain 

14 proteins known to be involved in sperm-oocyte binding, fertilisation and embryo development. 

15 Since the discovery of EVs on the apical surfaces of oviductal and endometrial epithelial cells, 

16 and also in oviductal and uterine fluid, research into the roles of EVs within the reproductive 

17 system have given some clues as to the mechanisms that might be used to achieve successful 

18 intercellular communication.

19

20 It is thought that EVs might facilitate their potent effects on intercellular communication via 

21 their transport and delivery of microRNAs (miRNAs) [13]. MiRNAs are known to influence both 

22 the protein translocation of genes, and the non-coding RNA mediated signalling cascades that 

23 regulate differential splicing events and thus impact cellular processes [34]. As the interaction 

24 of gametes with the maternal reproductive tract is known to be accompanied by the 

25 upregulation of proteins in maternal tract epithelia, a potential mechanism of regulation for 

26 these interactions might be via EV-mediated miRNA delivery [35-37]. Recently, we have 

27 obtained data indicating that spermatozoa secrete EVs that interact with oviductal epithelial 
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1 cells when in sperm-oviduct co-cultures [38]. MiRNAs have previously been detected in 

2 spermatozoa and it is interesting to note that sperm miRNA complement differs between fertile 

3 and infertile men [39]. Further clarification of the miRNA content of EVs secreted by oviductal 

4 epithelial cells, and their potential modification of both the gametes and the female tract itself, 

5 would have significant implications for the targeting of assisted reproductive technologies.

6

7 To date, EVs have been characterised based on their size and concentration, and their 

8 expression of specific biomarkers including the Tetraspanins [40-42]. In addition, scanning 

9 electron microscopy (SEM) has proved to be a useful tool for the demonstration of the 

10 presence of EVs isolated from cell culture medium, urine, plasma and breastmilk, however, 

11 this technique is not quantitative and provides no detailed information regarding the size 

12 distribution or the total number of EVs within a given sample [42]. Here, we describe a novel 

13 method for establishing the characteristics of individual extracellular vesicles in real time using 

14 nanoparticle tracking analysis (NTA) by ZetaView® (Particle Metrix, Germany). NTA uses 

15 laser scattering microscopy to detect the random movement of individual EVs within a solution. 

16 The ZetaView® NTA software uses video tracking to measure the rate of EV Brownian motion 

17 to calculate the diffusion coefficient and thus determine particle size and concentration [16, 

18 43]. In addition to determining EV size parameters, ZetaView® NTA is able to measure the 

19 electrokinetic potential, or zeta potential, of the interfacial region between the EV surface and 

20 its aqueous environment [44-45]. This zeta potential measurement is able to provide us with 

21 important information regarding the stability of the colloid system, since it measures the 

22 attraction or repulsion between particles, by providing an indication of the magnitude of their 

23 electrostatic charge [44, 46-47]. However, perhaps more importantly, the zeta potential 

24 measurement reflects the surface charge of the EV membrane [48]. As plasma membrane 

25 composition is known to influence cellular surface charge, and thus zeta potential [49], it is not 

26 unreasonable to assume that the content of the EV membrane might also be reflected in its 
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1 zeta potential providing us with a mechanism for classifying EVs based on their membrane 

2 content [48].

3

4 Given the increased interest in the potential of EVs as facilitators of intercellular 

5 communication and the application of this new technology across all physiological systems, it 

6 is imperative that we develop rigorous in vitro systems with which to study the content, action 

7 and effects of EVs secreted by different cell types. Moreover, the identification of EV miRNAs 

8 and the clarification of their function in mediating intercellular communication, will enhance our 

9 understanding of how cells are able to influence the physiology of their surrounding 

10 environment. This is of particular importance for our understanding of reproductive physiology, 

11 where defining the type and function of EVs that are produced by different reproductive cells 

12 will provide important insights into the mechanisms influencing fertilisation by natural 

13 conception and assisted reproductive technologies. Therefore, the aim of this present study 

14 was to develop an in vitro system for the production, isolation and characterisation of EVs 

15 secreted by porcine oviductal epithelial cells (POECs) in primary culture, human endometrial 

16 epithelial cell lines (Ishikawa and RL95-2), and the non-reproductive human embryonic kidney 

17 epithelial cell line HEK293T. In addition, we will determine whether POECs secrete EVs that 

18 contain bioactive molecules including EV-specific protein biomarkers and miRNAs. 

19

20

21

22

23

24
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1 2. Materials and methods 

2

3 2.1. Cell culture 

4

5 2.1.1. Primary porcine oviductal epithelial cell (POEC) cultures.

6 Oviducts were obtained from reproductively immature gilts immediately after slaughter at a 

7 local abattoir (N.Bramall and Sons Ltd., UK). The oviducts were dissected on site from 

8 supporting mesentery, ovaries and uterine horns and were transported back to the laboratory 

9 on ice in Dulbecco’s Phosphate Buffered Saline (DPBS) with calcium and magnesium 

10 supplemented with a 2% antibiotic antimycotic mix (10,000 units/ml penicillin, 10 mg/mL 

11 streptomycin and 25 µg/ml amphotericin) (Sigma-Aldrich®, Poole, UK). In the laboratory, the 

12 oviducts and oviductal lumens were washed three times with DPBS (Sigma-Aldrich®) 

13 supplemented with the 2% antibiotic antimycotic mix. Oviducts were then tied with a cotton 

14 ligature at the ampullary end, filled with 0.25% collagenase solution (Sigma-Aldrich®) and 

15 closed at the utero tubal junction (UTJ) with an additional cotton ligature. Oviducts were 

16 incubated in Hank’s Balance Salt Solution (Sigma-Aldrich®) in a humidified atmosphere of 5% 

17 CO2 in air, at 39⁰C for 90 minutes. Thereafter, the oviducts were cut at the ampullary end and 

18 the luminal content, containing the POECs, was harvested by squeezing the lumen content. 

19 For investigations comparing POECs from different regions of the oviduct, the oviduct was 

20 bisected at the isthmus-ampullary junction and porcine ampulla epithelial cells (PAECs) and 

21 porcine isthmus epithelial cells (PIECs) were recovered from the ampullary and isthmic 

22 regions of the oviduct, respectively. POECs, PAECs or PIECs were placed into F-12 Ham 

23 Nutrient Mixture medium supplemented with 10% (v/v) foetal bovine serum (FBS; Sigma-

24 Aldrich®), 1% (v/v) antibiotic antimycotic mix (Sigma-Aldrich®). The harvested POECs, 

25 PAECs or PIECs, were washed 3 times with complete medium by centrifugation at 300 x g at 

26 room temperature for 5 minutes. Cell pellets were treated with cold distilled water to remove 

27 red blood cells and were then washed once more by centrifugation at 300 x g at room 
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1 temperature for 5 minutes. POECs, PAECs or PIECs, were seeded in T75 flasks (1 x 106 cells 

2 per flask) (Greiner, Frickenhausen, Germany) and cultured in F-12 Ham Nutrient Mixture 

3 medium supplemented with 10% (v/v) FBS (Sigma-Aldrich®) in a humidified atmosphere of 

4 5% CO2 in air, at 39⁰C. Culture medium was refreshed every 48 hours. After 4-5 days in 

5 culture, all cells had reached confluency. At confluency, POECs, PAECs and PIECs were 

6 harvested using trypsin-EDTA solution (Sigma-Aldrich®) and pelleted by centrifugation at 300 

7 x g for 4 minutes before resuspension in culture media. 

8

9 In order to isolate EVs, POECs, PAECs and PIECs (3 x 106 cells or 3 x T75 flasks where each 

10 flask contained 1 x 106 cells) were grown in F-12 Ham Nutrient Mixture medium supplemented 

11 with 10% (v/v) FBS. At 40% confluency, the medium was replaced with F-12 medium 

12 supplemented with 10% EV-depleted FBS and 1% (v/v) antibiotic antimycotic (Sigma-

13 Aldrich®). Conditioned medium containing POEC-EVs was collected 24 hours and 48 hours 

14 after the culture medium was changed to an EV-depleted FBS media. Conditioned medium 

15 containing PAEC-EVs or PIEC-EVs was collected 48 hours after the culture medium was 

16 changed to an EV-depleted FBS media. All the experiments were performed using 3 biological 

17 replicates (independent porcine POEC, PAEC or PIEC cultures produced from porcine 

18 oviducts collected on different days) and 3 technical replicates (independent cell culture 

19 flasks).

20

21 2.1.1.1. Preparation of EV-depleted FBS

22 EV-depleted FBS was prepared by ultracentrifugation of FBS (Sigma-Aldrich®) at 100,000 x 

23 g overnight at 4°C (Beckman-Coulter, OptimaTM LE-80K ultracentrifuge, type 45 Ti rotor). The 

24 resulting supernatant was filtered through a 0.22 µm filter. Following ultracentrifugation and 

25 filtration, the concentration of EVs in the resultant EV-depleted FBS was determined by NTA. 
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1 NTA was performed using the PMX 110 ZetaView® (Particle Metrix, Meerbusch, Germany),  

2 with ZetaView® sensitivity and shutter parameters set at 85 and 1/70 seconds respectively. 

