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26 10 The extinct, flightless moa of New Zealand included some of the largest birds to have existed, and possessed 

27 

28 11 many distinguishing pelvic and hindlimb osteological features. These features may have influenced stance and 

29 

30 12 gait in moa compared to extant birds. One means of assessing locomotor biomechanics, particularly for extinct 

31 

32 
13 species, is quantitative analysis of the architecture of cancellous bone, since this architecture is adapted to suit

 

33 
14 its mechanical environment with high sensitivity. This study investigated the three-dimensional architecture of 

34 
35 15 cancellous bone in the femur, tibiotarsus and fibula of three moa species: Dinornis robustus, Pachyornis 
36 
37 16 elephantopus and Megalapteryx didinus. Using computed tomographic X-ray scanning and previously 
38 

39 17 developed fabric analysis techniques, the spatial variation in cancellous bone fabric patterns in moa was found 
40 
41 18 to be largely comparable to that previously reported for extant birds, particularly large species. Moa hence 
42 
43 19 likely used postures and kinematics similar to those employed by large extant bird species, but this 
44 

45 20 interpretation is tentative on account of relatively small sample sizes. A point of major difference between moa 

46 

47 21 and extant birds concerns the diaphyses; cancellous bone invades the medullary cavity in both groups, but the 

48 

49 22 invasion is far more extensive in moa. Combined with previous assessments of cortical geometry, this further 

50 

51 23 paints a picture of at least some moa species possessing very robust limb bones, for which a convincing 

52 

53 24 explanation remains to be determined. 
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1 

2 

3 55 BECOMING extinct only relatively recently, the flightless moa (Aves: Palaeognathae: 
4 
5 

6 56 Dinornithiformes) of New Zealand included some of the largest birds to have ever existed. 
7 

8 57 Across the nine currently recognized species (Worthy & Scofield 2012), body mass in moa 
9 

10 58 has been estimated to range from about 20 kg in Megalapteryx didinus Owen, 1883 to over a 
11 

12 
quarter of a tonne in Dinornis robustus Owen, 1846 (Alexander 1983a, Anderson 1989, 

13 
14 

15 60 Worthy & Holdaway, 2002, Murray & Vickers-Rich 2004, Brassey et al. 2013). Moa also 
16 

17 61 possessed a number of unique anatomical features of the pelvis and femur (Worthy & 
18 
19 

62 Holdaway 2002), as well as unusually proportioned hindlimb bones, in terms of both 
20 
21 

22 63 intersegmental proportions (Gatesy & Middleton, 1997) and whole-bone robusticity 
23 

24 64 (Alexander 1983a, Alexander 1983b, Doube et al. 2012, Brassey et al. 2013). Collectively, 
25 

26 65 these observations suggest that moa, particularly the larger species, may have stood and 
27 
28 

29 66 moved in a manner different to extant birds. 
30 

31 67 Moa were unique among birds in completely lacking wings, with the fused 
32 

33 68 scapulocoracoid lacking even a glenoid (Worthy & Holdaway 2002, Worthy & Scofield 
34 

35 
2012). They also possessed an acarinate sternum, and the pelvis of all species except 

36 
37 

38 70 Megalapteryx didinus and Anomalopteryx didiformis (Owen, 1844) was very broad caudal 
39 

40 71 to the acetabulum. These features suggest that the whole-body centre of mass of moa may 
41 
42 

72 have been more caudally positioned compared to extant birds, which would have hence 
43 
44 

45 73 influenced hindlimb positioning, stance and gait (Alexander 1983a). Despite these oddities, 
46 

47 74 the articular surface morphology of the main bones of the moa hindlimb does not differ 
48 
49 75 appreciably from that of extant birds, implying minimal differences in limb articulation, and 
50 
51 

52 76 therefore posture (Anderson 1989, Worthy & Holdaway 2002, Zinoviev 2013). The 
53 

54 77 hindlimb myology of moa is also inferred to be largely comparable to that of extant 
55 

56 78 palaeognathous birds, with few major differences (Bishop 2015), also suggestive of minimal 
57 
58 

difference in locomotor behaviour compared to extant birds. A number of fossil moa 
59 
60 
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1 

2 

3 80 trackways (sequences of footprints) are known, but analyses to date suggest that these too 
4 
5 

6 81 are comparable to those made by extant birds (Worthy & Holdaway 2002); in any case, they 
7 

