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Abstract 

Coccidial infections may reduce fat soluble vitamin status and bone mineralisation in broiler chickens. 

We hypothesised that broilers infected with Eimeria maxima would benefit from increased dietary 

supplementation with vitamin D (vitD) or with 25-OH-D3 (25D3). Male Ross 308 chickens were 

assigned to diets with low (L) or commercial (M) vitD levels (1000 vs 4000 IU/kg) supplemented as D3 

or 25D3. At d11 of age birds were inoculated with water (C) or 7000 E. maxima oocysts (I). Pen 

performance was calculated over the early (d1 - 6), acute (d7 - 10) and recovery periods (d11 - 14) post-

infection (pi). At the end of each period 6 birds per treatment were dissected to assess long bone 

mineralisation, plasma levels of 25D3, calcium and phosphorus, and intestinal histomorphometry. 

Parasite replication and transcription of cytokines IL-10 and IFN-γ were assessed at d6 pi using 

quantitative PCR. Performance, bone mineralisation and plasma 25D3 levels were significantly reduced 

during infection (P < 0.05). M diets or diets with 25D3 raised plasma 25D3, improved performance and 

aspects of mineralisation (P < 0.05). Offering L diets compromised feed efficiency pi, reduced femur 

breaking strength and plasma phosphorous levels at d10 pi in I birds (P < 0.05). Contrastingly, offering 

M diets or diets with 25D3 resulted in higher parasite loads (P < 0.001) and reduced jejunal villi length at 

d10 pi (P < 0.01), with no effect on IL-10 or IFN-γ transcription. Diets with 4000 IU/kg vitD content or 

with 25D3 improved performance and mineralisation, irrespective of infection status, whilst 4000 IU/kg 

levels of vitD further improved feed efficiency and mineralisation in the presence of a coccidial infection.  
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Introduction 

Coccidiosis, caused by parasites of the genus Eimeria, is a widespread condition which adversely impacts 

broiler chicken farm profitability, by reducing growth rate and feed efficiency due to anorexia
(1,2)

 and

impaired nutrient absorption
(1, 3, 4)

. Malabsorptive coccidiosis, caused by infection with species such as

Eimeria maxima and E. acervulina which affect the small intestine, is characterized by inflammation and 

intestinal epithelium damage, impaired absorption of fat, calcium (Ca) and phosphorus (P)
(5,6)

, and long

bone mineralisation
(7,8,9)

. Our previous study has indicated that Eimeria maxima infection adversely

impacts bone development with effects being more pronounced at later stages of infection, long after 

birds have recovered and caught up with the performance of their non-infected counterparts (d13 post-

infection; pi)
(10)

.

Dietary vitamin D (vitD) supply plays a critical role in bone mineralisation of broilers
(11)

. It may

be supplied in the form of cholecalciferol (D3) or as 25-hydroxycholecalciferol (25D3). D3 is 

hydroxylated to 25D3, primarily in the liver, and is circulated by the vitD binding protein
(12)

. This form is

hydroxylated further, primarily in the kidneys, to the hormonally active form 1α,25-

dihydroxycholecalciferol (1,25D3)
(13)

. 1,25D3 regulates calcium and phosphorus metabolism mainly by

enhancing intestinal calcium and phosphate absorption and renal reabsorption, whilst it also stimulates 

osteoclast differentiation and calcium reabsorption from the bone and promotes mineralisation of the 

bone matrix
(12)

. In addition to its skeletal effects, 1,25D3 acts as an immune system modulator
(14)

 having

beneficial effects in the case of infectious and autoimmune diseases
(15,16,17)

.

To date there have been no studies specifically investigating the effects of coccidiosis on vitD 

status. D3 is a relatively non-polar molecule; it is solubilized by incorporation into bile-salt micellar 

solutions for movement through the body and repackaged into chylomicrons for transport by the 

lymphatic route
(19)

. It has been suggested that absorption of 25D3 is less fat dependent than D3, as

illustrated in patients with cholestatic liver disease
(20)

 and in patients with steatorrhea
(21)

. Dietary fat is

digested in the small intestine in both avian and mammalian species
(22)

. Although fatty acids are drained

directly into the portal blood system instead of the lymph and as portomicrons instead of chylomicrons in 

birds as opposed to mammals
(23,24)

, malabsorptive eimerian infections are accompanied by a pronounced

depression of fat digestibility
(18,25)

 and circulating levels of fat soluble vitamins A and E
(10)

. VitD has

been associated with immunomodulatory roles through the production of antimicrobial peptides, cytokine 

responses and disease outcomes
(26)

. A recent study has indicated that increasing dietary vitD

suppplemantation as 25D3 supplemantation  altered cytokine responses, increasing the trascription of IL-

10 and reducing that of IFN-γ and IL-1b, in layer chicks infected with a mixed Eimeria sp. infection 

whilst increasing their body weight gain, but had no effect on oocyst production 
(27)

.
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To the best of the authors’ knowledge, this is the first study which investigates the effects of 

coccidiosis on vitD status and the consequences of dietary supplementation in the form of D3 or 25D3 in 

Eimeria infected broilers. In the present study we used E. maxima to investigate the hypothesis that 

circulating levels of 25D3 would be reduced in infected chickens and that dietary supplementation with 

25D3 would be more effective than D3 at reducing the effect. As a result, infected birds would benefit 

from higher circulating levels of 25D3 through increased bone mineralisation, the effects being more 

pronounced at later points of infection when compensatory nutrient absorption occurs
(5)

. In addition, we

investigated whether vitD supply influences parasite replication and cytokine transcription in the 

jejunum, the primary site of Eimeria maxima colonisation and replication, at the peak of parasite 

replication (i.e. d6 pi
(28)

), and on intestinal histomorphometric features which are indicative of

gastrointestinal tract (GIT) damage.  

Materials and methods 

Birds, husbandry and feeds 

All procedures were conducted under the UK Animals (Scientific Procedures) Act 1986 and EU 

Directive 2010/63/EU for animal experiments, carried out under Home Office authorization 

(P441ADF04). Three hundred and thirty six male Ross 308 day-old chicks were housed in a windowless, 

thermostatically controlled building in 48 pens of 0.85 m
2
. Pens were equipped with tube feeders and

bell-drinkers, and wood shavings served as litter. Birds had ad libitum access to feed and water. Pen 

temperature was maintained according to Aviagen recommendations
(29)

 and a lighting schedule of 23

Light:1 Darkness was applied for the first 7 days of age, switched to 18 Light: 6 Darkness for the 

remainder of the trial. Basal starter (d0 –  10) and grower (d11 –  25) diets were manufactured according 

to Aviagen nutrition specifications
(30)