3 To assess the efficiency of this method for FBS EV depletion, 3 different batches of EV-

4 depleted FBS (biological replicates) were analysed with 3 technical assessments being carried 

5 out on each batch. However, all cell culture experiments reported in this manuscript were 

6 conducted using a single batch of EV-depleted FBS in order to standardise the effects of any 

7 serum-derived growth factors and/or biomolecules on cell proliferation and EV production.

8

9 2.1.2. Immortalised cell line cultures 

10 Human endometrial adenosquamous carcinoma Ishikawa cells (Sigma-Aldrich®), human 

11 endometrial adenosquamous carcinoma RL95-2 cells (American Type Culture Collection, 

12 ATCC; Virginia, USA) and human embryonic kidney epithelial HEK293T cells (ATCC) were 

13 utilised in these investigations. Ishikawa cells were cultured in Minimum Essential Medium 

14 Eagle (Sigma-Aldrich®) supplemented with 10% (v/v) FBS and 1% L-Glutamine (Sigma-

15 Aldrich®). RL95-2 cells were cultured in Dulbecco’s Modified Eagle’s Medium Nutrient Mixture 

16 F-12 (Sigma-Aldrich) supplemented with 10% (v/v) FBS, 1% L-Glutamine and 0.125% insulin 

17 (Gibco, ThermoFisher Scientific, Paisley, UK). HEK293T cells were cultured in Roswell Park 

18 Memorial Institute 1640 (RPMI-1640) medium (Sigma-Aldrich®) supplemented with 10% (v/v) 

19 FBS, 1% L-Glutamine (Sigma-Aldrich®) and 1% Minimum Essential Medium (MEM; Sigma-

20 Aldrich®). For all human cell lines, 3 T75 flasks, where each flask contained 1 x 106 cells, 

21 were seeded and cultured in a humidified atmosphere of 5% CO2 in air, at 37°C. Once the cell 

22 lines reached 40% confluency, medium was removed and replaced with the respective fresh 

23 culture medium supplemented with 10% EV-depleted FBS. Conditioned medium containing 

24 EVs, was collected after 24 hours and 48 hours of cell culture. 

25  

26 2.2. Extracellular vesicle isolation
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1

2 2.2.1. Removal of cells and cell debris from conditioned media

3 Conditioned media containing EVs released from cell lines and primary cultures was 

4 centrifuged at 300 x g for 10 minutes at 4°C and the epithelial cell pellet discarded. The 

5 supernatant was centrifuged at 2000 x g for 10 minutes at 4°C and the pellet containing dead 

6 cells discarded. Finally, the remaining supernatant was centrifuged at 10,000 x g for 30 

7 minutes at 4°C to pellet cellular debris. The final supernatant was concentrated using a 

8 Vivaspin 20 concentration tube (GE Healthcare, Buckinghamshire, UK) (100,000 Da 

9 molecular weight cut off) using a centrifugation force of 2500 x g at 4°C, until 0.5ml of 

10 concentrated conditioned media remained. 

11  

12 2.2.2. Size exclusion chromatography (SEC) 

13 SEC was performed to isolate EVs from free proteins in the conditioned culture media. 

14 Fourteen millilitres of Sepharose CL-2B suspended in 20% ethanol (GE Healthcare, Uppsala, 

15 Sweden) was added to an Econo-Pac chromatography column (Bio-Rad, Hercules, USA) and 

16 allowed to settle until the ethanol had separated from the agarose beads. An upper bed 

17 support was placed into the column at a depth of 10 ml and the separated ethanol layer was 

18 allowed to elute from the column. DPBS (Sigma-Aldrich®) supplemented with 0.03% Tween-

19 20 (Sigma-Aldrich®) (PBS+Tween) was passed through the column twice to wash any 

20 remaining ethanol from the Sepharose beads. Concentrated conditioned media containing 

21 EVs secreted by cell lines and primary cultures was added to the SEC column and 

22 simultaneously the collection of the elution was initiated. For each sample of concentrated EV 

23 conditioned media, a total of 20 fractions were collected from the SEC column, each containing 

24 a volume of 0.5 ml. After the total volume of concentrated EV conditioned media had passed 

25 through the upper bed support, 10 ml of PBS+Tween was added to the SEC column, in order 

26 to create a pressure for elution.

27
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1 2.2.3. Bicinchoninic acid (BCA) assay

2 To determine the relative presence of protein in each of the POEC-EV SEC fractions, protein 

3 content was measured using the BCA assay. Bovine serum albumin (BSA) protein standards 

4 (Sigma-Aldrich®) were prepared with PBS+0.03% Tween (Sigma-Aldrich®), at final 

5 concentrations of 0, 0.2, 0.4, 0.6, 0.8, 1.0 and 2 μg/μl. Ten microlitres of each POEC-EV SEC 

6 fraction and the protein standards were placed into individual wells of a 96-well plate (Greiner 

7 Bio-One, Gloustershire, UK) in duplicate.  Protein standards were used to evaluate any 

8 potential variation in measurements between plates. A 200 µl copper sulphate solution 

9 (Sigma-Aldrich®) with BCA solution (Sigma-Aldrich®) in a 1:50 ratio was added to each well 

10 and the plate was incubated at 37°C for 30 minutes. Absorbance was determined using a 

11 Multiscan EX microplate reader (MTX Labsystems, Bradenton, USA) at a wavelength of 570 

12 nm and analysed using Ascent Software for Multiscan. A calibration curve of protein standard 

13 concentration versus absorption was produced and the protein concentration of each POEC-

14 EV SEC fraction was calculated.

15

16 2.2.4. Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis

17 In order to visualise the relative presence of protein in each POEC-EV SEC fraction, protein 

18 content was profiled using polyacrylamide gel electrophoresis. Fifteen microliters of each 

19 POEC-EV SEC fraction was mixed with 15 µl of 2-fold concentrated reducing sample buffer 

20 with β-mercaptoethanol (5%; Bio-Rad, Watford, UK) and incubated at 95°C for 7 min. Then, 

21 30 µl of each sample and 5 µl of Precision plus proteinTM standard (Bio-Rad) was loaded onto 

22 a 12% SDS-PAGE polyacrylamide gel (National diagnostics, USA) and electrophoresis was 

23 performed for 90 min at 110 V. After that, gels were stained with Coomassie blue R-250 

24 (Sigma-Aldrich®) for 1 hour at room temperature and then washed with destaining solution 

25 several times until the background became clear. 

26
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1 2.3. Western blot analysis of extracellular vesicles in EV-conditioned media using 

2 CD63 and CD9 protein markers

3

4 The presence of EVs in the POEC SEC fractions was confirmed by western blot analysis using 

5 the EV protein biomarkers CD63 and CD9. Six fractions containing the highest concentration 

6 of POEC-EVs (fractions 7 to 12) were pooled and centrifuged at 100 000 x g for 1 hour at 4⁰C. 

7 The pellet was resuspend in radioimmunoprecipitation assay (RIPA) lysis buffer containing 

8 protease inhibitors (Thermo Fisher Scientific, Rockford, USA). Protein concentration was 

9 determined using the BCA assay method as previously described. Protein was resolved on 

10 12% SDS-polyacrylamide gels (National diagnostics), transferred onto polyvinylidene fluoride 

11 (PVDF) membranes (Thermo Fisher Scientific), and blocked with 5% (w/v) non-fat milk powder 

12 suspended in TRIS-buffered saline with tween-20 (TBS-T; Sigma-Aldrich®). Protein blots 

13 were subsequently probed with a CD63 primary antibody (rabbit polyclonal antibody; Santa 

14 Cruz Biotechnology, Dallas, USA) or a CD9 primary antibody (mouse monoclonal antibody; 

15 Bio-Rad) at 1:200 dilution in 5% non-fat milk/TBS-T solution at 4⁰C overnight. Blots were 

16 washed for 5 minutes in TBS-T four times and then incubated in secondary antibody, 

17 polyclonal goat anti-rabbit immunoglobulin/horseradish peroxidase (HRP) (Dako, Denmark) 

18 or polyclonal goat anti-mouse immunoglobulin/HRP (Thermo Fisher Scientific) for CD63 or 

19 CD9 respectively, at 1:2000 dilution at 4°C overnight. The PVDF membrane was then washed 

20 again with TBS-T three times for 10 minutes each. Pierce enhanced chemiluminescence 

21 (ECL) Western Blotting Substrate (Thermo Fisher Scientific; reagents A and B combined at a 

22 1:1 ratio), was applied to the PVDF membrane for a few seconds to facilitate development. 

23 The blot was sandwiched between plastic and exposed to 5” x 7” CL-Xposure™ film (Thermo 

24 Fisher Scientific) in an x-ray cassette (Kodak, New York, USA) for between 5 to 20 minutes. 

25 The film was developed and fixed using a Compact X4 automatic x-ray film processor 

26 (Xograph,Gloucestershire, UK). All western blotting experiments were performed in triplicate.

