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Abstract

Background: Avian pathogenic Escherichia coli (APEC) is the principle cause of colibacillosis affecting poultry. The
main challenge to the poultry industry is antimicrobial resistance and the emergence of multidrug resistant bacteria
that threaten the safety of the food chain. Risk factors associated with emergence of antimicrobial resistance
among avian pathogenic E. coli were correlated with the inappropriate use of antimicrobials along with inadequate
hygienic practices, which encourages the selection pressure of antimicrobial resistant APEC. The aim of this study
was to isolate, identify, serogroup and genotype APEC from broilers, assess their antibiotic resistance profile,
expressed genes and the associated risk factors.

Results: APEC was isolated from the visceral organs of sick chickens with a prevalence of 53.4%. The most
prevalent serotypes were O1, O2, O25 and O78, in percentage of 14.8, 12.6, 4.4 and 23.7%, respectively. Virulence
Associated Genes; SitA, iss, iucD, iucC, astA, tsh cvi and irp2 were detected in rate of 97.4, 93.3, 75, 74, 71, 46.5, 39
and 34%, respectively and 186 (69.2%) isolates possess > 5–10 genes. The highest resistance was found against
sulphamethoxazole-trimethoprim, florfenicol, amoxicillin, doxycycline and spectinomycin in percentage; 95.5, 93.7,
93.3, 92.2 and 92.2%, respectively. Sixty-eight percent of APEC isolates were found to have at least 5 out of 8
antimicrobial resistant genes. The most predominant genes were Int1 97%, tetA 78.4%, bla TEM 72.9%, Sul1 72.4%,
Sul2 70.2%. Two risk factors were found to be associated with the presence of multi-drug resistant APEC in broiler
chickens, with a P value ≤0.05; the use of ground water as source of drinking water and farms located in proximity
to other farms.

Conclusions: This study characterized the VAGs of avian pathogenic E. coli and establish their antimicrobial
resistance patterns. The widespread of antimicrobial resistance of APEC isolates and detection of ARGs highlighted
the need to monitor the spread of ARGs in poultry farms and the environment in Jordan. Use of ground water and
closely located farms were significant risk factors associated with the presence of MDR APEC in broiler chickens in
Jordan.
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Background
Avian pathogenic E. coli causes localized or systemic
infection outside the avian gut, which indicates as Extra-
intestinal Pathogenic E. coli (ExPEC). The infection
caused by ExPEC is termed colibacillosis which is an in-
fectious disease characterized by acute fatal septicemia
or sub- acute fibrinous pericarditis, airsacculitis, salpingitis,
and peritonitis affect broiler chickens aged 4–6 weeks [1, 2].
Colibacillosis is a common bacterial disease of economic
importance in poultry through decreasing the infected
birds’ productivity, increase mortality, condemnation of in-
fected carcasses at slaughter, and prophylaxis and treatment
cost [2] and is reported worldwide.
APEC is considered a primary or secondary pathogen

of poultry. Strains which carry virulence genes (adhesin,
invasins, toxins, resistance to host serum, iron acquisi-
tion systems, temperature-sensitive hemagglutinin, and
K1 capsule) have all been shown to contribute to APEC
pathogenesis [3, 4] and could induce colibacillosis with-
out previous immune suppression factors; stress or
concurrent infections [5].
The control and prevention of bacterial diseases in

food animals is achieved by the application of antimicro-
bials during the periods of high risk of infectious bacter-
ial diseases, as prophylactic treatment, and as growth
promoters [6].
Bacterial antimicrobial resistance develops naturally

over time; the unprecedented increase of antimicrobial
resistant organisms is linked to the massive use of anti-
microbial agents for disease control and prevention in
human and animal medicine [7]. Several forces play a
role in the spread of antimicrobial resistant bacteria in-
clude the presence of carrier animal moving between
animal herds and through vector action [8].
The key points in controlling avian colibacillosis are

management interventions, infections control and vac-
cination strategies [2]. Wide range of antimicrobial
agents is used in poultry colibacillosis treatment, which
include: β-lactams (penicillins, cephalosporin), aminogly-
cosides, tetracycline, sulphonamides and fluoroquino-
lones [9]. The frequent use of antimicrobial agents give
rise to selective pressure that lead to antimicrobial resist-
ance against APEC [10].
The development of resistance is a complex process as-

sociated with the presence of resistance encoding genes
that are found inside plasmids or chromosomal genetic
material. Integrons are the genetic material responsible for
capturing resistance genes that spread via the genetic mo-
bile elements; transposons and plasmid. The presence of
integrons is detected by amplification of integrase genes
(intI 1, intI2 and intI 3) [11]. Resistance to tetracycline is
mediated through efflux pump system which encoded by
tetracycline resistance group of genes (tetA, tetB, tetC,
tetD, tetE and tetG) [12]. Phenicols resistance encoding

genes are (cat1, cat2, cat3, cmlA and cmlB) [13] aminogly-
cosides resistance genes are (strA, strB, addA1, addA 2)
[14] and genes responsible for sulphonamide resistance
are (sul 1, sul 2 and sul 3) [15].
Antimicrobial resistant E. coli strains pose a serious

problem for public health, since these strains could be
passed to humans via the food chain or by direct contact
with infected birds. In addition, resistant E. coli may act
as transporters for antimicrobial resistant genes to other
pathogens [16].
In many developed countries, administration of anti-

microbial agents is not only restricted for treatment pur-
pose. Antimicrobials can also be used to enhance animal
productivity, feed conversion rate and growth rate in
food producing animals [17]. This type of farming prac-
tice allows antimicrobial drugs to eliminate sensitive
bacterial strains and select strains with genetic traits that
can resist antimicrobials, which provides favourable con-
ditions for selected strain persistence and spread at the
farm level [18].
The use of antimicrobial agents as feed additives, ad-