8 82 do not reveal any insight to movements of more proximal limb segments (Thulborn 1990, 
9 

10 83 Hutchinson & Gatesy 2006). 
11 

12 
To better clarify stance and gait in moa, and to resolve apparently conflicting lines of 

13 
14 

15 85 evidence, one way forward is to study evidence of locomotor biomechanics recorded in limb 
16 

17 86 bone osteology. The spatial distribution of cortical bone at midshaft has been examined 
18 
19 

87 previously (Alexander 1983b, Worthy 1989, Brassey et al. 2013), but inferences drawn from 
20 
21 

22 88 such observations must be viewed with caution, since experimental evidence with modern 
23 

24 89 species indicates that cortical bone morphology does not always correlate with the nature of 
25 

26 90 bone loading (e.g., Thomason 1995, Demes et al. 2001, Demes et al. 1998, Main & 
27 
28 

29 91 Biewener 2004, Pearson & Lieberman 2004, Lieberman et al. 2004, Demes 2007, Wallace et 
30 

31 92 al. 2014). In contrast, the architecture of cancellous bone (‘spongy bone’) does show a 
32 

33 93 strong correlation with loading conditions experienced in vivo (Kivell 2016).  Cancellous 
34 

35 
bone is sensitive to its mechanical environment, and is able to adapt its architecture to suit 

36 
37 

38 95 this environment in a highly predictable fashion. For example, numerous studies have 
39 

40 96 demonstrated that increased loading magnitude leads to an  increase in the volume fraction 
41 
42 

97 occupied by bone material (Biewener et al. 1996, van der Meulen et al. 2006, Wang et al. 
43 
44 

45 98 2012), whereas a change in loading direction leads to a reorientation of the dominant 
46 

47 99 direction of the comprising trabeculae (Radin et al. 1982, Goldstein et al. 1991, Mullender 
48 
49 100 & Huiskes 1995, Huiskes et al. 2000, Adachi et al. 2001, Ruimerman et al. 2005, Pontzer et 
50 
51 

52 101 al. 2006, Polk et al. 2008, Volpato et al. 2008, Barak et al. 2011). The mechanobiological 
53 

54 102 processes underpinning these responses are likely founded upon achieving a uniform 
55 

56 103 distribution of bone tissue strain, averaged across time and loading conditions (Fyhrie & 
57 
58 

104 Carter 1986, Boyle & Kim 2011, Christen et al. 2013). 

60 
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1 

2 

3 105 Given how well cancellous bone adapts to its mechanical environment, it is of little 
4 
5 

6 106 surprise that differences in locomotor behaviour among extant species are often manifest in 
7 

8 107 differences in cancellous bone architecture (Fajardo & Müller 2001, Ryan & Ketcham 
9 

10 108 2002b, 2005, Maga et al. 2006, Hébert et al. 2012, Ryan & Shaw 2012, Barak et al. 2013, 
11 
12 

109 Su et al. 2013, Tsegai et al. 2013, Matarazzo 2015, Kivell 2016, Georgiou et al. 2018). Of 

14 

15 110 particular note is that the principal orientations of trabeculae (i.e. the cancellous bone fabric) 
16 

17 111 tends to be especially telling of differences in locomotor behaviour (Ryan & Ketcham 
18 
19 

112 2002b, 2005, Maga et al. 2006, Hébert et al. 2012, Ryan & Shaw 2012, Barak et al. 2013, 
20 
21 

22 113 Su et al. 2013, Tsegai et al. 2013, Matarazzo 2015, Amson et al. 2017, Bishop et al. 2018b). 
23 

24 114 The architecture of cancellous bone therefore has the potential to shed new insight on whole- 
25 

26 115 bone loading mechanics and locomotor behaviour in extinct species such as moa (Bishop et 
27 
28 

29 116 al. 2018b). 
30 

31 117 Cancellous bone architecture has recently been surveyed in the main limb bones of a 
32 

 

33 
34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

118 wide variety of extant ground-dwelling bird species (Bishop et al. 2018b). That study 

119 identified patterns of fabric directionality which correlate to size-related changes in hip and 

120 knee flexion during avian stance or gait, as well as a ubiquity of oblique trabeculae in the 

121 femoral and tibial diaphyses that corresponds to strong torsional loading of these bones 

122 during locomotion. These results provide a comparative framework upon which cancellous 