27

28 2.4. Nanoparticle tracking analysis (NTA)
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1

2 2.4.1. EV size and concentration measurement

3 Following SEC, POEC-EVs in each of 20 column fractions were measured by NTA to quantify 

4 EV size distribution and concentration. For PAEC-EVs, PIEC-EVs and cell line derived EVs, 

5 EV concentration and size distribution was determined in SEC fractions 5 to 15, as these 

6 fractions had previously been identified as containing a high EV concentration and low 

7 contaminating protein content. NTA was performed using the PMX 110 ZetaView® (Particle 

8 Metrix, Meerbusch, Germany). The Brownian motion of each EV was visualised by a laser 

9 light scattering method and tracked over time to calculate particle size using the Stokes-

10 Einstein equation to determine the translational diffusion constant. All NTA measurements 

11 were performed with a ZetaView® sensitivity of 85, a shutter value of 70 (corresponding to an 

12 exposure time of 15 ms) and a frame rate of 30 frames per second. Column fractions were 

13 diluted between 1:20 and 1:200 in filtered distilled water to ensure that the concentration of 

14 EVs in each sample was optimal for ZetaView assessment (final concentration of 2.5 x 107 

15 EVs per ml equates to 150 detected particles by the ZetaView®). In all experiments, three 

16 biological replicates and 3 technical assessments were carried out.

17

18 2.4.2. EV zeta potential measurement

19 Following SEC, POEC-EVs, PAEC-EVs, PIEC-EVs and cell line derived EVs were measured 

20 by NTA to quantify EV electrokinetic potential, or zeta potential (ζ). In all experiments, EVs 

21 from SEC fractions 5 to 15 were pooled for zeta potential analysis. Prior to measurement, the 

22 pooled fractions were diluted 1:100 in 1% PBS plus 0.03% Tween to ensure that the 

23 concentration of EVs in each sample was optimal for ZetaView assessment. EV zeta potential 

24 was measured using the PMX 110 ZetaView® (Particle Metrix). ZetaView® sensitivity was set 

25 at 85, shutter value at 70 (corresponding to an exposure time of 15 ms) and frame rate at 30 

26 frames per second. For the zeta potential measurement, solution conductivity was determined 
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1 to be low (below 2 mS/m), and as such, continuous mode was chosen. A low conductivity 

2 solution contains less ions and thus there are no issues with electro-osmosis factors 

3 influencing electrokinetic potential measurements.  For all samples, pH was measured using 

4 an IQ150 pH meter (Spectrum Technologies, Inc. USA) and if required, pH was adjusted to 

5 6.9 with 1M HCl. All experiments were carried out on 3 biological replicates with 4 technical 

6 replicates.

7

8 2.5. Extracellular vesicle microRNA content analysis

9

10 In order to partially characterise the miRNA content of POEC-EVs, quantitative real time-PCR 

11 (QRT-PCR) analysis was carried out.

12

13 2.5.1. RNA extraction from extracellular vesicles 

14 For RNA extraction, 400 μl aliquots from each of POEC-EV SEC fractions 7-12 were combined 

15 and added to a Vivaspin6 (GE Healthcare, Buckinghamshire, UK) concentration column 

16 (100,000 Da molecular weight cut off), and centrifuged at 2500 x g until 100 μl of a 

17 concentrated sample containing EVs remained. 

18

19 2.5.1.1. Tri-Reagent extraction

20 RNA isolation from POEC-EVs was performed using the TRI Reagent® manufacturer’s 

21 protocol (Sigma-Aldrich®). One millilitre of TRI Reagent was added to 100 µl of concentrated 

22 POEC-EVs. The EV lysate was homogenised by pipetting up and down several times. The 

23 homogenous lysate was transferred into a new tube and incubated for 5 minutes at room 

24 temperature to ensure the complete dissociation of membrane protein complexes. Then, 100 

25 µl of 1-Bromo-3-chloropropane was added to the EV homogenate and the mixture was shaken 

26 vigorously for 15 seconds. After  incubation at room temperature for 15 minutes, the sample 

27 was centrifuged for 15 minutes at 12,000 x g at 4 ⁰C resulting the production of 3 phases; a 
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1 red organic phase (protein), an interphase (DNA), and a colourless upper aqueous phase 

2 (RNA). The colourless aqueous phase was carefully transferred to a new tube and 500 µl of 

3 2-propanol was added. The sample was then incubated at room temperature for 10 minutes. 

4 Subsequently, a centrifugation step was performed at 12,000 x g for 10 minutes at 4 ⁰C. Next, 

5 the supernatant was carefully removed from the tube and the pellet was washed by adding 1 

6 ml 75 % Ethanol and centrifuged at 12,000 x g for 5 minutes at 4 ⁰C. The Ethanol phase was 

7 removed and the pellet was air dried for 5 minutes. Finally, the RNA was eluted with 50 µl 

8 RNAse-free water (Sigma-Aldrich®) and stored at -80 °C.

9

10 2.5.1.2. miRCURY RNA isolation kit 

11 RNA was extracted from concentrated POEC-EV samples using a miRCURY RNA isolation 

12 kit (Exiqon, Woburn, USA) according to the manufacturer’s instructions. In brief, the 

13 concentrated POEC-EV sample was lysed using the lysate buffer provided with the kit and 

14 100% ethanol was added to the sample. The lysate was washed three times using the 

15 provided wash solution, using centrifugation. Elution buffer (provided) was added to the 

16 sample and used to elute RNA by centrifugation. The RNA was treated with RNase-Free 

17 DNase Set (Qiagen, USA) to avoid DNA contamination and was stored at -80 °C.

18

19 2.5.2. RNA detection

20 RNA quality, yield and size was measured using capillary electrophoresis (Agilent 2100 

21 G2938B Model B Bioanalyzer; Agilent Technologies, Santa Clara, USA). Prior to analysis, 

22 RNAs were prepared with the Aqilent small RNA kit (Agilent Technologies) according to the 

23 manufacturer’s protocol. 

24

25 2.5.3. microRNA Expression Analysis

26 Quantification of miRNA expression was performed using the TaqMan miRNA Assay. 

27 Quantification using this assay is carried out using a two-step RT-PCR. First, complementary 

28 DNA (cDNA) is reverse transcribed from total RNA samples using Megaplex Primers Pool A 



ACCEPTED MANUSCRIPT

16

1 from the TaqMan miRNA Reverse Transcription Kit (Applied Biosystems, Foster City, USA). 

2 Second, the TaqMan miRNA Assay together with TaqMan Universal PCR Master Mix was 

3 used to amplify the PCR product from cDNA samples.

4

5 2.5.3.1. Reverse transcription reaction

6 A reverse transcription reaction was performed using the TaqMan miRNA Reverse 

7 Transcription Kit (Applied Biosystems) with Megaplex Primers Pool A according to the 

8 manufacturer’s instructions. Briefly, for each 4.5 µl reaction, the RT master mix comprised 0.8 

9 µl Megaplex™ RT Primers (10X), 0.2 µl dNTPs with dTTP (100mM), 1.5 µl MultiScribe™ 

10 Reverse Transcriptase (50 U/µL), 0.8 µl 10X RT Buffer, 0.9 µl MgCl2 (25mM), 0.1 µl RNase 

11 Inhibitor (20U/µL) and 0.2 µl Nuclease-free water. Three microlitres of RNA template was 

12 added to the RT master mix, mixed gently and incubated on ice for 5 minutes. The reverse 

13 transcription reaction thermal-cycling conditions consisted of 40 cycles with a profile of 2 

14 minutes at 16°C, 1 minute at 42 °C and 1 second at 50 °C, followed by 5 minutes at 85 °C.

15

16 2.5.3.2. Quantitative Real time-PCR (qRT-PCR)

17 Quantitative RT-PCR reactions were performed using the TaqMan miRNA Assay together with 

18 the TaqMan 2X Universal PCR master Mix No AmpErase UNG. All qRT-PCR reactions were 

19 performed in triplicate with every 20 µl reaction comprised of 1 µl TaqMan miRNA Assay (20X), 

20 1.33 µl product from RT Reaction, 10 µl TaqMan 2X Universal PCR Master Mix No AmpErase 

21 UNG and 7.67 µl Nuclease-free water. Quantitative RT-PCR was performed using the 

22 Mx3005P QPCR (Stratagene, Waldbronn, Germany) and the thermal-cycling conditions 

23 consisted of 10 minutes at 95 °C, followed by 40 cycles with a profile of 15 seconds at 95 °C 

24 and 60 seconds at 60 °C. We investigated the presence of 11 different miRNAs in EVs 

25 secreted by porcine oviductal epithelial cells. MicroRNA primer sequences are shown in Table 

26 1.