 (Table 1), to which different source and levels of vitD were added

in order to formulate 4 dietary treatments (Table 2): LD3 (low level of D3; 1000 IU/kg ), L25D3 (low 

level of 25D3; 1000 IU/kg D), MD3 (commercial level of D3; 4000 IU/kg) and M25D3 (commercial level 

of 25D3; 4000 IU/kg). The 4000 IU/kg vitD levels (M) were selected to reflect commercial practice and 

breeder recommendations, whereas low levels (L) have been previously shown to reduce bone 

mineralisation
(11)

. Diets were analysed for vitD3 and 25D3 contents at the DSM Laboratory (Basel,

Switzerland) according to previously published methodology
(31)

 (Table 2). The starter diet was offered in

crumbled form and the grower diet in pelleted form. Birds were assessed daily for potential adverse 

effects of our LD treatments on their locomotion capacity. No birds were euthanized due to health related 

disorders and coccidiosis caused anorexia and reduced weight gain according to expectations.  
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Experimental design and inoculations 

The experiment followed a 2 × 2 × 2 factorial design with vitD level, source and infection status as the 

independent variables. Upon arrival chicks were randomly assigned to dietary treatment groups at one of 

two vitD levels (M vs L) and one of  two sources of vitD activity (D3 vs 25D3). At 11 days of age (d0 pi) 

they were further allocated to two levels of infection ((non-infected control group (C) vs infected group 

(I)) and were orally inoculated with a single 0.5-mL oral dose of water (C) or 7.0 x 10
3
 (I) of sporulated

E. maxima oocysts of the Weybridge strain. Each treatment group consisted of 6 replicate pens and the 

initial stocking density was 7 birds per pen. Pen BW was measured at placement (d0 of age) whilst bird 

individual body weight (BW) and pen feed intake were measured at d0, d6, d10 and d14 pi (d11, d17, 

d21 and d25 of age, respectively). One bird per pen with a BW close to the pen average was selected at 

weighing on d6, d10 and d14 pi for sampling. 

Sampling 

The selected birds were individually weighed before blood sampling via the wing vein and were 

subsequently euthanized with a lethal injection of sodium 135 – 137 pentobarbitone (Euthatal®, Merial, 

Harlow, United Kingdom). Blood was placed in 5 ml sodium heparin plasma tubes (BD Vacutainer, SST 

II Advance Plus Blood Collection Tubes - BD, Plymouth, UK). Collected samples were immediately 

placed on ice and centrifuged for 600 s at 1500 g at 4 °C within 1.5 h of collection. Aliquoted plasma 

samples were stored at -80 °C pending analyses. Following blood sampling of the selected birds at d6 pi, 

6 cm of intestinal tissue were excised from the immediate region of Meckel’s diverticulum, which is the 

mid-point of the intestinal area infected by E. maxima
(32)

, opened longitudinally and digesta contents

were removed. Following this, 5 cm of tissue were submerged in 7 ml bijous and 1cm proximal to the 

jejunum in 1.5 ml screw cap micro tubes (Thermo Scientific) filled with RNAlater® (Life Technologies; 

Carlsbad, CA, USA). Samples were immediately stored at -80 °C pending analyses. Additionally, 3 

segments of 1 cm, one from the duodenal loop, one from the mid-jejunum (midway between Meckel’s 

diverticulum and the end of the duodenal loop) and one from the mid-ileum (midway between Meckel’s 

diverticulum and the ileocecal junction) were sampled from all dissected birds on d6, d10 and d14 pi, and 

were fixed in 10% buffered formalin for histomorphometrical assessment. Following intestinal tissue 

sampling, the right tibia and femur were dissected, defleshed and stored at -20 °C pending analysis in 

airtight sealable polyethelyne bags.  

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114519001375


Accepted manuscript 6 

Bone analysis 

Bones were thawed at 4 °C and tibia and femur length were measured with digital callipers. 

Subsequently, bone weight was recorded. Robusticity
(33)

 and Seedor
(34)

 indices were calculated using the

following formulae: 

                  
                

               

Bones were subjected to a 3-point break test using an Instron testing machine (Instron 3340 

Series Single Column-Bluehill 3) using previously employed methodology
(10,11)

. Broken tibias were

boiled for 300 s in deionized water at 100 °C to facilitate removal of cartilage caps and bones were split 

in half for manual removal of the bone marrow. Following this, bones were placed in vessels containing 

10 ml of acetone and 10 ml of petroleum ether (VWR) and were subjected to fat extraction in a Mars 6 

Microwave Assisted Reaction System 6 (CEM, Matthews, USA) with a set temperature of 180 °C for 

4800 s. Fat extracted tibias were then placed in an oven at 105 °C for 18 h and were weighted to obtain 

the dry defatted bone weight. Subsequently they were ashed in a Phoenix CEM ashing microwave 

furnace (CEM, Matthews, USA) at 850 °C for 1.5 h to obtain the ash weight (g). 

Plasma levels of Ca, P and 25D3

Plasma concentration of 25D3 (ng/ml) was analysed using the 25-Hydroxy Vitamin D Direct EIA kit 

(IDS Diagnostics, Fountain Hills, AZ, USA) and plasma concentrations of Ca and P (mmol/l) were 

determined in an ABX Horiba Pentra 400 automatic analyser (Horiba Medical, Irvine, CA, USA) in 

duplicate, according to manufacturer’s instructions. 

Histology 

Excised, formalin-fixed intestinal sections were processed according to previous used methodology, 

stained with hematoxylin/eosin
(10)

. Mounted slides were scanned (Leica SCN400, Leica, Microsystems,

Germany), and images were captured using the Leica Image Viewer Software (Software version: 

SlidePath Gateway Client Viewer 2.0). Captured images were assessed for the determination of villus 

length (VL) and crypt depth (CD) using ImageScope® software (Aperio Technologies, Vista, CA, USA). 

Ten villi with their corresponding crypts were measured per section to obtain an estimated length, 

expressed in micrometres (µm). 
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Eimeria maxima genome copy number 

To assess parasite replication we used quantitative real-time PCR to measure parasite genome copy 

number (GC) in tissues surrounding Meckel’s diverticulum. This method supports higher throughput 

analysis and minimises the impact of variation related to the temporal manner of oocyst excretion
(28)

. The

methodology was used as described previously in studies of parasite replication in chicken lines differing 

in growth rate
(10)

.