ministered at low concentrations (sub-therapeutic dose)
usually over long periods of time, may lead to develop-
ment of resistance [19, 20]. Other risk factors include:
the breed of the animal, dose, duration of treatment,
capacity of the farm, and animal husbandry practices
[21]. Poor hygiene and lack of commitment with control
measures and disease prevention have participated in
the propagation and expansion of antimicrobial resistant
strains [22].
Resistant bacteria could be shed in the faeces and

passed into sewage systems, which are considered as
suitable transporters for resistance genes and the spread
of resistant bacteria into the wider environment. Anti-
biotic residues and by-products found in municipal sew-
age, waste water treatment plants, and soil, are flushed
into rivers by surface water and reach ground water re-
sources [23].
The use of disinfectants to limit infection transmission

between animals subsequently increases animal health
and productivity. Quaternary ammonium compounds
(QACs) may have the potential to induce the emergence
of antimicrobial resistance, which could be raised from
cross-resistance between QACs and a range of antimi-
crobials [24, 25]. The use of chicken litter-based organic
fertilizers in the presence of antimicrobial resistance path-
ogens are considered as a serious environmental hazard,
as the spread of fertilizers on pasture could contaminate
ground water sources and land that may facilitate the
transmission of antimicrobial resistant pathogens to other
animal species and humans. This highlights that proper
waste management could be effective in controlling the
spread of antimicrobial resistance pathogens [21, 26].
Antimicrobial resistance has also been reported in wildlife,
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indicating that the common habitat between wildlife, food
animals, water sources and environmental contamination
has resulted in the transmission of antimicrobial resistant
bacterial pathogens into the food chain as well as their
role in contaminating foods of plant origin [27].
Therefore, the objectives of the current study are to

isolate and identify E. coli from live sick birds, establish
their serotypes, their virulence associated genes, anti-
biotic resistance profiles and their associated genes and
to identify risk factors and farming practice associated
with the antimicrobial resistance E. coli.

Results
E. coli isolation
A total of 504 broiler chicken samples (from 84 broilers
farm) were cultured, 269 (53.4%) isolates were confirmed
as E. coli by conventional and RapID™ ONE System and
were used for further molecular and antimicrobial testing.

Molecular identification of E. coli by PCR
All isolates that were confirmed as E. coli by the
RapID™ ONE system also underwent PCR to further
confirm the isolates as E. coli. The universal primer
for 16 s RNA with 585 bp band size was used. Escheri-
chia coli ATCC 25922 was used as positive control as
demonstrated by (Fig. 1).

APEC serotyping
All confirmed E. coli isolates were serotyped. One
hundred eighty-nine (70.3%) were identified as eleven
different serotypes using the available antisera; O1,
O2, O9, O18, O25, O26, O78, O111, O114, O119,
O127. Whereas, the remaining isolates; 54 (20%) were
untypeable and 26 (9.66%) were rough strains that
show autoagglutination, serotypes and their frequen-
cies are shown in (Table 1).

Multiplex polymerase chain reaction method for
detection of virulence associated genes (VAGs)
Sixteen virulence associated genes were investigated
using multiplex PCR, for avian E. coli indicates that sitA
is the most prevalent gene (262, 97.4%) followed by iss
(251, 93.3%), iucC (199, 74%), iucD (203, 75%), astA
(190, 71%), tsh (125, 46.5%), cvi (106, 39%), irp2 (91,
34%), KpsII (33, 12.3%), KPS (20, 7.4%), KpsIII (13, 4.8%)
and vat (7, 2.6%). HlyD and ibeA were not detected and
papC and sfa were detected in one isolate each among
the 269 E. coli tested (Fig. 2a, b).
One hundred eighty-six (69.2%) of the 269 E. coli

tested isolates possess > 5–10 VAGs. In detail; 3 isolates
possessed 10 VAGs, 17 isolates revealed 9 genes, 38 iso-
lates revealed 8 genes, 60 isolates revealed 7 genes, 40

Fig. 1 Products of PCR for the detection of 16 s rRNA gene on 1.5% EB-stained agarose gel amplified from APEC isolates from broilers, where L
100 bp DNA ladder; −ve is negative control; +ve is positive control E. coli ATCC 25922; lane 1–16: E. coli isolates

Table 1 Distribution of E. coli serotypes isolated from broiler
chicken farms in north Jordan

O-
serotypes

No. of
isolates
(percent
%)

Geographical distribution of the serotypes

Irbid Jarash Mafraq Ajlune

O1 40 (14. 9) 14 9 7 10

O2 34 (12.6) 13 6 7 8

O9 8 (3.00) 3 2 1 2

O18 4 (1.5) 2 0 2 0

O25 12 (4.5) 5 2 3 2

O26 2 (0.7) 1 0 1 0

O78 64 (23.8) 23 16 11 14

O111 3 (1.00) 0 1 1 1

O114 9 (3.3) 3 3 0 3

O119 11 (4) 4 2 4 1

O127 2 (0.7) 1 0 1 0

Untypeable 54 (20) 18 17 2 17

Rough 26 (9.7) 8 7 5 6

Total 269 (100) 95 65 45 64
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Fig. 2 a PCR Products for detection of virulence genes tsh gene 642 bp, iss gene 762 bp, kpsIII gene 392 bp, kpsII gene 272 bp, iuc gene 541 bp,
ksp gene 153 bp. b PCR Products for detection of virulence genes vat gene 981 bp, iucD gene 714 bp, irp2 gene 413 bp, cvi gene 1181 bp, astA
gene 116 bp
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isolates revealed 6 genes, 28 isolates revealed 5 genes, 25
isolates revealed 4 genes, 55 isolates revealed 3 genes, 2
isolates revealed 2 genes, 4 isolates revealed one gene
and 4 isolates revealed no genes.

Antibiotic susceptibility test
Standard disc diffusion method
The highest levels of antimicrobial resistance were found
against sulphamethoxazole-trimethoprim, florfenicol, amoxi-
cillin, doxycycline and spectinomycin in percentage of; 95.5,
93.7, 93.3, 92.2 and 92.2%, respectively (Table 2).