 
123 

 
bone architecture in moa hindlimb bones may be investigated, insofar as it relates to limb 

47 124 bone loading and locomotor biomechanics. The present study aimed to investigate the three- 
48   
49 125 dimensional (3-D) architecture of cancellous bone in the hindlimb of three moa species, 
50 
51 

52 126 Dinornis robustus, Pachyornis elephantopus (Owen, 1858) and Megalapteryx didinus. The 
53 

54 127 results of quantitative and qualitative analyses, when compared to similar results obtained 
55 

56 128 for extant birds, can help resolve questions concerning stance and gait in these species. 
57 
58 

129 Given the size-related trends in posture and cancellous bone architecture reported previously 

60 
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1 

2 

3 130 for extant birds by Bishop et al. (2018a,b), it is predicted that moa will exhibit architectural 
4 
5 

6 131 patterns most comparable to large extant birds. In addition to providing insight into moa 
7 

8 132 locomotor biomechanics specifically, the results of this study can more broadly also shed 
9 

10 133 new light on the potential consequences of large body size for avian bipedalism. 
11 
12 

134 

14 

15 135 Material and methods 
16 

17 
136 The methodology employed in this study followed that outlined previously by Bishop et al. 

 

19 

20 137 (2018b), and so only a brief overview is given here. The species examined were chosen so as 
21 

22 138 to sample all three moa families as well as varying body sizes and proportions: the 
23 

24 139 dinornithid Dinornis robustus is large (up to 250 kg) and tall, the emeid Pachyornis 
25 
26 

27 140 elephantopus is medium-sized (around 100 kg) and very graviportal, and the megalapterygid 
28 

29 141 Megalapteryx didinus is small (around 20 kg) and relatively gracile. The present study 
30 

31 142 focused on three main bones of the moa hindlimb, the femur, tibiotarsus and fibula; these 
32 
33 

143 were the bones studied previously in extant birds, and collectively give a full picture of the 

35 

36 144 hip and knee joints. All specimens were obtained from the Natural History Collections of the 
37 

38 145 Canterbury Museum (Table 1); the large sizes of the specimens studied indicate that they 
39 
40 

146 were from adult birds. The 3-D architecture of cancellous bone in the fossil specimens was 
 

42 

43 147 acquired through X-ray computed tomographic (CT) scanning, using a Siemens Somatom 
44 

45 148 Definition Flash dual energy scanner (Siemens AG, Germany); the scan settings used are 
46 

47 149 listed in Table 1. The resulting scans were processed using the software ImageJ 1.47 
48 

49 

50 150 (http://imagej.nih.gov/ij/) and Mimics 17.0 (Materialize NV, Belgium), following protocol 2 
51 

52 151 of Bishop et al. (2018b). This was possible because of the excellent preservation of the 
53 

54 152 specimens, with little (if any) matrix inside the bones, affording good contrast between bone 
55 
56 

153 and non-bone phases in the CT scans. 

58 

59 154  
60 
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1 

2 

3 155 The processed and segmented CT scans were then subject to a number of architectural 
4 
5 

6 156 analyses. The first was an analysis of cancellous bone fabric, where the 3-D fabric tensor 
7 

8 157 (Cowin, 1986) was calculated using the star volume distribution method (Cruz-Orive et al. 
9 

10 158 1992, Odgaard 1997, 2001), as implemented in the software Quant3D 2.3 (Ryan & Ketcham 
11 
12 

159 2002a,b, Ketcham & Ryan 2004). When conducted for numerous volumes of interest 

14 

15 160 throughout a whole bone, this provides an assessment of how fabric direction (essentially, 
16 

17 161 trabecular orientation) varies spatially across the bone. In some specimens over 850 
18 
19 

162 individual volumes of interest were analysed for a given bone. The second analysis 
20 
21 

22 163 conducted concerned the results for the femoral head and medial femoral condyle, in 
23 

24 164 particular, the orientation of the primary fabric direction (the direction of strongest 
25 

26 165 trabecular alignment, equivalent to the first eigenvector of the fabric tensor) in these regions 
27 
28 

29 166 of the bone. Here, the mean orientation of the primary fabric direction across each 
30 

31 167 anatomical region was calculated and referenced to an explicit femoral anatomical 
32 

33 168 coordinate system. Previously, these mean orientations were found to correlate with the 
34 
35 

169 degree of hip and knee flexion in extant bipeds (Bishop et al. 2018b), and may therefore 