RNA isolation, reverse transcription, and real-time qPCR 

RNA was extracted from intestinal tissue using the Isolate II RNA Mini Kit (Bioline Reagents, United 

Kingdom) following the manufacturer’s protocol. RNA concentration and quality was confirmed using a 

NanoDrop spectrophotometer (NanoDrop™ 2000, NanoDrop Products). Isolated RNA extracts were 

reverse-transcribed using a Transcriptor First Strand cDNA Synthesis Kit (Roche, Mannheim, Germany) 

following the manufacturer’s protocol and stored at -20 °C until use. Oligonucleotide primers for 

cytokine and reference gene transcripts were adopted from the published literature (Table 3). Standard 

PCR was carried out on a cDNA sample with each primer pair using MyFi Mix polymerase (Bioline, 

United Kingdom) as described by the manufacturer to provide template for serial dilution standard 

curves. Tenfold serial dilution was performed in molecular grade water to generate standard curves (10
10

– 10
1
) for three reference genes ((GADPH, RL13 and TATA - Binding Protein (TBP)) and for the

cytokine genes of interest, IL-10 and IFN-γ. Real time qPCR was performed with amplification and 

detection carried out using Roche 96 LightCycler detection system (Roche, Mannheim, Germany). The 

qPCR was performed in a 20 μl reaction containing 2 μl of cDNA from the RT reaction, 10 μl SYBR 

Green PCR Master Mix (Roche, Mannheim, Germany), 0.75 μl primer (at 10 uM concentration) and 6.5 

μl of RNase free water, using the following cycle:  pre-incubation: 95 °C for 600 s, 3 step amplification 

40 cycles at 95°C / 10s, 60°C / 10s, 72°C / 20s; Melting: 95°C / 10s, 65°C / 60s, 97°C / 1s (continuous) 

conditions. Each RT-PCR experiment contained triplicate no-template controls, test samples and a log
7 

–

log
1
 dilution series of standard cDNA. Calculation of copy number of each qPCR target was performed

according to the slope and intercept of the corresponding dilution series. Absolute gene transcription was 

quantified for each target test gene, followed by normalisation of their expression ratio using the 

geometric mean of the three reference genes. 
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Calculations and Statistics 

The calculation of sample size was performed using software G*power (vs 3.1). Based on results of 

previous studies
(10,11)

, we determined that we needed 10 replicates for the interaction between level of

vitD supply and Infection status to achieve 80 % power at a significance level of 0.05 for tibia ash % at 

the end of the grower period. Since we lacked experimental data on the effect of source of dietary vitD 

supply or on its interactive effects with vitD level and infection it was not possible to estimate the 

required sample size to investigate these two- and three-way interactions. We employed a greater sample 

size than the one indicated by the power analysis (12 instead of 10 replicate pens) to investigate the two-

way interaction between level and infection. Under the hypothesis that in the presence of infection 

circulating levels of vitamin D would be severely depressed and that source would be a critical factor, we 

estimated that the currently employed sample size of 6 replicate pens would suffice to investigate the 

three-way interactions amongst main factors. All statistical analyses were conducted in SAS 9.4 (SAS 

Institute, Cary, NC). For all statistical assessments pen was considered the experimental unit and all 

variables were analysed with vitD level, source and infection status as main effects and their interactions 

with PROC GLM. Pen data included average BW pre-infection (d11 of age) and at the end of the 

experiment (d25 of age), daily feed intake (ADFI; g/d), average daily gain (ADG; g/d) and feed 

conversion ratio (FCR) calculated over the pre-infection period (d0 – 11 of age) and over the early (d0 – 

6 pi), acute (d7 – 10 pi), recovery periods (d11 – 14 pi), and overall period pi (d0 – 14 pi). Tibia and 

femur bone breaking strength (BBS; N) as well as ash (g) were calculated as a proportion of the bird BW 

(kg) prior to dissection. Single timepoint data deriving from one bird per pen dissected on d6, d10 or d14 

pi included circulating plasma levels of 25D3, Ca and P, bone parameters and histological measurements, 

as well as parasite GC and mRNA transcription levels of IFN-γ and IL-10 at d6 pi. Uninfected birds were 

excluded from the model for E. maxima GC and IL-10 expression levels since both were below the level 

of detection. For all statistical procedures, the normality of the residuals was assessed with the Shapiro-

Wilk test. Predicted E maxima GC, cytokine transcription levels and plasma levels of 25D3 were log-

transformed to normalise residual distribution. When significant differences were detected, treatment 

means were separated and compared by the Tukey’s multiple comparison test. Significance was 

determined at P < 0.05. All values are expressed as model-predicted least square means along with their 

pooled SEM. 
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Results 

Performance 

No significant difference was detected in chick BW at placement between treatment groups (average 

43.5 g; SEM = 0.41; P > 0.1). The main effects of vitD level, vitD source and infection on performance 

variables over the periods pre- and post-infection are presented in Table 4.VitD level significantly 

interacted with infection for FCR (P < 0.05) over the overall period pi (d0 – 14 pi), being the highest in 

infected birds on LD diets (Figure 1). There were no other two or three-way interactions between vitD 

level, vitD source and infection status for on broiler growth performance parameters. At d0 pi (d11 of 

age) bird BW, ADG and ADFI were significantly higher for birds on M diets (P < 0.05) than birds on L 

diets. Infection significantly reduced ADFI and ADG, and increased FCR over the early, acute and 

overall periods pi (P < 0.0001), whilst performance of C and I birds was similar (P > 0.1) over the 

recovery period. Birds on M diets had significantly higher final BW (d25 of age) and ADG over the early 

and acute periods (P < 0.05) and lower FCR (P < 0.05) over the early, acute and overall periods pi than 

birds on L diets. Birds on 25D3 diets had significantly higher final BW and ADG over the acute, and 

overall period pi and lower FCR over the overall period pi (P < 0.05) than birds on D3 diets.  

Bone variables 

The main effects of vitD level, vitD source and infection on bone variables over the timepoints pi are 

presented in Tables 5 and 6 and all significant interactions are presented in Figures 2 and 3. VitD level 

and infection interacted for femur BBS at d10 pi (P < 0.005) as I birds at the low level of 

supplemantation had reduced BBS in comparison to all other treatment groups (Figure 2). In addition, 

vitD level, source and infection significantly interacted (P < 0.01) for ash weight at d14 pi with I birds on 

the LD3 treatment displaying the lowest values (Figure 3). There were no other two or three-way 

interactions between factors for any of the bone variables. Femur and tibia Seedor indices were 

significantly decreased (P < 0.05) at all timepoints pi and Robusticity index (P < 0.05) was significantly 

increased at d6 and d14 pi, in response to infection. Infection significantly reduced tibia ash (%) at all 

timepoints (P < 0.01, P < 0.0001, P < 0.0001 at d6, 10 and 14 pi, respectively). On the other hand, tibia 

ash weight was significantly reduced only at d14 pi (P < 0.0001). Femur BBS was affected on d6 pi (P < 

0.0001) and on d14 pi (P < 0.001), whilst tibia BBS was affected on d10 (P < 0.05) and d14 pi (P < 

0.0001). Offering commercial levels of vitD (M) supply significantly improved both Seedor and 

Robusticity indices of the femur on d10 pi (P < 0.05), but did not affect the tibia. At the same time it 
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increased femur BBS on d10 (P < 0.05) and tibia BBS on d6 pi (P < 0.01). Although tibia ash weight 

was not affected by the level of vitD supply, tibia ash % was significantly (P < 0.05) increased at d10 and 

d14 pi. The source of vitD supply significantly affected the tibia Seedor index at d6 pi and Robusticity 

index at d14 pi (P < 0.05). There was no significant effect of source of vitD supply on BBS. However, 

birds receiving 25D3 achieved significantly higher tibia ash values at d6 and d10 pi (P < 0.05) than birds 

receiving D3. Finally, 25D3 significantly increased tibia ash % at d10 and d14 pi (P < 0.05).  