Minimal inhibitory concentration (MIC)
MIC was performed on all APEC isolates using eight
different antimicrobial agents based on their common
use in poultry sector. Results illustrated in Table 3 were

interpreted according to animal criteria by clinical
and laboratory standard institute [28]. Escherichia
coli ATCC 25922 was used as control for each run
of the test.

Detection of antimicrobial resistant genes by multiplex PCR
DNA’s templates from the extraction step were used to
detect the prevalence of eight antimicrobial resistance
genes (ARG) among APEC isolates by multiplex PCR
(Table 4). The eight antimicrobial resistance genes were
present in different combinations, ranging from two
genes in some isolates to eight genes in others. All iso-
lates had at least two ARGs, 183(68%) of E. coli isolates
found to possess at least 5 out of 8 ARGs, while only
3(1.1%) were found to have all the eight tested genes
(Figs. 3 and 4 ).

Table 2 Frequency of antimicrobial resistance among APEC isolates from broiler chickens by disc diffusion method

Antimicrobials (abbreviation) Disc
content
(μg)

Disc diffusion interpretive criteriaa (mm) E. coli (n = 269)

R S Number ( % )of resistant isolates

β – lactams

Amoxicillin (AX) 25 <14 ≥14 251 (93.3%)

Azetronem (ATM) 30 ≤21 ≥26 15 (5.6%)

Imipenem (IPM) 10 ≤16 ≥22 0 (0%)

β – lactamase inhibitors

amoxicillin – clavulanic acid (AML) 20/10 <19 ≥19 190 (70.6%)

Tetracyclines

Doxycycline (DO) 30 ≤10 ≥ 14 248 (92.2%)

Oxytetracyclin (OT) 30 ≤11 ≥15 148 (55%)

Chlortetracycline (CHL) 10 ≤13 ≥17 201 (74.7%)

Sulfonamides

Sulphamethoxazole-trimethoprim (SXT) 23.75/1.25 ≤11 ≥14 257 (95.5%)

Fluoroquinolones

Enrofloxacin (ENR) 5 ≤15 ≥21 227 (84.4%)

Ciprofloxacin (CIP) 5 ≤24 ≥26 172 (63.9%)

Aminoglycosides

Spectinomycin (SH) 25 ≤11 ≥15 248 (92.2%)

Gentamicin (CN) 10 ≤14 ≥17 154 (57.2%)

Apramycin (APR) 15 ≤12 ≥15 147 (54.6%)

Cephalosporin

Cephalexin (CL) 30 <14 ≥14 236 (87.7%)

Ceftazidime (CZC) 30 ≤19 ≥22 20 (7.4%)

Ceftriaxone (CRO) 30 ≤22 ≥25 13 (4.8%)

Cefepime (FEP) 30 ≤24 ≥27 9 (3.3%)

Phosphoric acid derivatives

Fosfomycin (FOS) 50 <24 ≥24 80 (30%)

Phenicol

Florfenicol (FFC) 30 ≤10 ≥21 252 (93.7%)
aInterpretive criteria: depends on reference strain E. coli ATCC 25922, demonstrated in CLSI 2012, supplement M100-S22, Vol.32, No.3, Table 2A
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Risk factors analysis
Data analysis
After excluding variables with the same answers, chi-
square (X2) and fisher exact tests were performed to
screen association between outcome variable (resistance
status of the farm) and risk factors in univariable ana-
lysis. Twenty-nine variables included in the univariable
analysis screening, only variables with P ≤ 0.25 considered
for further analysis (Table 5). Nine variables have P value
≤0.25 used to perform the final logistic regression model.
Collinearity between variables was tested using chi-square
and spearman rank correlation test in bivariate analysis.
Results of (X2) are shown in (Table 5) and results of spear-
man rank correlation test (Additional file 2).

Independent variable
The resistance status of each individual farm was used as
unit of comparison, out of 84 farms completed the ques-
tionnaire; 49 (58.3%) resistance farm (presence of one or
more multidrug resistant APEC isolate) coded as (1) Mul-
tidrug resistance is defined as a single bacterial isolate
resistant to 3 or more antimicrobial classes (43), and 35
(41.7%) susceptible farms (no MDR-APEC present in the
farm) coded as (0).

Final multivariable logistic regression
Nine variables from univariate analysis step were used to
perform multivariable logistic regression model for
the outcome, risk factors were considered significant
when P value ≤0.05, non-significant factors re-entered
when a new variable become significant or removed.

Two variables with P-value ≤0.05 (water source and
distance in relation to other farms) and two variables
approaching significance with P-value ≤0.10 (use of
antimicrobials as growth promoters and get prescrip-
tion before antimicrobial treatment) remain in the
final model (Table 6). The final model was tested to
fit Hosmer and Lemeshow-of-fit test [29].

Discussion
E. coli isolation
Colibacillosis is caused by APEC, which considered as
one of the major threat to poultry industry and public
health. In present study, APEC was isolated from broiler
chickens in northern Jordan, with a clinical manifest-
ation of colibacillosis at a prevalence rate of 53.4%. In
Jordan, two investigations of broiler chickens with coli-
bacillosis have been previously carried out with preva-
lence rate of 88.2 and 77% [30, 31], respectively. In other
countries, the prevalence rates of colibacillosis range
from 52.26 to 86.7% [32–35].
The high prevalence of E. coli infections in broiler

chickens could be associated with the accumulation of E.
coli aerosols in the atmosphere of chicken barns that are
inhaled by chickens into the respiratory tract. Samples
that gave negative bacterial culture may be collected
from farms that used early antibiotic treatment policy. E.
coli isolation was from chicken visceral organs which are
the last stage of the disease colonization [36]. RapID one
system conformation and molecular identification were
performed to reduce the false positive results.