37 

38 170 provide insight into posture in extinct moa. These mean orientations, in terms of their 
39 

40 171 sagittal components, were also compared to body size, where the interarticular length of the 
41 
42 

172 femur (i.e., less the trochanteric crest) was taken as a proxy for body size 
43 
44 

45 173 The third and final analysis involved examination of gross morphological characteristics 
46 

47 174 of cancellous bone architecture in the diaphysis (shaft) of the femur and tibiotarsus. This 
48 

49 175 was undertaken through a categorical scoring study performed by five independent, 
50 
51 

52 176 volunteer observers; these volunteers were the same as those used in the study of extant bird 
53 

54 177 bones (Bishop et al. 2018b), and were blind to the objectives of the current study. Using 3-D 
55 

56 178 isosurface renderings derived from the segmented CT scans, three features were scored: the 
57 
58 

179 bulk spatial extent of cancellous bone in the diaphysis, the tendency of trabeculae to be 

60 
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1 

2 

3 180 closely associated with other trabeculae, and the average orientation of trabeculae with 
4 
5 

6 181 respect to the long-axis of the bone. Following scoring, the mean score across the five 
7 

8 182 observers was taken for each bone and for each morphological feature. The actual 
9 

10 183 architecture of cancellous bone in the diaphyses was also assessed by the authors through 
11 
12 

184 visualization of the isosurface renderings. 

14 

15 185 Statistical comparison between moa and extant birds was conducted for the calculated 
16 

17 186 mean primary fabric directions for the femoral head and medial femoral condyle in both 
18 
19 

187 groups. Setting an a priori significance level of p = 0.05, the 95% confidence interval of the 
20 
21 

22 188 mean direction (‘confidence cone’) for both groups was then calculated using the software 
23 

24 189 StereoNet 9.5 (Allmendinger et al. 2013, Cardozo & Allmendinger 2013). If overlap 
25 

26 190 occurred between the mean direction of one group and the 95% confidence cone of the other 
27 
28 

29 191 group, the mean directions of the two groups were not statistically significantly different; if 
30 

31 192 no overlap occurred between a mean direction of one group and the confidence cone of the 
32 

33 193 other group, the means were different (Butler 1992, Ryan & Ketcham 2005, Allmendinger et 
34 
35 

194 al. 2013,). However, if there was overlap between the confidence cones of both groups, but 

37 

38 195 not between mean directions and confidence cones, an F-test was used to determine if the 
39 

40 196 difference in means was due to sampling error (i.e., inadequate sample size), rather than 
41 
42 

197 legitimate differences between groups (Butler, 1992). In addition, comparisons of mean 
43 
44 

45 198 orientation to body size were assessed using major axis regression in PAST 3.09 (Hammer 
46 

47 199 et al. 2001), with significance values calculated using a 100,000-replicate permutation test 
48 

49 200 of the slope (Legendre & Legendre 2012), as done previously. 
50 
51 

52 201 The results of the categorical scoring analyses were also compared to body size, where 
53 

54 202 the interarticular length of the relevant bone was taken as a proxy for body size, and 
55 

56 203 compared to the patterns observed for extant birds by Bishop et al. (2018b). Comparisons 
57 
58 

204 used major axis regression as implemented above. The reliability of the scorers in the 

60 
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1 

2 

3 205 analysis of diaphyseal cancellous bone was previously assessed (Bishop et al. 2018b), and 
4 
5 

6 206 found to be moderate to good across the three features examined. Nevertheless, the results 
7 

8 207 presented here should still be viewed tentatively, pending the assessments being undertaken 
9 

10 208 by a greater number of scorers for more specimens. 
11 
12 

209 

14 

15 210 Results 
16 

17 
211 Summary 

 

19 

20 212 A brief overview of the key observations are first presented here, before being presented in 
21 

22 213 full for each bone. The femur of each species displays architectural patterns broadly 
23 

24 214 comparable to that observed in extant birds, particularly larger species, including in regards 
25 

26 

27 215 to relatively limited anterior and posterior inclination of the primary fabric direction in the 
28 

29 216 head and medial condyle, respectively. The very broad distal femora of D. robustus and P. 
30 

31 217 elephantopus are associated with a radiating pattern in the coronal plane, which is not 
32 
33 

218 known in extant birds of any size. Cancellous bone architecture in the tibiotarsus and fibula 