Plasma levels of Ca, P and 25D3

The main effects of vitD level, vitD source and infection on plasma levels of Ca, P and 25D3 over the 

timepoints pi are presented in Table 7 and all significant interactions are presented in Figures 4 and 5. 

There were no significant three-way interactions between factors on plasma levels of Ca, P and 25D3. 

VitD level and infection interacted (P < 0.05) for P level at d10 pi with I birds on the L diets having 

significantly lower values than C birds on L and M diets (Figure 4A). VitD source and infection 

interacted (P < 0.05) for Ca levels at d10 pi with I birds on the 25D3 treatment, achieving significantly 

higher values than C birds on the same dietary treatment (Figure 4B).VitD level interacted with vitD 

source  for 25D3 levels (P < 0.0001) at d10pi; they were similar for MD3 and L25D3 diets and 

significantly higher (P < 0.0001) than LD3 and lower (P < 0.0001) than M25D3 diets (Figure 5A). 

Furthermore, vitD level and infection interacted for 25D3 levels on d10 pi (P < 0.05), being similar for 

LD3 uninfected and MD3 infected birds and singifincatly higher (P < 0.0001) than LD3 infected birds and 

significantly lower (P < 0.0001) than MD3 uninfected birds (Figure 5B). There were no other two-way 

interactions between factors for any of the plasma variables. Infection significantly reduced levels of Ca 

and P only at d6 pi (both P < 0.0001). The level of vitD supply significantly affected Ca levels (P < 

0.05) on d6 and d10 pi, with birds on L diets having lower values. On the other hand, vitD level did not 

affect P at any of the timepoints. Source did not affect the level of Ca or P, at any of the 3 timepoints. 

Plasma levels of 25D3 were significantly affected at d6, d10 and d14 pi by vitD level (P < 0.0001), 

source of vitD supply (P < 0.0001) and infection status (P < 0.0001); being significantly higher at all 

timepoints in birds on 25D3 treatments than birds on D3 treatments, at high levels than low levels of vitD 

supply and in C than I birds.  

Histology 

The main effects of vitD level, vitD source and infection on plasma levels of histomorphometric 

measurements pi are presented in Table 8 and all significant interactions are presented in Figures 6-8. 

There were no significant three-way interactions between factors on histological measurements. VitD 

level and source interacted on jejunal VL at d10 pi (P < 0.01); being significantly higher in birds on LD3 

treatments than birds on MD3 treatments (Figure  6A). Furthermore, jejunal VL:CD ratio was 
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singnificantly higher in LD3 birds than MD3 birds at d14 pi (P < 0.05; Figure 6B). VitD level and 

infection interacted for jejunal VL at d10 pi with I birds on high vitD treatments having significantly 

lower values than all other treatment groups (P < 0.01; Figure 7). Source and infection interacted for ileal 

VL (P < 0.05) and VL: CD ratio (P < 0.01), at d6 pi being significantly higher for uninfected 25D3 birds 

(P < 0.05) than infected birds receiving either D3 or 25D3 (Figures 8A and 8B, respectively). There were 

no other two- or three-way interactions between factors for any of the histomorphometric measurements. 

At both d6 and d10 pi, infection significantly decreased duodenal VL (P < 0.0001 and P < 0.001, 

respectively), increased CD (P < 0.0001) and reduced VL:CD ratio (P < 0.0001). At d14 pi effects 

persisted only on CD (P < 0.05) and VL:CD ratio (P < 0.01). The same direction of effects, on the same 

days, was observed for histomorphometric measurements of the jejunum and the ileum, albeit the ileal 

VL:CD ratio was significantly affected only at d6 pi (P < 0.0001) (Table 8).  VitD level significantly 

affected duodenal VC ratio at d14 pi, with birds on LD treatments having higher values (P < 0.05). On 

the other hand, 25D3 treatments had significantly higher CD at d6 pi in comparison to D3 treatments (P < 

0.05). 

Parasite replication 

E. maxima GC were not affected by the interaction between vitD level and source. However, they were 

significantly affected by both vitD level (P < 0. 0007) and vitD source (P < 0.0001); birds on MD3 had 

higher parasite burdens than birds on LD diets (11.5 vs 11.1; SEM = 0.08) and birds receiving 25D3 had 

higher parasite burdens than birds receiving D3 (11.6 vs 11.0; SEM = 0.08). 

IFN-γ and IL-10 mRNA levels 

Both IFN-γ and IL-10 were not affected by vitD level (P = 0.800 and P = 0.721, respectively), vitD 

source (P = 0.998 and P = 0.488, respectively) or their two -way interaction (P = 0.737 and P = 0.488, 

respectively). Gene expression of IFN-γ was significantly upregulated by infection (P < 0.0001) and it 

was not affected by the two-way interaction with level (P = 0.726) and source (P = 0.904), or their three- 

way interaction (P = 0.940). 
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Discussion 

In a previous study using the same host-parasite model, E. maxima infection reduced bone mineralisation 

both in fast and slow growing broiler lines
(10)

. In the present study we assessed whether offering differing

dietary levels of vitD (4000 vs 1000 IU/kg), and/or different forms (25D3 instead of D3) would alleviate 

the effects of infection on performance and bone mineralisation in fast growing broilers. We also 

assessed parasite-related aspects of the infection through cytokine expression and parasite GC at peak 

parasite replication. The basis of the hypothesis was that fat soluble vitamin status is impaired during 

coccidiosis, which in turn may further aggravate a marginal vitD deficiency and that 25D3 may be 

absorbed in a more fat-independent manner, being more potent in mediating vitD activity.  

Consistent with previous findings
(10)

, infection penalised performance of infected chickens during the

early and acute periods of infection, but it was identical to that of uninfected birds during the recovery 

period. Gastrointestinal damage occured across all segments of the small intestine around peak parasite 

replication
(28)

, the effects being more pronounced and persisting longer in the proximal and mid-intestine,

which is the predilection site for E. maxima
(35-37)

. Compensatory ileal villi development took place as

described previously in similar studies with the same parasite
(38)

, but not at the acute stage of infection

(d6 pi). In terms of bone mineralisation, the effects of infection were present throughout the pi period for 

both femur and tibia with both showing inferior robusticity and seedor indices. Femur BBS responded to 

infection earlier than tibia BBS, which could be attributed to the faster mineralisation rate of the former in 

comparison to the latter at initial stages of broiler growth
(39)

. Despite the fact that the proportion of tibia

ash to BW at dissection was constant for uninfected birds throughout d17 - 25 post hatch
(40)

, this was not

the case for infected birds where a progressive decrease was noted. By d14 pi infected birds matched the 

growth rates of their non infected counterparts, but their tibias carried 14 % less ash (g). Moreover, tibia 

ash % was severely depressed at all timepoints, being more pronounced at d10 pi but persisting at d14 pi. 