Table 3 Minimal inhibitory concentration test results for 269 APEC isolates, CLSI (2012)

Antimicrobials
Agents

Number & (%) of APEC isolates MICa interpretive criteriac

Rb I S R I S

Ceftriaxone 15 (5.5) 8 (2.97) 245 (91) ≥4 2 ≤1

Ceftazidime 21 (7.8) 5 (1.85) 243 (90.3) ≥16 8 ≤4

Gentamicin 160 (59.4) 42 (15.6) 67 (24.9) ≥16 8 ≤4

Ciprofloxacin 178 (66) 11 (4) 80 (29.7) ≥4 2 ≤1

Cephalexin 238 (88.4) 26 (9.66) 5 (1.85) ≤16 8 ≥3

Doxycycline 251 (93.3) 3 (1.1) 15 (5.57) ≤16 8 ≥4

Amoxicillin 254 (94.4) 15 (5.57) 0 (0) ≤32 16 ≥8

Florfenicol 258 (95.9) 11 (4) 0 (0) ≤8 4 ≥2
a MIC: minimal inhibitory concentration of E. coli ATCC 25922, b R: resistant, I: intermediate resistance, S: sensitive. c The MIC interpretive criteria of E. coli ATCC
25922 for Ceftriaxone, Ceftazidime, Gentamicin and Doxycycline is the same value as of breakpoint published by CLSI document M100-S26. CLSI 2017, M100, 27th
ed., for ciprofloxacin. For amoxicillin and cephalexin according to EUCAST Clinical Breakpoint Tables v. 8.1, valid from 2018 to 05-15, for Florfenicol according to
NCCLS document M7-A3, 1999

Table 4 Prevalence of antimicrobial resistance genes in 269 APEC isolates from broiler chickens in Jordan

Antimicrobial resistance genes

tetA tetB int 1 sul 1 sul 2 shv tem Cat

Prevalence (%) 211 (78.4) 82 (30.5) 261 (97) 195 (72.4) 190 (70.6) 5 (1.8) 199 (72.9) 166 (61.7)
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E. coli serotypes
In the current study, serotypes O78, O1, and O2 were
identified at a prevalence of 23.79, 14.86, and 12.63%,
respectively. In Jordan, a study by Al-Tarazi [31] demon-
strated that prevalent serotypes were O78 (8%), O1a and
O1b (5.2%), O8 (4.8%), O127aO127b (4.8%), and O45
(4.5%) which was isolated from cases of broiler coliba-
cillosis and egg peritonitis. However, similar results to
our findings were presented in Egypt and Iran [37, 38].
In China and Northern Ireland, O78 was found as a
predominant serotype in cases of broiler colibacillosis
[39, 40]. It is clear that the results from this study and
other previous evidence that O78, O2 and O1 were the
most prevalent APEC serotypes in broiler chickens.
Table 1 indicates that all serotypes are present in the
four governorates included in this study which high-
light that is no control measures to prevent spreading
of the APEC.
Serotype O18 was identified in 1.5% of E. coli iso-

lates that share common phenotypic and genotypic
characteristics with human ExPEC and NMEC strains.
This may explain the zoonotic potential of those
strains [41]. Other serotypes were isolated in less fre-
quency, and they are of less important for poultry
industry.

Virulence associated genes (VAGs)
Screening multiplex PCR for sixteen VAGs was performed
for all isolates; the most prevalent genes were SitA
(97.4%), iss (93.3%), iucC & D (75%), astA (71%), tsh
(46.5%) and cvi (39%) genes. Presence of three out of four
of iss, iucC, tsh and cvi genes indicate that the isolate is
avian pathogenic E. coli [42] Also, Timothy [43] reported
that presence of these genes are associated with avian coli-
bacillosis and indicates presence of APEC. Sixty-nine per-
cent (186 E. coli isolates) of the current study considered
as pAPEC according to [44] report that chicken E. coli iso-
lates carrying > 5 VAGs were classified as pAPEC. Sit A
and iuc genes both contributes to iron acquisition. Sit A is
usually detected in APEC more than other commensal E.
coli [42]. In this study sit A gene was detected with a high
prevalence (97.3%) which is higher than the prevalence
previously reported in Brazil, [45]. High prevalence of in-
creased serum survival protein coded by iss gene (93.3%),
was higher than what was detected in USA and Germany
where 80.5 and 82.7% of APEC isolated from birds with
colibacillosis possess such gene [46, 47]. Tsh genes were
found in 46.4% of isolates, similar to the findings of Ewers
et al. [47] and Dozois et al. [48] where Tsh genes were de-
tected at a prevalence rate of 53.3 and 49.8%, respectively.
Toxin-producing genes astA was detected in 71% of the

Fig. 3 PCR products for detection of TetA gene 210 bp, TetB gene 659 bp and Int1 gene 280 bp on 1.5% EB-stained agarose gel amplified from
APEC isolated from broilers, where L 100 bp DNA ladder; −ve is negative control; 1–17 lanes; E. coli isolates

Fig. 4 PCR products for detection of sul2 gene 249 bp, sul1 gene 417 bp, cat gene 623 bp, bla SHV gene 885 bp and bla TEM 1150 bp, on 1.5%
EB-stained agarose gel amplified from APEC isolated from broilers, where L 100 bp DNA ladder; −ve is negative control; 1–12 lanes; E. coli isolates
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Table 5 Potential risk factors for the presence of multidrug resistant APEC isolates in broiler farms