27

28
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1 Table 1: Mature microRNA (miRNA) sequences

miRNA  Mature miRNA Sequence 

hsa-mir-103 AGCAGCAUUGUACAGGGCUAUGA

hsa-let- 7a UGAGGUAGUAGGUUGUAUAGUU

hsa-mir-19a UGUGCAAAUCUAUGCAAAACUGA

hsa-miR-203 GUGAAAUGUUUAGGACCACUAG

hsa-mir-126 CAUUAUUACUUUUGGUACGCG

hsa-mir-19b UGUGCAAAUCCAUGCAAAACUGA

hsa-mir-92 UAUUGCACUUGUCCCGGCCUG

RNU44 CCTGGATGATGATAGCAAATGCTGACTGAACATG

AAGGTCTTAATTAGCTCTAACTGACT

hsa-mir-196a UAGGUAGUUUCAUGUUGUUGGG

hsa-mir-326 CCUCUGGGCCCUUCCUCCAG

hsa-mir-23a AUCACAUUGCCAGGGAUUUCC

2

3

4 2.6. Transmission Electron Microscopy

5

6 POEC and cell line derived EVs were prepared for Transmission Electron Microscopy (TEM) 

7 examination by negative stain. Purified EVs were transferred onto formvar/carbon-coated 

8 electron microscopy grids (Agar Scientific, Stansted, UK) and allowed to adsorb for 20 

9 minutes. Next, EVs were fixed in Karnovsky fixative (Polysciences, Heidelberg, Germany) for 

10 5 minutes, washed in sterile distilled water and contrasted in 2.5 % aqueous uranyl acetate 

11 (Agar Scientific). Images were obtained using a Tecnai 12 Spirit G2 Bio Twin transmission 

12 electron microscope (FEI, Hilsboro, Oregon, USA) equipped with Eagle 4k (FEI) and Veleta 

13 (Olympus, Hamberg, Germany) digital cameras. 

14
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1 2.7. Statistical analysis

2

3 GraphPad Prism 7 was used to perform the statistical analysis. Results were expressed as 

4 mean ± standard error of the mean (SEM). The size distribution of the EVs was expressed as 

5 mode ± SEM. Statistical analysis of EV data to compare two groups was performed using an 

6 unpaired two-tailed student’s T-test. However, when more than two groups were compared, 

7 one-way or two-way ANOVA was performed. When comparing the EV size distributions, 

8 statistical analysis was performed using repeated measures ANOVA. All the experiments were 

9 performed on three biological replicates with either 3 or 4 technical replicates. P<0.05 was 

10 considered to be significant.

11
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1 4.0. Results 

2

3 4.1. Establishing SEC as a valid method for the isolation of EVs from POEC conditioned 

4 culture media

5

6 Following confirmation that a combination of ultracentrifugation and filtration was able to 

7 deplete serum-derived EVs 75-fold (Figure 1), POECs were cultured in complete cell culture 

8 medium supplemented with 10% EV-depleted FBS and SEC was performed to isolate the EVs 

9 from free proteins in the conditioned culture media. The concentration of EVs in each SEC 

10 column fraction was determined by NTA, with the majority of EVs eluting in fractions 7 to 20 

11 (Figure 2). The diameter of EVs secreted by POECs as determined by NTA, was 50-250 nm 

12 and did not vary significantly between SEC fractions (Figure 3). In order to confirm that the 

13 particles detected by NTA were EVs, western blot analysis was performed to detect the 

14 presence of the EV markers CD63 and CD9. A pooled sample of EVs, consisting of SEC 

15 column fractions 7 to 12, showed strong bands for CD63 and faint bands for CD9, indicating 

16 that the isolated particles were indeed EVs (Figure 4). 

17

18 To confirm that the SEC technique was able to isolate EVs from free-floating protein in the cell 

19 culture medium, each SEC fraction was assayed for protein concentration using the BCA 

20 assay. Protein was detected in SEC column fractions 13-20 (Figure 2). These findings were 

21 confirmed using gel electrophoresis with coomassie blue staining (not shown).

22
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2 Figure 1: Extracellular vesicle (EV) concentration in normal foetal bovine serum (FBS) and 

3 EV-depleted FBS after ultracentrifugation. Nanoparticle tracking analysis (NTA) confirmed that 

4 there was a significant reduction in particle concentration in EV-depleted FBS after 

5 ultracentrifugation when compared to normal FBS. Experiments were performed in three 

6 biological replicates and three technical replicates. Error bars represent the standard error of 

7 the mean. **** P <0.0001. 
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2

3 Figure 2: Characterising extracellular vesicles (EVs) secreted by porcine oviductal epithelial 

4 cells (POECs) and isolated using size exclusion chromatography (SEC). Conditioned culture 

5 media was collected once cells became 70% confluent. Twenty fractions of 500 µl were 

6 collected from the SEC column. The concentration of EVs in each SEC fraction was measured 

7 using nanoparticle tracking analysis (NTA). The protein concentration for each SEC fraction 

8 was measured using the Bicinchoninic acid assay (BCA) to determine if the SEC technique is 

9 capable of isolating EVs from free protein in culture media. The height of the bars represents 

10 the mean concentration (particles/ml) of EVs from three biological replicates and three 

11 technical replicates. The concentration of EVs in SEC fractions 1-6 ranged from 5.6 x 107/ml 

12 to 9.4 x 107/ml, while the majority of EVs eluted from the SEC column in fractions 7-20 with 

13 concentrations ranging from 9.0 x 108/ml to 1.2 x 1010/ml. Circles represent the mean 

14 concentration of protein (mg/ml) in each SEC fraction from three biological replicates and three 

15 technical replicates. Error bars represent the standard error of the mean.

16

17
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Figure 3: Characterising the size distribution of extracellular vesicles (EVs) secreted by 

porcine oviductal epithelial cells (POECs) and isolated by size exclusion chromatography 

(SEC). EV size in each of 20 SEC column fractions was determined using nanoparticle 

tracking analysis (NTA). Conditioned culture media was collected once cells became 70% 

confluent. Individual data points show the mode size of the EVs in each SEC column fraction, 

the top and bottom whiskers represent the 90th and 10th percentiles, the top and bottom 

boundaries of the boxes represent the 75th and 25th size percentiles and the median EV size 

is shown as a line in the box. EV size was measured in a minimum of three biological replicates 

and three technical replicates. 
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1

2

3 Figure 4: The presence of extracellular vesicles (EVs), secreted by porcine oviductal epithelial 

4 cells (POECs) and isolated using size exclusion chromatography (SEC), was confirmed using 

5 western blot analysis with the EV biomarkers CD63 and CD9. Western blotting was performed 

6 on a pool of EV samples isolated in SEC column fractions 7 to 12. Porcine oviductal epithelial 

7 cell lysate (CL) was used as a positive control. Molecular weight markers comprise the first 

8 lane of each blot. 

9

10

11
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1

2 4.2. Characterisation of EVs secreted by different cell types (reproductive versus non-

3 reproductive and primary versus immortalised cell lines) after 24 hours and 48 hours 

4 of cell culture.

5

6 The characteristics of EVs secreted by POECs in primary culture, was compared to EVs 

7 secreted by immortalised cell lines of reproductive (RL95-2, Ishikawa) and non-reproductive 

8 origin (HEK293). 

9

10 The concentration of EVs isolated by SEC (fractions 5 to 15) from conditioned media after 24 

11 and 48 hours of cell culture, are shown in Figure 5. SEC fractions containing EVs secreted by 

12 POECs cultured for 24 hours, showed a bimodal distribution with peak concentrations of EVs 

13 eluting from the column in fractions 7-8 and fractions 10-12 (Figure 5a). In contrast, POECs 

14 cultured for 48 hours showed a single distribution of EV concentrations across SEC fractions 

15 with peak concentrations in fractions 7-9 (Figure 5a). SEC fractions containing EVs secreted 

16 by Ishikawa cells cultured for 24 hours, showed the presence of EVs in all fractions, with a 

17 marked increase in the concentration of EVs eluting at fraction 12 (Figure 5b). However, the 

18 majority of EVs secreted by Ishikawa cells cultured for 48 hours, eluted from the SEC column 

19 in fractions 7-12 (Figure 5b). SEC of EVs secreted by RL95-2 cells cultured for 24 hours, 

20 showed the presence of EVs in all fractions with peak EV concentrations in fractions 9-11 

21 (Figure 5c), whereas EVs obtained from RL95-2 cells after 48 hours of culture, showed a 

22 bimodal distribution with maximum concentrations in fractions 7-9 and 11-13 (Figure 5c). SEC 

23 fractions containing EVs secreted by HEK293T cells showed bimodal distributions with peak 

24 EV concentrations at fractions 7-9 and 12-14 in samples taken from HEK293T cells after 24 

25 hours of culture, and fractions 7-8 and 12-14 in samples taken from HEK293T cells after 48 

26 hours of culture (Figure 5d). 

27



ACCEPTED MANUSCRIPT

25

1 The total number of EVs secreted by POECs and Ishikawa cells was time dependent, showing 

2 an increase in the number of EVs isolated from conditioned media over time (p<0.001; Figure 

3 6).  In contrast, the total number of EVs isolated from the conditioned media of HEK293T and 

4 RL95-2 cells in culture was not significantly different over time (Figure 6). The total number of 

5 EVs secreted per epithelial cell was calculated and showed no significant difference in the 

6 mean number of EVs produced per cell across all cell types at either 24 or 48 hours of culture 

7 (Figure 7). While the number of EVs produced per cell increased in POEC, RL95-2 and 

8 Ishikawa cell cultures over time, this increase did not prove to be significantly different (Figure 

9 7). 