These results bear significance considering that although ADG was comparable between infected and 

uninfected  birds over the recovery period, the BW of infected birds was significantly lower, indicating 

that proportionally more stress was applied to their long bones.  

Consistent with our hypothesis, vitD status was impaired in response to infection with E. maxima. 

Infection reduced levels of 25D3 across the pi period, reaching the lowest levels on d10 pi. Studies in 

mammalian species suggest that some storage occurs in the liver, adipose and muscle tissues 
(41-43)

. 

Furthermore, stores can be released slowly in periods of vitD deficiency raising plasma 25D3 levels; the 

rate of release being higher when subjected to a negative energy balance
(41,42,44)

. Although there is no

information on vitD storage and kinetics in avian species, these reserves are depleted within a week in the 
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absence of dietary supply in minipigs
(41)

. Our results suggest that within a few days of coccidian

challenge systemic circulating 25D3 levels become severely depressed. At d6 pi levels of plasma Ca and 

P, and bone mineralisation, were penalised; likely due to their reduced absorption as a result of 

gastrointestinal tissue damage. However, homeostasis of both Ca and P was attained later during 

infection, while penalties on vitD concentration and bone mineralisation persisted throughout. 

The results of feed analysis suggested that the amount of dietary 25D3 was consistently lower than 

D3, in both the starter and grower diets. The reason for this disrepancy is likely analytical in nature i.e 

related with the methodology for estimating 25D3 contents rather than associated with feed mixing. 

Ultimately, 25D3 status was significantly higher for birds receiving the 25D3 than the D3 diets. Therefore, 

results presented in the current study can be interpreted with confidence. Overall, plasma 25D3 levels 

were significantly increased by higher vitD supplementation and by offering 25D3 as the source of vitD 

activity in both uninfected  and infected birds. The interaction between level and source indicates that 

offering 25D3 is more efficient than D3 in raising its concentration and is consistent with previous reports 

in chickens where serum or plasma concentrations of the metabolite were assessed
(11,45-47)

. Although

there was no formal interaction between level, source and infection on circulating levels of 25D3, at d10 

pi when effects of infection were maximized, 25D3 levels were similar between MD3 and L25D3 birds 

suggesting a better absorption efficiency for dietary 25D3 (Figure 5a). On the other hand, vitD supply 

interacted with infection status for levels of 25D3 at d10 pi, being significantly depressed in L infected 

birds but maintained in M infected birds to similar levels as L uninfected birds. Infected birds on low 

vitD diets also showed inferior FCR across the pi period, and had the lowest femur BBS and circulating P 

levels on the same day pi. The effect of vitD on phosphate absorption is thought to be mediated via the 

saturable transcellular mechanism as increased levels of NaPiIIb in the brush border membrane have 

been measured in response to 1,25D3 treatment of patients with renal failure and in vitD deficient 

rats
(48,49)

. The only formal interaction between level, source and infection was detected at d14pi for ash

(g) where LD3 infected birds showed the lowest ash (g) overall. Collectively, these results indicate that a 

low vitD supply penalised bone development in infected chickens, with the greatest impact at later stages 

of infection when offered in the form of D3. On the other hand, although dietary 25D3 was more efficient 

for maintaining vitD status, it did not offer additional benefits in the presence of infection. Previous 

studies involving increased dietary supply of Ca
(50)

 and P
(8)

 have been unsuccessful in improving bone

mineralisation in coccidiosis infected birds while phytase supplementation has limited efficacy
(51, 52)

. It is

apparent that there are limitations in the capacity of infected birds to compensate for penalties imposed 

on their bone development, at least within the time period studied. 
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Final BW was improved by both vitD level and source, but vitD level affected ADG only over the 

pre-infection period while vitD level only during the post infection period and FCR was affected only 

during the post infection period by both vitD level and source. Although performance responses to vitD 

supply are typically present when offering suboptimal levels of Ca and P supply, our results are 

consistent with previously published studies
(45,53)

 and suggest that vitamin D requirements of broilers for

growth functions may remain high throughout the grower period. On the other hand, increasing vitD 

supplementation, or offering 25D3, improved all markers of bone mineralisation effects were not 

consistent across sampling points. Nonetheless, tibia ash% which is the most important marker of bone 

mineralisation, was significantly increased by d10 and d14 pi when offering commercial levels of vitD or 

in the form of 25D3. These results show that benefits from increased vitD supply on bone mineralisation 

extend beyond the starter period and are in agreement with a recently published study evaluating effects 

of vitD supply in fast growing broiler lines
(11)

. A higher level of vitD supply also increased plasma

concentration of Ca but not of P. Although this could have occurred due to increased bone resorption or 

enhanced Ca and/or P absorption, ultimately bones were more mineralised promoting mineralisation of 

the bone matrix 
(12,54, 55)

. The efficiency of Ca absorption is low in vitD deficient animals
(56)

 and has been

related to transcellular and the paracellular absorption mechanisms
(57,58)

.

In the present study offering a higher level of vitD, or replacing with 25D3, associated with a higher 

degree of parasite replication. Likewise, a higher degree of gastrointestinal damage was observed with 

higher levels of vitD activity. In the presence of infection offering MD3 diets evoked greater jejunal VL 

than LD3 diets at d10pi, and 25D3 diets resulted in smaller ileal VL and VCR at d6pi than D3 birds. 

Regardless, intestinal transcription of IFN-γ and IL-10 was not differentially affected by dietary vitD 

supply. Eimeria maxima evokes a complex cytokine response characterized by increased production of 

Th1 pro-inflammatory cytokines such as IL-1b, IL-6, IL-8, IL-17, and IFN-γ in the small intestine, as 

well as Th2 anti-inflammatory cytokines such as IL-4, IL-10
(35,59,60)

. In particular, increased IFN-γ

mRNA levels are thought to associate with antigen-specific resistance to coccidiosis, promoting Th1 cell 

production, whilst preventing Th2 cell production
(36,61)

, balanced by IL-10
(62)

. Elevated IL-10 mRNA

levels have been described in susceptible compared to resistant broiler chicken lines
(62)

, whilst dietary fed

oral antibody to chicken IL-10 prevents growth depression due to a mixed Eimeria spp. infection
(63)

. On

the other hand, 1,25D3 may support conversion of naïve T cells into T regulatory cells, which produce IL-

10 and TGF-β that inhibit the expression of pro-inflammatory cytokines such as IFN-γ and IL-17
(64)

 and

to upregulate IL-10 production in macrophages
(18,65)

. Previous research has shown that increased

supplementation of 25D3, above 2000 IU/kg of feed, in white Leghorn chicks infected with a mixed 

Eimeria spp. resulted in smaller penalties on their ADG similar to the present study
(27)

. However,

decreased IL-1β and increased IL-10 transcripts were detected in the cecal tonsils. It is possible that in the 

present study a delayed upregulation of IFN-γ, or an earlier upregulation of IL-10, rather than variation in 
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their absolute levels at the peak of the infection may have affected parasitological outcomes and degree 

of GIT damage. Further investigation of the immune response at earlier stages of infection is required to 

elucidate the observed effects. In addition, outcomes may differ according to the parasite species in 

question; E. maxima in particular, induces a strong pro-inflammatory response as opposed to the more 

balanced Th1/Th2 phenotype which characterizes infections with E. acervulina and E. tenella
(35)

.