35 

36 219 of moa shows strong resemblance to that observed in extant birds, including a highly 
37 

38 220 anisotropic pattern in the distal tibiotarsus. As with extant birds, the femoral and tibial 
39 

40 
221 diaphyses of moa possess abundant and markedly oblique trabeculae, although in moa the 

 

42 

43 222 abundance is conspicuously greater. 
44 

45 223 On a nomenclatural note, the term ‘proximodistal’ is always used here in reference to the 
46 

47 224 proximodistal axis of the whole bone under consideration, regardless of the specific 
48 

49 

50 225 anatomical region concerned. 
51 

52 226 
53 
54 227 Femur 
55 
56 

228 Cancellous bone architecture in the moa proximal femur displays a pattern of spatial 

58 

59 229 variation in fabric directions which is quite comparable to that previously reported for extant 
60 
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1 

2 

3 230 birds (Bishop et al. 2018b). None of the bones studied were invaded by pneumatopores to 
4 
5 

6 231 any significant extent, and thus the influence that pneumatization may have on cancellous 
7 

8 232 bone architecture in extant birds (Bishop et al. 2018b) was not of concern here. The primary 
9 

10 233 fabric direction (u1) in the femoral head and neck is oriented largely proximodistally, with a 
11 
12 

234 variable amount of anteromedial inclination (Fig. 1A, B). Under the facies antitrochanterica, 

14 

15 235 the anterior inclination diminishes while the medial inclination can become stronger or 
16 

17 236 weaker (Fig. 1C, D); sometimes a slight lateral inclination is also possible. The same general 
18 
19 

237 pattern continues anteriorly toward the trochanteric crest, although it tends to be less 
20 
21 

22 238 strongly organized in M. didinus compared to D. robustus (Fig. 1E, F); also, in D. robustus, 
23 

24 239 u1 takes on a gentle anterior inclination once again (Fig. 1G, H). 
25 

26 240 [Fig. 1] 
27 
28 

29 241  
30 

31 242 In the distal femur, u1 is also oriented in a mostly proximodistal fashion. A double- 
32 

33 243 arcuate pattern, parallel to the sagittal plane, was noted previously for the central metaphysis 
34 
35 

244 of large extant species of birds (Bishop et al. 2018b), but this is not particularly well- 

37 

38 245 developed in moa (Fig. 2A).  Indeed, such a pattern is veritably absent in M. didinus. On the 
39 

40 246 other hand, a well-developed ‘radiating’ pattern is evident in the coronal plane in D. 
41 

42 247 robustus and P. elephantopus, whereby the orientation of u1 is directed towards the medial 
43 
44 

45 248 condyle medially and directed towards the lateral condyle laterally, sweeping across the 
46 

47 249 metaphysis (Fig. 2B). This pattern is not well developed in extant birds; its occurrence in D. 
48 
49 250 robustus and P. elephantopus may reflect the great mediolateral breadth of the distal end of 
50 
51 

52 251 the femur relative to the shaft, flaring out to the sides more. The architectural patterns in the 
53 

54 252 medial and lateral condyles are more comparable to the pattern in extant birds (Fig. 2C–F). 
55 

56 253 Within both condyles, the orientation of u1 is largely subparallel to the sagittal plane, and it 
57 
58 

254 usually has a marked posterior inclination, particularly in the medial condyle. As with large 

60 
Page 10 of 37 



 

 

13 

36 

59 

 

 
1 

2 

3 255 extant birds (Bishop et al. 2018b), u1 sweeps a wide arc in the sagittal plane (usually well in 
4 
5 

6 256 excess of 100°), such that in the posterior extremities of the condyles, it can be 
7 

8 257 perpendicular to the proximodistal axis of the bone. Moreover, in the anterior parts of the 
9 

10 258 condyles, u1 is often anterodistally directed. As observed previously for extant birds, as well 
11 
12 

259 as humans and extinct, non-avian theropod dinosaurs (Bishop et al. 2018b), the secondary 

14 

15 260 fabric direction (u2) forms a ‘butterfly pattern’ in the plane that passes through the centres of 
16 

17 261 both condyles (Fig. 2G). Here, two ‘tracts’ (one in each condyle) arc from the anterior aspect 
18 
19 

262 of their respective condyle back towards the posterior aspect. 
20 
21 

22 263 [Fig. 2] 
23 

24 264  
25 

26 265 In large extant birds, it was previously observed that a transect through the metaphysis 
27 
28 