10

11 The mode size distribution of EVs eluted in each SEC column fraction for each of the 4 cell 

12 types was significantly different following culture for either 24 hours or 48 hours (Figure 8). All 

13 evaluated SEC fractions, in all cell types, contained measurable EVs with a mode diameter of 

14 80-160 nm (Figure 8). EVs secreted by the HEK293T cell line, after 24 and 48 hours of culture, 

15 eluting from the SEC column in fractions 5-10, exhibited similar mode diameters to those EVs 

16 assessed in POEC, Ishikawa and RL95-2 cells, however, HEK293T SEC fractions 11-15 

17 contained EVs of significantly smaller diameter than those observed in EVs secreted by cells 

18 of reproductive origin (Figure 8). 

19

20 The mean zeta potential of EVs secreted by POEC primary cell cultures was significantly 

21 different over time, with a mean (± standard error) EV zeta potential of -30.3 (± 0.744) mV at 

22 24 hours, compared to -37.3 (± 2.66) mV at 48 hours (p<0.0001). These data are reflected in 

23 the POEC EV zeta potential frequency distributions, where electrokinetic potential exhibits a 

24 negative shift at 48 hours when compared with POEC EVs secreted at 24 hours (Figure 9a). 

25 All immortalised cell lines secreted EVs which showed no significant difference in zeta 

26 potential frequency distribution when cells were cultured for 24 or 48 hours (Figure 9). 
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1  

2 TEM analysis was performed on purified EVs secreted by POEC, Ishikawa, RL95-2 and 

3 HEK293T cells. TEM revealed the presence of spherical vesicles with the artefactual cup-

4 shape, measuring 30-170 nm in diameter (Figure 10). The majority of EVs were 30-100 nm in 

5 diameter, independent of their cell of origin. 

6
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3

4 Figure 5: The concentration (particles per ml) of extracellular vesicles (EVs) produced by a) 

5 primary porcine oviductal epithelial cells (POEC); b) Ishikawa cells (human endometrial 

6 epithelial cell line); c) RL95-2 cells (human endometrial epithelial cell line); d) HEK293T cells 

7 (human embryonic kidney cell line) after 24 and 48 hours of culture in EV-depleted media. 

8 EVs were isolated from conditioned media by size exclusion chromatography (SEC) and 

9 assessed using nanoparticle tracking analysis (NTA). Data is shown as the mean (± standard 

10 error) concentration of EVs eluted in each SEC column fraction from three biological replicates 

11 and three technical replicates

12
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1

2

3

4 Figure 6: The total number of extracellular vesicles (EVs) produced by primary porcine 

5 oviductal epithelial cells (POECs), Ishikawa cells (human endometrial epithelial cell line), 

6 RL95-2 cells (human endometrial epithelial cell line) and HEK293T cells (human embryonic 

7 kidney cell line) after 24 and 48 hours of culture in EV-depleted media. EVs were isolated from 

8 conditioned media by size exclusion chromatography (SEC) and measured using nanoparticle 

9 tracking analysis (NTA). Data is shown as the mean (± standard error) number of EVs isolated 

10 from the conditioned cell culture media, from three biological replicates and three technical 

11 replicates. Statistical analysis were determined by t-test, **p=0.001 ****p<0.0001. 

12
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2
3 Figure 7: The total number of extracellular vesicles (EVs) secreted per cell, by primary porcine 

4 oviductal epithelial cells (POECs), Ishikawa cells (human endometrial epithelial cell line), 

5 RL95-2 cells (human endometrial epithelial cell line) and HEK293T cells (human embryonic 

6 kidney cell line) after 24 and 48 hours of culture in EV-depleted media. EVs were isolated from 

7 conditioned media by size exclusion chromatography (SEC) and measured using nanoparticle 

8 tracking analysis (NTA). Data is calculated as the mean (± standard error) total number of EVs 

9 isolated from the conditioned cell culture media per cell in culture, from three biological 

10 replicates and three technical replicates. Differences in the number of EVs secreted per cell 

11 over time showed no statistical significance.

12
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2

3 Figure 8: The size distribution of extracellular vesicles (EVs) secreted by primary porcine 

4 oviductal epithelial cells (POECs), Ishikawa cells (human endometrial epithelial cell line), 

5 RL95-2 cells (human endometrial epithelial cell line) and HEK293T cells (human embryonic 

6 kidney cell line) after 24 and 48 hours of culture in EV-depleted media. EVs were isolated from 

7 conditioned media by size exclusion chromatography (SEC) and measured using nanoparticle 

8 tracking analysis (NTA). Top and bottom boundaries of the box plots represent the 75th and 

9 25th percentiles of the size distributions, top and bottom whiskers represent the 90th and 10th 

10 percentiles. The median of the data is shown as a line within the box. Measurement of EV 

11 sizes was performed in triplicate for each of three biological replicates.
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2

3 Figure 9: The zeta potential (ZP) percentage frequency distributions of extracellular vesicles 

4 (EVs) secreted by primary porcine oviductal epithelial cells (POECs), Ishikawa cells (human 

5 endometrial epithelial cell line), RL95-2 cells (human endometrial epithelial cell line) and 

6 HEK293T cells (human embryonic kidney cell line) after 24 and 48 hours of culture in EV-

7 depleted media. EVs were isolated from conditioned media by size exclusion chromatography 

8 (SEC) and measured using nanoparticle tracking analysis (NTA). The ZP distributions of EVs 

9 derived from POECs after 48 hours of cell culture showed negative shifts compared with those 

10 EVs derived from POECs after 24 hours of culture (p<0.0001). In contrast, there were no 

11 significant differences in ZP for EVs derived from all immortalised cell lines after 24 and 48 

12 hours of cell culture. These data represent the mean percentage of EVs detected with a 

13 specific ZP (±standard error) in four technical replicates for each of three biological replicates. 

14 Data were analysed using two-way ANOVA followed by Tukey post-hoc test.

15
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1

2

3 Figure 10: Extracellular vesicles (EVs) secreted by, (a) primary porcine oviductal epithelial 

4 cells (POECs), (b) Ishikawa cells (human endometrial epithelial cell line), (c) RL95-2 cells 

5 (human endometrial epithelial cell line) and (d) HEK293T cells (human embryonic kidney cell 

6 line), evaluated by transmission electron microscopy (TEM). TEM assessed EVs from a pool 

7 of SEC fractions (fractions 7 to 12), isolated from each cell type. The majority of EVs have a 

8 size range of 30-100 nm. Individual EVs are annotated using arrows. * identifies an EV 

9 exhibiting the artefactual cup-shape that is associated with EV TEM processing. Scale bar is 

10 200 nm. 

11
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1 4.3. Characterisation of EVs secreted by oviductal epithelial cells from the ampulla 

2 (PAEC) and isthmus (PIEC) regions of the porcine oviduct

3

4 NTA data confirmed that the size distribution of EVs secreted by PAEC and PIEC were within 

5 the range previously reported for EVs isolated from POECs collected from whole porcine 

6 oviducts (Figure 11) and that there was no significant difference in the size of EVs secreted 

7 by epithelial cells from different regions of the oviduct. However, the mean number of EVs 

8 isolated from the conditioned media of PAECs in culture at 70% confluency (2.2x1010 ± 

9 1.61x1010) was significantly higher than the mean number of EVs isolated from cultured PIECs 

10 (1.57x1010 ± 1.34x1010; p=0.008). In addition, EV surface charge properties, reflected by 

11 measurements of zeta potential, were significantly different between EVs isolated from the 

12 conditioned media of cultured PAECs (-36.86 ± 0.6341 mV) when compared to PIECs (-38.85 

13 ± 0.0197 mV), indicating that EVs from different regions of the porcine oviduct might have 

14 distinct membrane characteristics and perhaps differing composition. This hypothesis is 

15 supported by data showing the frequency distribution of the zeta potential of individual EVs 

16 (Figure 12), where EVs originating from the isthmus region of the oviduct tend to exhibit a 

17 more negative zeta potential (mode of -40 mV) as compared to EVs secreted by epithelial 

18 cells in the ampulla (mode of -35 mV). 

19

20
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4 Figure 11: Size of extracellular vesicles (EVs) secreted by porcine epithelial cells harvested 

5 from the ampulla and isthmus regions of the oviduct. Conditioned culture media was collected 

6 48 hours after the culture medium was changed to an EV-depleted FBS media. EVs were 

7 isolated from conditioned culture media using size exclusion chromatography (SEC) and EV 

8 size is shown for each of 15 SEC column fractions, as evaluated by nanoparticle tracking 

9 analysis (NTA). In the box plots, the top and bottom of the boxes indicate 75% and 25% of the 

10 size distribution, the bars show the median EV size, whiskers indicate the maximum and 

11 minimum EV size. Three technical assessments were carried out on each of three biological 

12 repeats.
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1

2

3

4

5

6

Figure 12: Variation in the electrokinetic charge, or zeta potential, of extracellular vesicles 

(EVs) secreted by primary porcine ampulla epithelial cells (PAEC) and primary porcine 

isthmus epithelial cells (PIEC) in culture as determined by nanoparticle tracking analysis 

(NTA). Conditioned culture media was collected 48 hours after the culture medium was 

changed to an EV-depleted FBS media and EVs were isolated by size exclusion 

chromatography (SEC). Data is shown as the mean (± standard error) percentage frequency 

of EV zeta potential from all EVs secreted by PAECs or PIECs. The zeta potential distribution 

of EVs secreted by PIECs tends to be more negative as compared to EVs obtained from 

PAECs. All experiments were performed on 3 biological repeats with 4 technical replications. 
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1 4.4. The identification of candidate miRNAs present in EVs secreted by POECs in vitro

2

3 4.4.1. Isolation of RNA from EVs using the miRCURY kit versus tri-Reagent

4 The concentration of RNA purified from EVs secreted by POEC cultures was 48782 ± 10781 

5 pg/µl using the miRCURY kit, compared to 496 ± 251.6 pg/µl using tri-Reagent. As the 

6 concentration of RNA extracted from EVs using tri-Reagent was so low, we were not able to 

7 visualise the presence of either miRNA or small RNA in the electropherogram.