Furthermore, differential effects may be observed in regards to vitamin D status in single or mixed 

eimerian sp. infections, which are known to occur in practice
(66)

 depending on the species present; E.

acervulina and E.maxima significantly decrease fat soluble vitamin status
(10,67)

 as they both affect regions

of the small intestine where fat absorption occurs
(22)

, while species such as E. tenella which affect the

ceca have milder effects
(68)

. Future studies should investigate the magnitude of reduction in bone

mineralization and vitamin D status over time when infecting with different species and under different 

infection pressures, as it has been previously shown that effects may be dose dependent
(69)

.

Interestingly, parasitological and histological findings did not corroborate performance outcomes. It has 

been previously shown that a higher vitD status results in increased fractional rate of synthesis and 

increased breast muscle yield in broilers
(45)

. Therefore, the reduced FCR observed in high vitD fed

infected broilers could be attributed to their increased vitD status and their improved ability to accrete 

body protein in the presence of infection
(45)

. The lack of an interactive effect of source of vitD supply and

infection status on performance variables indicates that vitD source is less critical than level of level of 

vitD supply under these experimental conditions. 

In conclusion, the present study shows that an E. maxima infection penalizes broiler chicken 

performance, bone mineralisation and vitD status, whilst a low vitD supply seems to aggravate the 

adverse effects of infection. In contrast, a higher vitD supply resulted in higher parasite loads and 

compromised gut architecture in the absence of adverse effects on performance variables. 

Transcription of IL-10 and IFN-γ was unaffected. Additional studies are needed to elucidate the 

effects of vitD supply on immune responses over time in different host/pathogen systems. 
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Figure 1. Significant interaction between vitamin D level (1000 or 4000 IU/kg) and infection status 

(Control or Infected with 0 or 7x10
3
 sporulated oocysts of E. maxima at d11 post hatch) on feed

conversion ratio (FCR) of broiler chicken over the course of infection (d1 – 14 pi) (P = 0.039). 
a,b

 Mean

values with unlike superscript letters were significantly different (P < 0.05). 
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Figures 2 and 3. Interactive effects of main factors vitamin D level (1000 or 4000 IU/kg), source of 

vitamin D supply (25D3 or D3) and infection status (Control or Infected with 7x10
3
 sporulated oocysts of

E. maxima at d11 post hatch)  on bone variables of broiler chicken. Significant interactions between 

vitamin D level and infection on femur bone breaking strength (BBS) (P = 0.002) at d10 pi (2) and 

between vitamin D level, source of vitamin D supply and infection on ash weight (g) expressed as a 

proportion of body weight at dissection (g/kg BW) (P = 0.005) at d14 pi (3). 
a,b,c

 Mean values with unlike

superscript letters were significantly different (P < 0.05). 
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Figures 4 and 5. Interactive effects of main factors vitamin D level (1000 or 4000 IU/kg), source of 

vitamin D supply (25D3 or D3) and infection status (Control or Infected with 7x10
3
 sporulated oocysts of

E. maxima at d11 post hatch) on plasma parameters of broiler chicken. Significant interactions between 

source of vitamin D supply and infection status on plasma Ca concentration (mmol/l) (P = 0.040) (4A) 

and between vitamin D level (1000 IU/kg or 4000 IU/kg) and infection on plasma P concentration 

(mmol/l) (P = 0.046) (4B) at d10 pi. Significant interactions between vitamin D level and source (P < 

0.0001) (5A) and between vitamin D level and infection (P = 0.033) on log transformed circulating 

levels of vitamin 25-OH-D3 (ng/ml; 25D3) (5B) at d10 pi. 
a,b,c

 Mean values with unlike superscript letters

were significantly different (P < 0.05). 

Figures 6-8. Interactive effects of main factors vitamin D level (1000 or 4000 IU/kg), source of vitamin 

D supply (25D3 or D3) and infection status (Control or Infected with 7x10
3
 sporulated oocysts of E.

maxima at d11 post hatch)  on histological parameters of broiler chicken. Significant interactions between 

vitamin D level and source of vitamin D supply on jejunal villi length at d10 pi (P = 0.004) (6A) and on 

jejunal villi length to crypt depth ratio (VCR) at d14 pi (P = 0.008) (6B). Significant interactions between 

vitamin D level and infection on jejunal villi length at d10 pi (P = 0.008) (7). Significant interactions 

between vitamin D source and infection status on ileal villi length (P = 0.022) (8A) and ileal villi length 

to crypt depth ratio (VCR) (P = 0.005) (8B) at d6 pi. 
a,b

 Mean values with unlike superscript letters were

significantly different (P < 0.05). 
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Tables 

Table 1. Ingredient and analysed chemical composition of the starter 

(d0–10) and grower (d11–25) basal diets offered to chickens.  

Item Starter Grower 

Ingredient (%) 

Wheat 47.9 51.6 

Corn 10 10 

Soybean meal (48% CP) 32 25.3 

Soybean full fat  4.0 7.0 

Soy crude oil 1.84 2.32 

Dicalcium phosphate 1.82 1.60 

Limestone 0.77 0.67 

Vitamin and mineral premix 0.40 0.40 

DL methionine 0.33 0.30 

L-Lysine 0.27 0.25 

Sodium bicarbonate (27 %) 0.21 0.20 

Sodium chloride (39 %) 0.19 0.20 

L-Threonine 0.14 0.12 

Choline chloride (60 %) 0.05 0.05 

L-Valine 0.03 0.02 

Nutrient composition (%) * 
ME (kcal/kg) (calculated) 3,000 3,100 

Crude protein  23.1 21.37 

Crude fat 5.03 4.87 

Crude fibre 2.39 2.13 

Ash 5.43 4.83 

Calcium 1.03 0.80 

Phophorus 0.74 0.62 

Available phosphorus (calculated) 0.48 0.44 

Sodium 0.18 0.15 

Manganese (mg/kg) 218.2 168.8 

* The nutrient composition was in accordance with Aviagen nutrient

Specifications 
(25)

 apart from vitamin D source and level of supply.