Variables (risk factors) Coding Description Resistance status X2

p-value***No* % R** S

Geographical location of the farm

Plain 0 16 19 9 7 0.977

Mountain 1 53 63.1 31 22

Desert 2 15 17.9 9 6

Poultry house directiona

South to north 0 57 67.9 22 35 0.00

East to west 1 27 32.1 27 0

Distance from the high way and noisea

On the high way 0 40 47.6 31 9 0.001

Far from the high way 1 44 52.4 18 26

Type of ventilation system

Natural 0 83 98.8 49 34 0.234b

Mechanical 1 1 1.2 0 1 .417

Number of houses in the farm

One 0 36 42.9 21 15 1.0

Multiple 1 48 57.1 28 20

Distance in relation to other poultry farmsa

Isolated 0 32 38.1 7 25 0.00

Very close 1 52 61.9 42 10

Presence of wild birds and rodents in the farm

No 0 1 1.2 0 1 0.234b

Yes 1 83 98.8 49 34 .417

Application of pest control program

No 0 12 14.3 8 4 0.527

Yes 1 72 85.7 41 31

Frequency of litre discard

Daily 0 29 34.5 19 10 0.332

Weekly 1 55 65.5 30 25

Presentation of feed material

Grounded 0 7 8.7 2 5 0.095b

Pellets 1 77 91.7 47 30 0.122

Water sourcea

Municipalities 0 64 76.2 31 33 0.001

Artesian wells 1 20 23.8 18 2

Water tanks type

Cement 0 10 11.9 6 4 0.909b

Metallic 1 74 88.1 43 31 1.000

Frequency of water tanks cleaning

Monthly 0 9 10.7 4 5 0.011b

When needed 1 15 17.9 13 2

Between cycles 2 55 65.5 27 28

Weekly 3 5 6 5 0
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Table 5 Potential risk factors for the presence of multidrug resistant APEC isolates in broiler farms (Continued)

Variables (risk factors) Coding Description Resistance status X2

p-value***No* % R** S

Frequency of water tanks disinfecting

Monthly 0 9 10.7 4 5 0.007b

When needed 1 19 22.6 16 3

Between cycles 2 51 60.7 24 27

Weekly 3 5 6 5 0

Type of disinfectants used

One type 0 58 69 35 23 0.576

Mixed types 1 26 31 14 12

Disinfect farm entrance for visitors and vehicles

No 0 49 58.3 26 23 0.246

Yes 1 35 41.7 23 12

Workers wear protective cloth when handling birdsa

No 0 56 77.4 49 16 0.00

Yes 1 19 22.6 0 19

Restricted entrance against unauthorized traffica

No 0 13 15.5 12 1 0.006

Yes 1 71 84.5 37 34

Number of workers in the farm

One 0 66 78.6 38 28 0.787

More than one 1 18 21.4 11 7

Use antibiotic for disease preventiona

No 0 51 60.7 26 25 0.089

Yes 1 33 39.3 23 10

Use antibiotic as growth promotiona

No 0 67 79.8 36 31 0.089

Yes 1 17 20.2 13 4

Get prescription before use antimicrobialsa

No 0 8 9.5 7 1 0.079b

Yes 1 76 90.5 42 34 0.131

Perform necropsy before prescribing antibiotics

No 0 34 40.5 21 13 0.599

Yes 1 50 59.5 28 22

Information source about antibioticsa

Veterinarian 0 47 56 24 23 0.021

Drug store 1 5 6 1 4

Other (neighbours,training) 2 32 38.1 24 8

Keep antibiotics in the farm

No 0 2 2.4 0 2 0.090b

Yes 1 82 97.6 49 33 0.171

Perform antibiotic sensitivity before treatment

No 0 47 56 28 19 0.795

Yes 1 37 44 21 16
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isolates which is higher than the study of [49] were astA
detected in 21% of the tested E. coli.
In general, VAGs are integrated within the plasmid, the

pathogenicity islands (chromosomally or extra chromo-
somally) or the bacteriophages, the acquisition of VAGs is
usually through horizontal gene transfer [50, 51] which
may explain the absence or the low prevalence of the
remaining VAGs.

Antibiotic susceptibility
This study found lower resistance rates against beta
lactams, tetracycline and fosfomycin than a previously
reported [52]. However, a higher percentage of resistance
was identified in isolates against enrofloxacin, spectino-
mycin, gentamicin and florfenicol [53].
In the present study, 93.3% of the APEC isolates were

resistant to amoxicillin, which is lower than the resistance
rate of 100% reported in Jordan by Abu-Basha et al., [52]
and higher than the 83.3% resistance rate reported by

Qabajah and Ashhab [53]. In this study, 5.1% of the iso-
lates were resistant to aztreonam, which is significantly
lower than the resistance rates (41.1%) previously re-
ported by Ahmed et al. [34] in Eygpt. This lower rate of
resistance is likely to be due to the fact azetronem is
not used in poultry in Jordan. In this study, APEC iso-
lates were found to be resistant to doxycycline (92.2%)
and oxytetracycline (55%) which is lower than the 100%
resistance rate reported by Abu-Basha et al., [52]. APEC
isolates (57.2%) were found to be resistant to gentamy-
cin, which is higher than previously reported [34, 52].
APEC isolates were found to be highly-resistant to
spectinomycin (92.2%) compared to resistance rates
(47%) previously reported by [52]. APEC isolate resist-
ance to the cephalosporin’s; ceftazidime, ceftriaxone and
cefepime showed the lowest resistance levels among the
tested panel of antimicrobials this result is expected for
these types of cephalosporins as they are not used in
poultry industry.

Table 5 Potential risk factors for the presence of multidrug resistant APEC isolates in broiler farms (Continued)

Variables (risk factors) Coding Description Resistance status X2

p-value***No* % R** S

Frequency of antibiotics use during the cycle (~ 6 weeks)

Less than five times 0 24 28.6 15 9 0.624

Five or more times 1 60 71.4 34 26

Frequency of vet visits to the farm

Once weekly 0 46 54.8 28 18 0.170b

When needed 1 31 36.9 15 16

Never 2 7 8.3 6 1

* No: number of farms, **R: resistant farms (n = 49), S: sensitive farms (n = 35), ***X2 p- value: chi- square value for potential risk factors and resistant status of the
farm, a: statistically significant at P ≤ 0.25 (two-sided), b: fisher exact test was performed instead of X2 when variables had expected count less than 5 in one or
more cells

Table 6 Final logistic regression model for risk factors associated with multidrug resistance APEC isolates

Variables b S.E. wald Df Sig.
p-value

OR 95% C.I. for OR

Lower Upper

Use of antimicrobials as growth promoters

No 1.492 .854 3.053 1 .081 4.446 .834 23.700

Yes

Water source

Municipalities 2.895 1.019 8.067 1 .005 18.090 2.453 133.400

Artesian wells

Distance in relation to other farms

Isolated 3.169 .735 18.608 1 .000 23.774 5.635 100.312

Very close

Get prescription before antibiotic treatment

No 2.599 1.482 3.073 1 .080 13.448 .736 245.780

Yes

Constant −2.492- .688 13.136 1 .000 .083

Hosmer and Lameshow test X2 3.31 sig .507
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Attention should be paid to those antimicrobials used
in broilers feed, drinking water, and as growth promoter
in suboptimal doses; chlortetracycline, erythromycin, enro-
floxacin, oxytetracycline and sulfonamides. The high resist-
ance levels observed for these antibiotic classes reflect the
widespread use of them in poultry. In Jordan, high frequen-
cies of antimicrobial resistance were found in chicken
isolates that can be attributed to the large-scale use of anti-
microbials for disease treatment and prevention without
veterinary consultation.