8

9 4.4.2. Quantitative RT-PCR validation of miRNA expression in EVs secreted by POECs in 

10 vitro.

11 For this analysis, RNA was extracted using the miRCURY kit. For each of 11 candidate 

12 miRNAs, mean expression data was calculated according to their quantification cycle (Ct) 

13 value. Six, of 11 candidate miRNAs were expressed in EVs secreted by POECs in vitro; miR-

14 19b, miR-19a, miR-203, let-7a, miR-126 and miR-103; with Ct values ranging between 26-36 

15 (Figure 13).
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2

3 Figure 13: Quantitative real time PCR (qRT-PCR) analysis of microRNA (miRNA) isolated 

4 from extracellular vesicles (EVs) secreted by primary porcine oviductal epithelial cells 

5 (POECs). Of 11 miRNAs, only 6 showed expression in EVs secreted by POECs (let-7a, miR-

6 103, miR-19a, miR-203, miR-126 and miR-19b). The height of the bar represents the mean (± 

7 standard error of the mean) of the quantification cycle (Ct) value for three biological replicates.  

8 **P=0.0019, **** P<0.0001, the statistical analysis was performed with one-way ANOVA with 

9 Sidak post hoc analysis. N.D: none detected.
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1 5.0. Discussion 

2

3 Extracellular vesicles (EVs) play pivotal roles in intercellular communication in all body 

4 systems, regulating both physiological and pathological processes [50-53]. This control of the 

5 intercellular environment is facilitated by the EV-mediated transport and delivery of a wide 

6 range of bioactive molecules including lipid, protein, DNA, RNA, mRNA and miRNA [54-56]. 

7 Many studies describe the roles of EVs in cell proliferation and differentiation in a broad range 

8 of cell types and tissues [57-59]. 

9

10 EVs play an essential role in cell-to-cell communications in the male and female reproductive 

11 tracts. To date, EVs have been identified in follicular fluid [55], seminal plasma [60], oviductal 

12 fluid [61] and uterine fluid [24]. In addition, EVs have been shown to be released by maternal 

13 reproductive tract epithelia [30, 62], oocytes [63], spermatozoa [38] and the embryo [64-65]. 

14

15 A multifaceted intercellular communication via EVs is thought to take place throughout the 

16 peri-conception period in order to facilitate successful fertilisation and subsequent pregnancy. 

17 For instance, during transit through the epididymis, spermatozoa acquire proteins and 

18 miRNAs, delivered by epididymal epithelial cell EVs, in order to undergo post-testicular 

19 maturation and acquisition of motility [66-68]. At ejaculation, spermatozoa are further exposed 

20 to EVs originating from the prostate gland. These prostasomes contain proteins, which, via 

21 their signal transduction, antioxidant and immuno-regulatory effects, are able to control the 

22 timing of spermatozoa capacitation and acrosome reaction [69-71]. 

23
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1 The role of EVs in optimising gamete viability continues to be important in the female 

2 reproductive tract. Al-Dossary et al. [25] demonstrated that uterine and oviductal EVs are 

3 important modulators of spermatozoa maturation, preventing premature capacitation by 

4 maintaining Ca2+ homeostasis, via their delivery of plasma membrane Ca2+ ATPase 4a 

5 (PMCA4). Interestingly, the presence of gametes can elicit changes to the biochemistry of the 

6 female reproductive tract environment by stimulating novel gene expression in uterine 

7 epithelia [35-37]. These data indicate a potential role for EV-mediated miRNAs of gamete 

8 origin in the control of the maternal tract milieu. In addition to maintaining the viability of male 

9 gametes as they transit the female reproductive tract, EVs are known to influence the 

10 maturation and quality of the female gametes. Da Silveira et al. [55] and Santonocito et al. [72] 

11 demonstrated EV-mediated intercellular communication in the equine and human ovarian 

12 follicle respectively, identifying the presence of proteins and miRNAs known to target 

13 mechanisms controlling follicular growth and oocyte maturation, in EVs isolated from follicular 

14 fluid. 

15

16 The essential role of EVs as vehicles for intercellular communication is further supported by 

17 evidence that following fertilisation, EV-mediated miRNAs of endometrial origin, have been 

18 predicted to act on targets that regulate embryo maturation and implantation [23]. Indeed, the 

19 female reproductive tract is able to respond to the presence of embryonic trophoblast cells, 

20 without any physical contact and prior to the establishment of stable attachment, by 

21 upregulating expression at the miRNA, transcriptomic and proteomic levels [65]. These EV-

22 mediated communications between the maternal reproductive tract and the gametes and/or 

23 the embryo, might enable the female to act as a biological sensor that screens the 

24 gamete/embryo and then responds by modifying the oviductal environment to suit a specific 

25 need or selection pressure [5]. This idea is supported by the work of Lopera-Vasquez et. al. 

26 [62], who recently showed that EVs produced by bovine oviductal epithelial cells were able to 

27 improve the quality of blastocysts when added to embryo cultures.
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1

2 Given the potential significance of EVs as vehicles for the transport of miRNAs between 

3 gametes and/or embryos and the female reproductive tract, we aimed to investigate methods 

4 for the extraction of RNA and miRNA from EVs. Despite their cellular origin, EV membranes 

5 are enriched with sphingomyelin and cholesterol, and contain less phosphatidylcholine than 

6 cellular membranes, making them more rigid and potentially more difficult to breach for RNA 

7 extraction [73-74]. Here, a column-based method and a phenol based method were compared 

8 for the extraction of RNA from EVs secreted by POECs. The quality of extracted EV RNA 

9 including purity, yield and size, and the analysis of small RNAs was determined. During 

10 generic RNA extraction analyses, the quality of RNA is assessed based on its Bioanalyser 

11 RNA integrity number (RIN) which is calculated based on 18s and 28s ribosomal RNA. Given 

12 the absence of ribosomal RNA in EVs, the RIN cannot be utilised to determine EV RNA quality. 

13 Instead, electropherograms of total RNA, showing size distribution in nucleotides (nt) versus 

14 fluorescence intensity, for both EV RNA purification methods were produced. 

15 Electropherograms generated from RNA extracted from EVs using the miRCURY kit showed 

16 the presence of miRNAs (15-40 nt) and small RNA, while the Tri-Reagent method was unable 

17 to recover adequate concentrations of EV-RNA for subsequent analysis. These findings are 

18 in agreement with those of Eldh et al. [74], who demonstrated that phenol-based methods of 

19 RNA extraction from EVs recovered low RNA yields when compared with column-based 

20 methods of RNA recovery. 

21

22 In order to confirm the presence of miRNA in EVs secreted by POECs and to partially 

23 characterise the potential function of these EV mediated miRNAs, real-time PCR was 

24 performed using eleven candidate miRNAs. From these eleven miRNAs, six (let-7a, miR-19a, 

25 miR-203, miR-19b, miR-103 and miR-126), showed expression after real-time PCR, indicating 

26 that the miRCURY kit was able to successfully isolate miRNA from POEC EVs. Previous 
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1 studies in a number of different cell types, suggest that these six miRNAs are involved in 

2 membrane organisation [23], cell proliferation [75-76], cellular migration [77] and apoptosis 

3 [78]. Predicted target genes of miRNAs identified in endometrial EVs are known to play a role 

4 in the control of embryo implantation, regulating aspects of extracellular matrix interactions 

5 (let-7a, miR-19a) and VEGF signalling pathways [23]. It is not unreasonable to suggest that 

6 the miRNAs identified in POEC EVs during this study, might also be responsible for preparing 

7 the developing embryo for implantation as it transits the oviduct and moves into the 

8 endometrium.

9

10 The POEC-EV miRNAs identified here, are also expressed in EVs isolated from follicular fluid 

11 where they are known to target factors such as mitogen-activated protein kinase (MAPK) (miR-

12 203) [72], transforming growth factor beta (TGFβ) (miR-19a) [55] and oestrogen signalling 

13 pathways (miR-19b) [79]. The MAPK pathway stimulates oviductal epithelial cell proliferation 

14 and is known to be associated with an increase in oviductal secretory activity, thus contributing 

15 to the maintenance and optimisation of the female tract milieu [80]. Interestingly, the presence 

16 of spermatozoa in the oviduct will stimulate oviductal epithelial cell MAPK pathways, indicating 

17 a role for these oviductal secretions in modulating sperm maturation within the female 

18 reproductive tract [81]. The activity of MAPK in the oviduct is further stimulated by the 

19 presence of oestrogen, suggesting a complementary role for miR-19b as it targets oviductal 

20 oestrogen signalling pathways [79]. Members of the TGFβ superfamily, including inhibin and 

21 activin, are expressed in the oviduct and are known to influence the female tract response to 

22 the presence of spermatozoa by supressing local innate immunity [82]. In addition, let-7a, miR-

23 19b and miR-126 are involved in regulating inflammatory and innate immune responses, both 

24 of which are of pivotal importance for embryo development and implantation within the female 

25 reproductive tract [83]. 