Table 2. Analysed D3 and 25D3 content (IU/kg of feed) of the 4 dietary 

treatments: LD3 (low level of D3; 1000 IU/kg), L25D3 (low level of 25D3; 1000 

IU/kg D), MD3 (commercial level of D3; 4000 IU/kg) and M25D3 (commercial 

level of 25D3; 4000 IU/kg). NA=not applicable. 

 Vitamin D supplementation level 
D3 25D3 

Starter Grower Starter Grower 

Low 
D3 (LD3) 1560 1020 NA NA 

25D3 (L25D3) NA NA 844 652 

High 
D3 (MD3) 4910 4520 NA NA 

25D3 (M25D3) NA NA 2828 2720 
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Table 3. Oligonucleotides used for quantitative RT-PCR 

cDNA Target Primer Sequence (5’-3’) Accession no.
*

Annealing 

temp (°C) 

Efficiency 

(%) 

Forward Reverse 

28S
(70)

GGCGAAGCCAGAGGAAACT GACGACCGATTTGCACGTC AH001604 61 0.97 

GAPDH
(71)

TGTGACTTCAATGGTGACAGC GCTATATCCAAACTCATTGTCATACC NM_204305 55 0.97 

TATA-BP
(72) 

TAGCCCGATGATGCCGTAT GTTCCCTGTGTCGCTTGC D83127 58 0.99 

IFN-γ
(73)

GTGAAGAAGGTGAAAGATATCATGGA GCTTTGCGCTGGATTCTCA Y07922 59 1.00 

IL-10
(61)

CATGCTGCTGGGCCTGAA CGTCTCCTTGATCTGCTTGATG AJ621614 59 0.99 

*Genomic DNA sequence (NCBI GenBank)
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Table 4. Main effects of level, source of vitamin D supply and Eimeria infection status on chicken performance over the period pre-infection (d0-11 days of age) and over the early (d0 - 6), acute (d6 - 10), recovery (d10

- 14), and overall periods (d0 - 14) post infection. Chickens orally inoculated with 0 (Control) or 7x103 sporulated E. maxima oocysts (Infected) at d11 post hatch (d0 pi).

Body weight post hatch 

(g) 
Average daily gain (g/d) Average daily feed intake (g/d) Feed conversion ratio 

Period 
Pre-

infection 

Post-

infection 

Pre-

infection 
Post -infection 

Pre-

infection 
Post –infection 

Pre-

infection 
Post-infection 

Days 
d11 of age 

(d0pi) 

d25 of age 

(d14pi) 

d0-11 

of age 
d0-6 d6-10 d10-14 d0-14 

d0-11 

of age 
d0-6 d6-10 d10-14 d0-14 

d0-11 

of age 
d0-6 d6-10 d10-14 d0-14 

Level 

 1000 

(IU/kg) 
434 1570 35.5 64.8 77.9 109 80.7 36.4 91.5 116 160 122 1.11 1.43 1.55 1.47 1.48 

 4000 

(IU/kg) 
444 1608 36.4 67.2 82.3 108 82.4 40.4 91.1 117 158 122 1.11 1.37 1.47 1.47 1.43 

Source 

 D3 437 1563 35.8 65.5 77.1 106 79.9 39.7 90.6 113 158 121 1.11 1.40 1.54 1.49 1.47 

 25D3 441 1614 36.1 66.5 83.2 110 83.1 40.0 92.0 119 159 123 1.09 1.41 1.48 1.45 1.44 

Infection 

 Control - 1729 - 76.2 102 107 91.8 - 96.9 134 158 130 - 1.27 1.32 1.49 1.36 

 Infected - 1448 - 55.8 57.9 110 71.2 - 85.7 97.8 159 114 - 1.54 1.70 1.45 1.57 

 SEM 3.6 12.8 0.31 0.84 1.53 1.82 0.79 0.319 1.06 2.00 1.90 1.10 0.0001 0.014 0.027 0.017 0.010 

Probabilities 

 Level 0.041 0.042 0.038 0.056 0.047 0.638 0.128 0.037 0.783 0.714 0.506 0.800 0.225 0.004 0.035 0.934 0.003 

 Source 0.501 0.008 0.415 0.409 0.008 0.096 0.007 0.501 0.379 0.068 0.650 0.105 0.059 0.952 0.075 0.087 0.018 

 Infection - <0.001 - <0.001 <0.001 0.242 <0.001  - <0.001 <0.001 0.716 <0.001 - <0.001 <0.001 0.135 <0.001 
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Table 5. Main effects of level, source of vitamin D supply and Eimeria infection status on chicken femur and tibia Seedor and Robusticity 

indices at d6, d10 and d14 post infection (pi). Chickens orally inoculated with 0 (Control) or 7x10
3
 sporulated E. maxima oocysts (Infected) at

d11 post hatch (d0 pi) 

Femur Tibia 

Robusticity index* Seedor index
†

Robusticity index
*

Seedor index
†

Days pi d6 d10 d14 d6 d10 d14 d6 d10 d14 d6 d10 d14 

Level 

 1000 (IU/kg) 3.35 3.34 3.36 78.5 90.0 109 3.99 4.00 4.08 83.4 99.8 120 

 4000 (IU/kg) 3.34 3.26 3.31 79.7 96.9 113 4.00 3.98 4.04 84.5 104.1 123 

Source 

 D3 3.34 3.31 3.36 78.5 91.5 110 4.01 3.98 4.10 82.3 100.8 110 

 25D3 3.35 3.29 3.31 79.8 95.5 112 3.98 4.00 4.03 85.5 103.0 122 

Infection 

 Control 3.29 3.28 3.30 82.3 101.3 119 3.96 3.97 4.01 87.3 108.9 131 

 Infected 3.39 3.32 3.37 76.0 85.6 103 4.03 4.00 4.12 80.5 94.9 110 

 SEM 0.018 0.022 0.022 0.98 2.02 1.7 0.017 0.019 0.021 1.01 1.73 2.1 

Probabilities 

 Level 0.715 0.017 0.068 0.392 0.019 0.100 0.695 0.437 0.173 0.438 0.085 0.331 

 Source 0.711 0.439 0.072 0.362 0.169 0.598 0.227 0.491 0.026 0.028 0.375 0.364 

 Infection <0.0001 0.163 0.025 <0.0001 <0.0001 <0.0001 0.005 0.385 0.001 <0.0001 <0.0001 <0.0001 

*Robusticity index = ((bone length (mm)) / (bone weight (mg))1/3 

†Seedor index = ((bone weight (mg)) / (bone length (mm)) 
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Table 6. Main  effects of level, source of vitamin D supply and Eimeria infection status on chicken femur and tibia bone breaking 

strength (BBS, N) and tibia ash (g) expressed as a proportion of body weight (BW, kg) and on tibia ash percentage (%) at d6, d10 and 

d14 post infection (pi). Chickens orally inoculated with 0 (Control) or 7x10
3
 sporulated E. maxima oocysts (Infected) at d11 post hatch