Antimicrobial Resistance genes
The current study targeted eight ARGs, commonly asso-
ciated with antimicrobial resistance among APEC. For
tetracycline resistance genes, TetA and TetB, 90.7% of
the isolates expressed at least one of the tetracycline re-
sistance genes, with TetA was the most prevalent gene.
This is similar to a study carried out in Egypt, where
91.8% of APEC isolates from broilers, possessed tetra-
cycline resistance genes, with the most prevalent type
being TetB [34]. The high prevalence of tet genes are
associated with high resistant against tetracycline class
(resistance range from 55 to 92.2%). A high prevalence
of the class 1 integron (int1) gene was expressed by 97%
of the APEC isolates, which was higher than previously
reported [39]. This finding highlighted the ability of the
APEC isolates to capture ARG from other pathogenic
bacteria and the environment. Sulphonamide resistance
genes sul1 and sul2 were both prevalent in 70% of the
APEC isolates, higher than a previous Portuguese study
which found that APEC sul1 gene prevalence was 47%
and sul2 was not tested [54]. Also, the relatively high
prevalence of sul1 and 2 (70%) were associated with high
resistant against Sulphamethoxazole (95.5%).
Genes encoding beta-lactamases; bla-SHV and bla- TEM

was identified in the APEC isolates at a prevalence of 1.8
and 72.9%, respectively. This differs from the findings of
Huijbers et al., [55] in the Netherlands who assessed the
prevalence of ESBL producing E. coli in broiler and people
living or working with broiler farms; Huijbers et al., [55]
study reported much higher prevalence of bla-SHV (17%)
but lower bla- TEM (9.1%). The prevalence of Cat1 gene
was 61.7% which is not significantly (P > 0.5) associated
with high resistant to florfenicol (93.7%), this is may be
due to presence of other Cat genes which are not tested.
Plasmids are considered as the main vector for

horizontal gene transfer of ARGs. Increased levels of
ARGs sulI, intI, aphA and traF in the aquatic environment
facilitate the spread of AMR through plasmids. The high
prevalence of integrons among APEC isolates (97%) which
is reported to be responsible for the horizontal gene
transfer and highly responsive to antimicrobial stress in
the environment could explain the abundance of ARGs
among the isolated APEC [56].

Risk factors
This study correlates risk factors that were hypothesized
to be associated with the presence of MDR E. coli in
broiler farms in Jordan. The main risk factors associated
with the presence of MDR E. coli were; farms using
water from artesian wells, as poultry drinking water
increases the incidence of having MDR E. coli compare
to farms supplied by the municipalities’ drinking water.
Jordan has 12 ground water basins that serve 282 mil-
lion m3 of water. This water is used for both industrial
and irrigation purposes [57] Water environments are
considered as reservoirs and amplifying sources of anti-
microbial resistant genes of clinical importance [58].
Previous studies, performed in Canada, tested the

antimicrobial resistance of Enterococcus spp. Identify
that 86, 58 and 100% of the isolates were resistant to
more than one type of antibiotic in poultry litter, sur-
face water and ground water isolates, respectively [59].
This finding suggests that there is a high presence of
antibiotic resistant genes in surface water, wastewater,
and poultry litter.
Furthermore, this study found that farms located in

close proximity to other poultry farms were at high risk
of contamination with MDR E. coli which is similar to
finding of Hartung & Schukz [60], emphasized that
serious pathogens are transmitted by air, which is posi-
tively correlated to farm density, considering farmers have
no control over farm location. Therefore, farmers should
pay attention toward wind directions in their area.
Personal movement, vehicles and instruments can also be
considered as vectors for transmission of pathogens.
Other potential risk factors related to antimicrobial

usage were the use of antimicrobial agents as growth
promoters and the administration of antibiotic without
veterinary consultation. Many studies support that the
improper use of antibiotics for increasing productivity,
enhances the selection pressure for antimicrobial resist-
ant pathogens [7, 61].
Public health concerns regarding antimicrobial resi-

dues and antimicrobial resistance pathogens in food and
the environment reinforce the need for more research
on safer alternatives to antibiotics as feed additives [19].
Netherlands was ranked as the highest antimicrobial
consuming country in 2007, with an estimated 600 tons
of therapeutic antimicrobials used in the veterinary sec-
tor. Therefore, the Netherlands set up a monitoring
action plan to reduce the antimicrobial use in animals.
The first step taken was to establish a veterinary medi-
cine authority, whose main purpose was to record anti-
microbial usage and prescription from farmers and
Veterinarians, and to set species-specific annual targets
for antimicrobial use. This action plan resulted in a 56%
reduction in antimicrobial usage in the period between
2007 and 2012 [62].
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Conclusion
This study characterised the VAGs of avian pathogenic E.
coli and establish their antimicrobial resistance patterns.
The widespread of antimicrobial resistance of APEC iso-
lates and detection of ARGs highlighted the need to moni-
tor the spread of ARGs in poultry farms and the
environment in Jordan. Use of ground water and closely
located farms were significant risk factors associated with
the presence of MDR APEC in broiler chickens in Jordan.

Methods
Sampling
Study area
Chicken samples were collected from farms located in
northern Jordan; Irbid, Jerash, Ajlune, and Mafraq gover-
norates, which contain 896 broiler farms with annual
capacity 12, 064,600 bird [63].