26



ACCEPTED MANUSCRIPT

42

1 Many recent investigations have utilised in vitro cell culture models in order to further clarify 

2 the essential role that EVs play in intercellular communications within the female reproductive 

3 tract. In order to draw useful conclusions, it is essential that these cell culture systems are fully 

4 optimised to facilitate the best possible production and recovery of EVs, while reflecting as 

5 much as possible, the in vivo environment. For instance, cells grown in vitro are usually 

6 supplemented with serum in order to support cell growth by providing nutrients and growth 

7 factors. Commercially available FBS contains high concentrations of EVs despite being filtered 

8 during processing [84]. Thus, in order to isolate EVs from cells of interest, it is crucial to remove 

9 any contaminating EVs from cell culture serum supplements. In addition, given that EVs are 

10 known to be vehicles for the transport of bioactive molecules, it is particularly important to 

11 minimise the contamination of experimental EVs with those EVs originating from serum 

12 supplements. Wei et al. [85] showed that FBS EVs contribute RNA to the culture system, 

13 which may influence cellular processes and cause misinterpretation of experimental results. 

14

15 While there is commercial EV-depleted FBS available, it is very expensive as compared to 

16 normal sources of FBS. In this study, we have optimised a method for the EV depletion of FBS 

17 by ultracentrifugation. Ultracentrifugation has been performed previously to deplete EVs from 

18 FBS with variable success [86], using methods which manipulate several parameters including 

19 the duration and speed of centrifugation, and whether to centrifuge the FBS alone or following 

20 its addition to the culture medium. Here, EV-depleted FBS was produced by ultracentrifugation 

21 of FBS alone, at 100,000g at 4°C overnight, resulting in a 75-fold reduction in EV concentration 

22 as compared to the original source of FBS. Previous studies utilising ultracentrifugation to 

23 generate EV-depleted FBS, have applied significantly lower durations of centrifugation and as 

24 such, have been less successful in their elimination of EVs from the serum supplements. Eitan 

25 et al. [87] showed that, when centrifuged for 6 hours the reduction in FBS EV concentration 

26 was 7-fold, whereas with a 1 hour centrifugation, the FBS EV concentration was reduced just 

27 2.2-fold. Shelke et al. [84], reported that ultracentrifugation of FBS for 1.5 hours was 
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1 insufficient to remove FBS EVs, when compared to an ultracentrifugation lasting 18 hours, 

2 further supporting our findings that a longer ultracentrifugation duration is required for the 

3 efficient depletion of EVs from FBS. 

4

5 While it is important to remove contaminating EVs from serum supplements before they are 

6 added to cell culture systems, it is also imperative that we consider whether the use of EV-

7 depleted FBS in cell cultures might have a detrimental effect on cell growth. The process of 

8 ultracentrifugation to produce EV-depleted FBS, will not only remove EVs, but might also 

9 eliminate non-EV material such as growth factors and nutrients that are important for the 

10 support of cell growth and proliferation. Eitan et al. [87] investigated serum derived EV 

11 involvement in cellular growth, showing that EVs isolated from FBS were able to increase 

12 cellular growth when added to cell culture medium. Aswad et al. [58], who showed that EVs in 

13 FBS are important regulators of cell proliferation in skeletal muscle cells, supported this work. 

14 Encouragingly, our data suggest that supplementation of POEC cultures with EV-depleted 

15 FBS, produced using our ultracentrifugation method, does not affect the number or 

16 proliferation rate of POECs. Light microscopy analysis showed that the number of POECs 

17 cultured in complete medium supplemented with 10% EV-depleted FBS was not significantly 

18 different to the number of POECs cultured in normal medium up to 72 hours of culture. In 

19 addition, the proliferation rate of POECs over 72 hours of culture remained consistent when 

20 the complete culture media was supplemented with either normal FBS or EV-depleted FBS, 

21 indicating that the removal of EVs from FBS did not affect POEC viability. While Eitan et al. 

22 [87] showed that a number of different cell types cultured in medium supplemented with EV-

23 depleted FBS showed a significant reduction in cellular growth rates, they did not observe 

24 suppression of growth rate in human U87 glioblastoma cells. Hence, they suggest that any 

25 detrimental effect of using EV-depleted FBS in cell culture is cell and/or species dependent.

26
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1 In this study, we aimed to evaluate SEC as a valuable method for the isolation of POEC 

2 derived EVs from conditioned cell culture medium. Recently, SEC has been reported to be an 

3 efficient method for the isolation of EVs with high purity and intact morphology. In addition, 

4 SEC is thought to have a rigorous ability to separate EVs based on size [88]. There are a 

5 number of different commercially available SEC column matrices including Sepharose CL-2B, 

6 Sepharose CL-4B, Sephacryl S-100 and Sephadex. Baranyai et al. [89] compared the 

7 efficiency of different SEC column matrices for the isolation of exosomes from blood plasma, 

8 showing that Sepharose CL-4B and Sephacryl S-400 were able to isolate exosomes in high 

9 purity without the presence of albumin. For our current investigations, SEC using Sepharose 

10 CL-2B combined with ultrafiltration, was successfully used to isolate EVs from conditioned cell 

11 culture medium. Interestingly, Baranyai et al. [89], published evidence that Sepharose CL-2B 

12 was unable to isolate exosomes efficiently from blood plasma, indicating that specific SEC 

13 matrices might be better suited for the recovery of EVs present in specific body fluids and/or 

14 cell culture media.  

15

16 Our SEC approach generated two eluents from the conditioned media, first a series of EV-rich 

17 fractions, followed by distinct fractions of free-floating protein. Several detection techniques 

18 such as NTA, TEM, Western blot analysis and the BCA assay were used to characterise the 

19 fractions collected during the SEC elution. We have demonstrated that SEC was able to isolate 

20 EVs, as confirmed by the presence of the EV markers CD63 and CD9, from conditioned 

21 medium efficiently with high EV purity eluting from the SEC column in fractions 7 to 12. These 

22 fractions contained a high concentration of EVs with minimal protein concentration. In 

23 subsequent analyses, SEC fractions 7-12 were pooled to create a rich and concentrated 

24 sample of porcine oviductal EVs. 

25
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1 NTA is able to calculate EV size via the direct observation of Brownian motion in a fluid 

2 medium, visualised by a laser light scattering method and tracked over time. This enables the 

3 calculation of particle size using the Stokes-Einstein equation to determine the translational 

4 diffusion constant. In general, a large slow moving EV will cause a stronger light scattering 

5 pattern, than a small fast moving EV [41]. The size of EVs eluted from the SEC column were 

6 between 50-250 nm in all fractions. Despite previous suggestions that SEC might be able to 

7 separate EVs based on size, our data, and the results of Boing et al. [90], have demonstrated 

8 that there is no significant EV size distribution across different SEC fractions. It is possible that 

9 processing of the EV conditioned media by differential centrifugation and ultrafiltration, prior 

10 to SEC sample loading, has already removed larger (cell debris) and smaller (free-floating 

11 protein) particles from the culture medium [91-92], leaving only mid-range EVs to travel 

12 through the SEC column.  Nordin et al. [93], who showed that when ultrafiltration is combined 

13 with SEC, more particles with a similar size distribution were recovered from the column, 

14 support this hypothesis. Future investigations might also consider manipulating the ZetaView® 

15 pre-acquisition parameters in order to detect particles of a larger size in each SEC fraction. 

16 Our ZetaView® measurement parameters (sensitivity 85; shutter value 70, corresponding to 

17 an exposure time of 15 ms; frame rate 30 frames per second) are set to detect small particles 

18 (50-250 nm) with weak light scattering, which correspond with previously published EV size 

19 data. It is possible that any larger non-EV particles that were present in our SEC fractions 

20 were not detected by the ZetaView NTA evaluation. In order to detect the presence of larger 

21 particles with strong light scattering, the ZetaView® sensitivity should be decreased, shutter 

22 values increased (corresponding to a decreased exposure time) and frame rate increased. 

23 As well as recovering EVs of expected size, in agreement with previous studies, we have 

24 demonstrated that EVs isolated using SEC are morphologically intact as confirmed by TEM 

25 [90, 94]. 

26
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1 During these investigations, we have characterised EVs secreted by epithelial cells of 

2 reproductive origin, (POEC, Ishikawa and RL95-2) and non-reproductive origin (HEK293T). 