(d0 pi)  

Femur BBS (N/kg of BW) Tibia BBS (N/kg of BW) Tibia ash (g/kg BW) Tibia ash (%) 

Days pi d6 d10 d14 d6 d10 d14 d6 d10 d14 d6 d10 d14 

Level 

 1000 (IU/kg) 188 167 140 204 205 186 0.997 0.985 0.929 50.7 50.9 50.4 

 4000 (IU/kg) 198 182 146 230 215 196 1.040 0.999 0.953 51.6 51.9 52.0 

Source 

 D3 192 171 139 212 204 189 0.989 0.957 0.938 50.7 50.9 50.6 

 25D3 194 178 147 223 217 193 1.048 1.027 0.944 51.6 51.8 51.8 

Infection 

 Control 205 179 152 220 221 211 1.013 1.003 1.012 51.9 53.0 52.3 

 Infected 181 169 133 214 199 171 1.024 0.981 0.870 50.3 49.8 50.0 

 SEM 4.3 4.5 3.5 5.7 6.1 5.1 0.0167 0.0185 0.0166 0.35 0.28 0.36 

Probabilities 

Level 0.105 0.028 0.206 0.002 0.241 0.166 0.072 0.595 0.316 0.066 0.021 0.003 

Source 0.681 0.289 0.110 0.179 0.145 0.630 0.018 0.011 0.799 0.070 0.030 0.030 

Infection <0.0001 0.124 <0.001 0.430 0.010 <0.0001 0.660 0.400 <0.0001 0.002 <0.0001 <0.0001 
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Table 7. Main effects of level, source of vitamin D supply and Eimeria infection status on chicken 

plasma Ca and P concentration (mmol/l) and log transformed plasma levels of 25-OH-D3 (ng/ml) at d6, 

d10 and d14 post infection (pi). Chickens orally inoculated with 0 (Control) or 7x10
3
 sporulated E.

maxima oocysts (Infected) at d11 post hatch (d0 pi) 

Ca (mmol/l) P (mmol/l) Log 25-OH-D3 (ng/ml) 

Days pi d6 d10 d14 d6 d10 d14 d6 d10 d14 

Level 

 1000 (IU/kg) 2.56 2.79 2.75 2.05 1.96 1.98 1.51 1.46 1.59 

 4000 (IU/kg) 2.66 2.89 2.77 2.08 2.01 2.05 2.05 1.88 2.10 

Source 

 D3 2.61 2.82 2.74 2.05 1.95 1.97 1.62 1.45 1.67 

 25D3 2.61 2.85 2.79 2.08 2.02 2.06 1.94 1.88 2.02 

Infection 

 Control 2.81 2.81 2.73 2.20 2.01 2.04 1.84 1.94 1.88 

 Infected 2.40 2.87 2.80 1.93 1.97 1.99 1.71 1.39 1.81 

 SEM 0.032 0.034 0.028 0.047 0.046 0.036 0.022 0.023 0.020 

Probabilities 

Level 0.040 0.040 0.593 0.730 0.442 0.161 <0.0001 <0.0001 <0.0001 

Source 0.861 0.564 0.185 0.675 0.296 0.090 <0.0001 <0.0001 <0.0001 

Infection <0.0001 0.194 0.109 <0.001 0.512 0.376 <0.001 <0.0001 0.019 
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Table 8. Main effects of level, source of vitamin D supply and Eimeria infection status on chicken intestinal morphology. 

Chickens orally inoculated with 0 (Control) or 7x10
3
 sporulated E. maxima oocysts (Infected) at d11 post hatch ((d0 post 

infection, (pi)). 

Duodenum 

Villi length (μm) Crypt depth (μm) Villi length: Crypt depth 

Days pi d6 d10 d14 d6 d10 d14 d6 d10 d14 

Level 

1000 1617 1880 2234 263 223 197 7.81 8.62 11.6 

4000 1590 1802 2181 276 239 204 7.49 7.96 10.7 

Source 

D3 1578 1867 2215 267 238 204 7.56 8.23 11.0 

25D3 1629 1814 2200 272 229 197 7.74 8.34 11.3 

Infection 

Control 2009 1987 2216 170 199 190 11.99 10.18 11.7 

Infected 1198 1695 2199 369 269 211 3.31 6.39 10.6 

SEM 40.9 50.6 44.0 9.0 7.5 5.6 0.272 0.278 0.246 

Probabilities 

Level 0.644 0.280 0.397 0.327 0.352 0.355 0.418 0.100 0.024 

Source 0.379 0.462 0.810 0.675 0.386 0.418 0.644 0.768 0.498 

Infection <0.0001 <0.001 0.788 <0.0001 <0.0001 0.012 <0.0001 <0.0001 0.002 
Jejunum 

Level 

1000 835 995 1182 230 212 190 4.75 5.03 6.44 

4000 839 1045 1186 236 203 175 4.85 5.40 6.89 

Source 

D3 866 1022 1214 236 211 184 4.94 5.10 6.68 

25D3 808 1019 1154 229 203 181 4.66 5.34 6.65 

Infection 

Control 1069 1112 1208 139 172 165 7.69 6.52 7.42 

Infected 605 928 1160 326 242 200 1.91 3.92 5.91 

SEM 31.5 27.1 32.5 10.4 8.1 6.6 0.167 0.154 0.191 

Probabilities 

Level 0.916 0.198 0.934 0.684 0.476 0.106 0.681 0.096 0.108 

Source 0.202 0.927 0.197 0.631 0.448 0.711 0.234 0.275 0.918 

Infection <0.0001 <0.0001 0.290 <0.0001 <0.0001 <0.001 <0.0001 <0.0001 <0.0001 

Ileum 

Level 

1000 479 556 663 189 132 136 3.10 4.25 4.93 

4000 497 583 649 186 139 146 3.20 4.23 4.53 

Source 

D3 496 575 671 206 135 142 3.03 4.33 4.83 

25D3 479 563.5 642 169 137 141 3.26 4.14 4.64 

Infection 

Control 543 519 645 121 124 133 4.46 4.20 4.89 

Infected 432 619 667 253 148 149 1.84 4.27 4.57 

SEM 24.4 19.9 27.7 10.1 4.7 5.5 0.128 0.144 0.181 

Probabilities 

Level 0.605 0.345 0.709 0.834 0.308 0.216 0.579 0.930 0.124 

Source 0.636 0.679 0.463 0.015 0.703 0.885 0.208 0.350 0.467 

Infection 0.003 0.001 0.575 <0.0001 0.001 0.041 <0.0001 0.731 0.212 
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