Sample size determination
According to the sample size formula from an infinite
population:

n ¼ z2 pq

d2

Where; p = estimated prevalence of disease in the
population, q = (1-p), d = accepted margin of error and Z
the value for specific confidence level.
The confidence level is 95%, Z value = (1.96), Estimate

prevalence = 88.2% [64], d = (0.05) thus, n = 159.8 farms.
Eighty-four farms were visited and asked to fill in the

questionnaire before samples collection. Five hundred
and four sick birds’ samples were collected during the
period from April to December 2016.

Data collection
A questionnaire was designed with 42 questions divided
into four sections, which covered the factors believed to
be associated with antimicrobial resistance. The ques-
tionnaire was translated to Arabic and answered by the
owners or the veterinarian of each farm during personal
interviews while collecting the samples. The question-
naire was field pre-validated. (Additional file 1).

Isolation and conventional identification of APEC
Aseptic swabs from liver, heart, spleen and lungs of birds
symptomatic of colibacillosis were cultured on 5% sheep
blood agar and on MacConkey agar media (Oxoid), and
subcultured on selective differential media eosin methylene
blue agar (EMB) (Oxoid) [65]. The isolated bacteria were
identified as E. coli by observing their cultural characteris-
tics, morphology by Gram’s stain, oxidase test, biochemical
reactions using indole, methyl-red, Voges-Preuskuar and
citrate tests (IMViC), Kligler Iron Agar (KIA) and motility

test as described by Tonu et al. [66]. The suspected isolates
were maintained in cryostat tubes containing 20% glycerol
with LB Luria Bertani broth at − 70 °C [26].

Confirmation of APEC using RapID™ ONE system
E. coli isolates were tested using RapID ONE system
Kit (Remel, USA) as indicated in the kit catalogue,
and results then were interpreted using ERIC (Remel
RapID database).

APEC serotyping
Serotyping was conducted using E. coli polyvalent O
antisera and mono-specific antisera prevalent in poultry;
O1, O2, O78, O8, O9, O18, O26, O25, O45, O55, O86,
O111, O114, O119, O127, and O128 [30, 31, 67]. All the
E. coli isolates were subjected to serotyping according to
the instructions of the manufacturer (SSI Diagnostica)
using a micro titre plate agglutination test.

Molecular identification of APEC
DNA extraction and detection of 16 s rRNA gene of E. coli
by PCR
Extraction of DNA from the Escherichia coli was carried
out by boiling procedure and rapid cooling method. In
brief, a single colony of E coli was resuspended in 100 μl
of nuclease free water and boiled for 10 min and imme-
diately cooled on icebox followed by centrifugation at
10,000 rpm for 10 min. The supernatant was collected,
stored at − 20 °C and used as DNA template [34].
E. coli isolates were confirmed by detection of 16S

rRNA gene using conventional PCR. As described by
Hossain et al., [64]. Oligonucleotide primers sequences
used for the amplification of 16S rRNA gene of E. coli was
16 s-F: GAC CTC GGT TTA GTT CAC AGA and 16 s-R:
CAC ACG CTG ACG CTG ACC A, location within the
gene 4,267,278–4,267,845 and amplicon size 485 bp. PCR
reaction mixture consisted of 12.5 μl of 2 × PCR master
mixtures (Promega), 10 pmol primer of each and 2 μl of
genomic DNA in a final volume of 25 μl adjusted by nu-
clease free water. The cycling conditions consisted of ini-
tial denaturation at 95 °C for 5min., followed by 30 cycles
of 94 °C for 1 min., 55 °C for 45 smin. and 72 °C for 1
min., with final extension at 72 °C for 7min. The amplified
products were electrophoresed into 1.8% agarose gel at
100 V visualized under Gel doc/UV trans-illuminator.

Multiplex polymerase chain reaction method for detection
of virulence associated genes (VAGs)
Each DNA extract was screened for 16 VAGs associated
with avian pathogenic E. coli; sfa, iss, tsh, kps, kpsII, kpsIII,
iucC, iucD, hlyD, ibeA, sitA, astA, cvi, papC, irp2 and vat,
using a multiplex PCR [47]. Primers were obtained from
GENEWIZ Company (USA) and Intron, South Korea sup-
plied all PCR constituents used in this study. All sixteen
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primers sequences were given in [43]. Briefly, each 50 μl
PCR reaction contained: 12 μl of 25mM MgCl2, 21.3 μl
nuclease free water, 5 μl 10x PCR buffer, 4 μl of 20mM
dNTPs, 0.3 μl of each 100 pmol forward and reverse pri-
mer, 0.3 μl, 5 U/ μl Taq polymerase and 5 μl template
DNA. Thermocycler conditions were: initial denaturation
95 °C for 5min; nine cycles of 95 °C for 60 s, 55 °C for 30
s, 72 °C for 60 s; twenty-eight cycles of 94 °C for 30 s, 55 °C
for 30 s, 72 °C for 30 s with a final extension 72 °C for 7
min. The mixture was held at 4 °C. PCR products were
subject to electrophoresis on a 2% agarose gel in tris–acet-
ate buffer (TAE) at 150 V for 60min alongside a super
Ladder-Low 100 bp ladder (Intron, South Korea).
Two separate m-PCR assays were performed; one

multiplex PCR previously described by Ewers et al. [47]
and one m-PCR assays for ibeA and sitA described by
Timothy et al. [43]. Briefly, for a 25 ml multiplex PCR,

4 μl of 25 mM MgCl2, 13.9 μl nuclease free water, 2.5 μl
10x PCR buffer, 0.5 μl 20 mM dNTPs, 0.1 μl of each 100
pmol forward and reverse primers, 0.5 μl 5 U/ μl Taq
polymerase and 2 μl DNA templates were used. Multi-
plex PCR thermocycler conditions were as follows: initial
denaturation 94 °C for 3 mints followed by 25 cycles of:
94 °C for 30 s, 58 °C for 30 s, 68 °C for 3 mints with a
final extension 72 °C for 10 mints. The mixture was held
at 4 °C. Each individual PCR contained 1 μl DNA tem-
plate, 1 μl of each primer (100 pmol) and 22 μl of 1.1x
Reddymix PCR master mix with 1.5 mM MgCl2. M-PCR
thermocycler conditions for sitA and ibeA were; 95 °C
for 12 min and 25 cycles of: 94 °C for 30 s, 63 °C for 30 s,
68 °C for 3 min; 72 °C for 10 min with a final hold 4 °C.
PCR products were subject to electrophoresis as above.
Isolates carrying > 5 VAGs were classified as APEC.