3 Furthermore, we have investigated whether the characteristics of EVs secreted by these 

4 different cell types altered over time in cell culture. For all reproductive cell types (POEC, 

5 Ishikawa and RL95-2), the number of EVs secreted increased over time in culture, as epithelial 

6 cell number also increased. In contrast to our reproductive cells, HEK293T epithelial cell 

7 cultures showed a decrease in the total concentration of EVs secreted over time, independent 

8 of cell number. Hurwitz et al. [95], performed a similar study with HEK293T cells, where they 

9 determined that the concentration of EVs produced related to the degree of cell culture 

10 confluency. In addition, Riches et al. [96], showed that the total number of EVs secreted by 

11 normal mammary epithelial cells after 24 hours of culture, was less than the number of EVs 

12 collected from two consecutive 12 hour cultures, suggesting that the concentration of EVs 

13 secreted is not dependent on cell number, but rather on the stage of cellular development.  It 

14 is also important to consider that as vehicles for intercellular communication, EVs will not only 

15 be produced by their cells of origin, but will also be taken up by their recipient cellular targets. 

16 Indeed, several groups have demonstrated that as well as secreting EVs, cells in an in vitro 

17 culture system will uptake EVs via a variety of different mechanisms [97-99]. For instance, 

18 Escrevant et al. [98] demonstrated that different endocytic pathways are involved in the uptake 

19 of exosomes secreted by the ovarian cancer cell line SKOV3. 

20

21 In addition to EV concentration, NTA determined the size distribution of all experimental 

22 epithelial cell EVs as between 70 to 140 nm, complying with previously published data for 

23 expected EV size parameters [11]. These data indicate a slightly larger EV size than is 

24 observed with TEM. Electron microscopy is the standard visual method for defining the size 

25 and morphology of EVs since the optical microscope cannot identify particle sizes smaller than 

26 300 nm [41-43, 100-102]. EV size measurements obtained via TEM are generally smaller than 

27 those obtained with NTA, due to particle dehydration following exposure to the high vacuum, 
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1 anhydrous atmosphere required for TEM assessment [102]. Conversely, NTA evaluates EVs 

2 in a solution, maintaining their hydrodynamic diameter and producing a more reliable 

3 indication of their true size [41].

4

5 Recently, there has been an increase in the number of studies investigating the biological 

6 properties and functions of EVs. Despite this increased level of interest, the physical properties 

7 of EVs, including their electrochemical characteristics, remain unclear. Information regarding 

8 EV surface charge is important as it plays an essential role in both EV-cell and EV-matrix 

9 interactions [103]. Furthermore, Zeta potential provides a vital indication of the stability of EVs 

10 in solution in terms of flocculation, dispersion and aggregation (Figure 13) [44]. Nanoparticles 

11 considered to be electrically ‘neutral’, with a Zeta potential between -10mV and +10Mv, tend 

12 to form aggregates when in solution. Whereas nanoparticles of Zeta potential greater than 

13 +30mV or less than -30Mv, are known to be more stable in solution [104]. As well as 

14 influencing the behaviour of populations of EVs in solution, it has been reported that Zeta 

15 potential is a useful indicator of the ability of nanoparticles to interact with their target cells, 

16 influencing cell adhesion, agglutination and cellular activation [105-108]. 

17

18
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1

2

3 Figure 14: Zeta Potential, measured in mV, is the electrokinetic potential of the interfacial 

4 region between the extracellular vesicle (EV) surface and the aqueous environment [45]. Zeta 

5 potential is a fundamental parameter known to affect the stability of particles in solution [47]. 

6 EVs with low stability (exhibiting a low zeta potential between -20 to +20 mV), will be expected 

7 to fuse or form aggregates. The zeta potential, and hence the stability of an EV in solution, is 

8 affected by the temperature, pH and ionic strength of the aqueous medium [45, 48]. In addition, 

9 zeta potential is affected by, and is a reflection of, the surface charge of the EV and thus the 

10 physiological makeup of the plasma membrane [48]. In cell biology, zeta potential has been 

11 used to study biological activation, agglutination and adhesion [49]. 

12

13

14 Our results showed that only EVs originating from primary cell cultures exhibit differing 

15 characteristics over time, whereas those EVs secreted by immortalised cell lines show a more 

16 consistent series of descriptors. Data shown herein indicate that a correlation exists between 

17 EV zeta potential and the maturational status of their cells of origin. This hypothesis is 

18 supported by Kato et al. [109] who reported a strong correlation between the zeta potential of 
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1 exosomes and the type of cell from which they were secreted. Our findings, and the data 

2 produced by Kato et al. [109], can be explained by understanding the formation and secretion 

3 of EVs by cells. It is known that EVs defined as microvesicles are most likely secreted by direct 

4 budding from the cellular plasma membrane [15, 110-112]. Hence, EVs are likely to contain 

5 the same membrane properties as their cells of origin. The surface charge of the cell is known 

6 to reflect cellular function and is dependent on both plasma membrane composition and the 

7 physiological conditions within the cell [48, 113]. A number of intracellular pathways involving 

8 cell proliferation, cell adhesion, cell differentiation and cellular apoptosis, are modulated by 

9 plasma membrane electrical potential [113-116]. As primary in vitro cell cultures are still 

10 undergoing the process of differentiation, it is not unreasonable to assume that their 

11 properties, including their zeta potential, will continue to be modified over time. Whereas, 

12 immortalised cell lines in culture are fully differentiated and their physiological properties will 

13 remain consistent. As the EV plasma membrane reflects the plasma membrane of its cell of 

14 origin, we might expect the EVs secreted from cells in primary culture to be subject to change, 

15 as that cell differentiates over time, and the EVs secreted by an immortalised cell line to be 

16 more consistent over time in culture [117].

17

18 In this series of experiments, we have demonstrated that the ZetaView instrument is able to 

19 reliably evaluate the size, concentration and zeta potential of individual EVs secreted by 

20 epithelial cells in culture. Furthermore, we have shown that the zeta potential distribution of 

21 EVs secreted by different epithelial cell types, differs over time, in primary culture systems, 

22 but not in immortalised cell line cultures. While zeta potential is a valuable tool for the 

23 evaluation of EV surface charge, further research is required to investigate how EV zeta 

24 potential is influenced by altered plasma membrane composition and biochemical change 

25 within its cell of origin.

26
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1 Given that, the characteristics of EVs differ dependant on their cell of origin, and that different 

2 regions of the oviduct are functionally differentiated, it is important to clarify how the secretion 

3 and characteristics of oviductal EVs might vary between the ampullary and isthmus regions of 

4 the oviduct. NTA analysis of EV concentration showed that significantly more EVs are secreted 

5 by epithelial cells isolated from the ampullary region of the oviduct (PAECs), when compared 

6 to the isthmus (PIECs). We found no significant difference in the size of EVs produced across 

7 all regions of the oviduct. Interestingly, Lopera-Vasquez et al. [26] showed that in the bovine 

8 oviduct, epithelial cells isolated from the isthmus produced smaller EVs as compared to 

9 epithelial cells from the ampulla, suggesting that the pattern of EV secretion between the 

10 ampulla and isthmus might be species dependent. In support of our suggestion that distinct 

11 populations of EVs are produced by both the oviductal isthmus and ampulla, we established 

12 that EVs from different regions of the oviduct have significantly different zeta potential 

13 measurements, indicating that their surface characteristics and potentially membrane 

14 composition are different. Our data showed that the zeta potential of EVs secreted by PIECs 

15 was less negative as compared to EVs secreted by PAECs. Given that EVs form by outward 

16 budding of the plasma membrane, it is not unreasonable to assume that the functional and 

17 morphological variation identified between oviductal epithelial cells from the isthmus and 

18 ampulla, might be reflected in their EV surface parameters. The further clarification of how EV 

19 characteristics change throughout the oviduct will allow us to understand how intercellular 

20 communication takes place and ultimately may provide us with useful tools with which to 

21 improve the success of fertilisation and pre-implantation embryo development. 

22

23

24 6.0. Conclusion

25 In conclusion, this study has confirmed the presence of miRNAs (miR-103, let-7a, miR-19a, 

26 miR-203, miR-126, miR-19b) in EVs secreted by cultured POECs. These miRNAs are known 
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1 to be involved in cell proliferation, innate immune responses, apoptosis and cellular migration, 

2 potentially acting on the periconception events taking place in the oviduct, which result in the 

3 successful establishment of pregnancy. We have demonstrated that NTA can successfully 

4 measure the concentration and size of EVs secreted by different epithelial cell types. 

5 Interestingly, the concentration of EVs secreted by POEC and Ishikawa cells seems to be 

6 dependent on their time in culture suggesting that the characteristics of EVs secreted by cells 

7 in vitro, relate to the functional and/or developmental status of their cells of origin. In addition, 

8 we showed that the surface electrokinetic charge (zeta potential) of EVs derived from primary 

9 epithelial cell cultures was different as compared to EVs secreted by cultured epithelial cell 

10 lines, suggesting that the molecular composition of the EV plasma membrane reflects subtle 

11 changes in the biochemistry of its cell of origin. Furthermore, we have determined that the 

12 electrokinetic surface characteristics of EVs differ between epithelial cells from functionally 

13 distinct regions of the oviduct, reinforcing the idea that EVs have specific and targeted roles 

14 in intercellular communications in the female reproductive tract. Future investigations will not 

15 only determine how EV zeta potential might reflect the biochemical properties of different EV 

16 populations produced by a variety of cell types, but will also improve our knowledge of the role 

17 of EVs in reproduction, with the view to identify factors that might influence the success of 

18 assisted reproductive technologies.
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