Antimicrobial susceptibility
Standard disc diffusion method
The agar disk diffusion test was carried out according to
[28]. All E. coli isolates were tested for 19 antibiotics:
amoxicillin (25 μg), doxycycline (30 μg), ciprofloxacin
(5 μg), ceftriaxone (30 μg), gentamicin (10 μg), florfenicol
(30 μg), cefepime (30 μg), aztreonam (30 μg), imipenem
(10 μg), cephalexin (30 μg), ceftazidime (30 μg), sulpha-
methoxazole-trimethoprim (23.75/1.25 μg), Amoxicillin-
clavulanate (20/10 μg), apramycin (15 μg), spectinomycin
(25 μg), Enrofloxacin (5 μg), Oxytetracycline (30 μg),
Chlortetracycline (10 μg), and Fosfomycin (50 μg).
Escherichia coli ATCC 25922 was used as control strain.

Table 7 Antimicrobial agents used in the MIC with their
potency and dilution solvent

Antibiotics Potency(μg) Dilution solvent (10 ml) Wight (mg)

Gentamicin 618 Distilled water 323.62

Amoxicillin 998 Saturated NaHCO3 200.4

Ciprofloxacin 998 1 ml acetic acid+ 9ml DW 200.2

Ceftazidime
hydrate

983 Distilled water 203

Cephalexin 1000 1 M NH4OH 347.4

Ceftriaxone 1000 Distilled water 661.6

Florfenicol 990 Distilled water 479.0

Doxycycline 980 Distilled water 204.08

Table 8 PCR target genes, primer sequence, PCR product size and annealing temperature

Target gene Primer sequence PCR product
size (bp)

Annealing
Temp.

tetA tetAF GCT ACA TCC TGC TTG CCT TC 210 55

tetracycline tetAR CAT AGA TCG CCG TGA AGA GG

tetB tetBF TTG GTT AGG GGC AAG TT1 T TG 659 55

tetracycline tetBR GTA ATG GGC CAA TAA CAC CG

blaTEM TEMF ATT CTT GAA GAC GAA AGG GC 1150 60

beta lactams TEMR A CG CTC AGT GGA ACG AAA AC

blaSHV SHVF CAC TCA AGG ATG TAT TGT G 885 60

beta lactams SHVR TTA GCG TTG CCA GTG CTC G

sul1 sulphonamide sul1F CTT CGA TGA GAG CCG GCG GC 417 68

sul1R GCA AGG CGG AAA CCC GCG CC

sul2 sulphonamide sul2F AGG GGG CAG ATG TGA TCG AC 249 58

sul2R GCA GAT TTC GCC AAT TG

Cat1 chloramphenicol catF CCT GCC ACT CAT CGC AGT 623 55

catR CCA CCG TTG ATA TAT CCC

int1 integrons int1F CCT CCC GCA CGA TGA TC 280 55

int1R TCC ACG CAT CGT CAG GC
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Minimal inhibitory concentration (MIC)
Susceptibility to 8 antimicrobials was evaluated by broth
microdilution [28] Cationic-adjusted Muller-Hinton broth
(Cationic-adjusted Muller-Hinton, Fluka, Switzerland) was
used to prepare the bacterial inoculum and dilute the anti-
microbial agents (Table 7). According to the MIC break-
points, E. coli isolates that were resistant to 3 or more
antimicrobial classes were considered multidrug-resistant
isolates [44]. The reference Escherichia coli ATCC 25922
strain was used as a control strain.

Molecular detection of antimicrobial resistant genes by
multiplex PCR
PCR was conducted for the E. coli isolates that were
found resistant to one or more of the previously men-
tioned antimicrobials, as described by [68]. The DNA
templates from the DNA extraction step were used to
detect resistance genes(Table 8).

Statistical analysis
Data analysis
Eighty-four broiler farms completed the questionnaire
and were included in the analysis using SPSS 21.0
software. Questions with the same answers were ex-
cluded from the analysis (application of “all in all
out” strategy, disinfection of farm building before
introduction of new flocks, application of vaccination
program, previous history of respiratory diseases,
monitoring of mortality rate and use of antimicrobials
for disease treatment).
Chi-square (X2) and Fisher exact tests were per-

formed to screen association between outcome vari-
able (resistance status of the farm) and risk factors
in univariable analysis. Only variables with P ≤ 0.25
considered for further analysis, which were used to
perform the final logistic regression model. Collin-
earity between variables was tested using chi-square
and Spearman rank correlation test in bivariate
analysis.

Independent variable
The resistance status of a farm was used as unit of com-
parison, farms were categorized into resistance accord-
ing to presence of one or more multidrug resistant
APEC isolate coded as (1) and susceptible isolates coded
as (0) depending on the multidrug resistance definition.
According to WHO [69] five antimicrobial agents (OT,
CN, CIP, AML and FOS) were selected in order to
categorize the isolates into multidrug resistant patterns
(resistant to three or more antimicrobials) and sensitive
isolates [70].

Final multivariable logistic regression
Variables from univariate analysis step were used to per-
form multivariable logistic regression model for the out-
come, risk factors were considered significant when P
value ≤0.05, non-significant factors re-entered when a
new variable become significant or removed. The final
model was tested to fit hosmer and lemeshow-of-fit test.

Additional files

Additional file 1: Questionnaire, Risk assessment of antibiotics
resistance in broilers poultry farms In Jordan. (PDF 229 kb)

Additional file 2: Spearman correlation test. (PDF 115 kb)
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