29 266 from the ends of the femur towards the diaphysis often saw a noticeable increase in the 
30 

31 267 ‘disorganization’ of the orientations of u1. That is, the vectors took on a more oblique 
32 

33 268 orientation and the change in direction across the bone was no longer gradual (Bishop et al. 
34 
35 

269 2018b). Such a change was apparent in both ends of the femora of M. didinus, as well as the 

37 

38 270 proximal femur of D. robustus and P. elephantopus (Fig. 3), but it was not particularly 
39 

40 271 evident in the distal femur of the latter two species. This may be in part due to the obliquity 
41 
42 

272 already present in the distal femur of D. robustus and P. elephantopus, resulting from the 
43 
44 

45 273 ‘radiating’ pattern in the coronal plane noted above. 
46 

47 274 [Fig. 3] 
48 
49 275 Results of the calculations of mean primary fabric direction are presented in Fig. 4. 
50 
51 

52 276 Consistent with the qualitative observations noted above, the mean orientation of u1 in the 
53 

54 277 femoral head is anteromedially directed (moving proximally) for all six moa specimens (Fig. 
55 

56 278 4A). This direction is similar to the general pattern observed for extant birds. Indeed, the 
57 
58 

279 mean direction of both groups falls within the 95% confidence cone of the mean of the other 

60 
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1 

2 

3 280 group, indicating no significant difference between group means (p > 0.05). The mean 
4 
5 

6 281 orientation of u1 in the medial femoral condyle is posteriorly directed (moving distally) for 
7 

8 282 all six moa specimens (Fig. 4A), although some had a slight medial inclination whereas 
9 

10 283 others had a slight lateral inclination. Unlike the femoral head, the mean direction across 
11 
12 

284 moa as a whole is different from the mean direction of extant birds as a whole (p < 0.05; Fig. 

14 

15 285 4A), but it cannot be discounted that this difference was due to inadequate sampling of the 
16 

17 286 underlying populations (F2,52 = 1.819, p = 0.172). In terms of the amount of sagittal 
18 

19 
287 inclination of u1 with respect to femoral length, moa are seen to follow and reinforce the 

20 
21 

22 288 patterns observed in extant birds. Previously, the amount of anterior inclination of u1 in the 
23 

24 289 femoral head of extant birds was not able to be demonstrated to correlate significantly with 
25 

26 290 femur length (Bishop et al. 2018b). However, the inclusion of data from the moa specimens 
27 
28 

29 291 examined here produces a statistically significant relationship, with larger birds tending to 
30 

31 292 exhibit lower anterior inclination (p = 0.01687; Fig. 4B). In a similar fashion to the femoral 
32 

33 293 head, the inclusion of data for the medial femoral condyle of moa reinforces the tendency for 
34 
35 

294 larger birds to exhibit a lower degree of posterior inclination of u1 in this region of the femur 

37 

38 295 (p = 00062; Fig. 4C). 
39 

40 296 [Fig. 4] 
41 
42 

297 
43 
44 

45 298 Tibiotarsus 
46 

47 299 As with the femur, the spatial pattern of cancellous bone fabric in the tibiotarsus of moa is 
48 
49 300 quite comparable to that previously reported for extant birds (Bishop et al. 2018b). The 
50 
51 

52 301 orientation of u1 in the proximal tibia is overall proximodistal, but superimposed upon this 
53 

54 302 are marked inclinations that vary throughout the bone. It has an anteroproximal inclination 
55 

56 303 in the cnemial crests, essentially following the anterior margins of the crests (Fig. 5A, B), 
57 
58 

304 whereas under the condyles it has a marked posterior inclination, projecting up to 30° 
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1 

2 

3 305 posterior of the proximodistal axis (Fig. 5C–F). Additionally, under the lateral condyle, 
4 
5 

6 306 there is also a strong lateral inclination (Fig. 5E), which as in extant birds can sometimes 
7 

8 307 exceed the amount of posterior inclination. Another feature often present in moa is a double- 
9 

10 308 arcuate pattern in u1 in the sagittal plane of the proximal metaphysis, whereby the individual 
11 
12 

309 fabric vectors are largely contained within the sagittal plane. This feature was not always 

14 

15 310 present in extant birds (Bishop et al. 2018b), nor all moa specimens examined here, but is 
16 

17 311 well developed in D. robustus (Fig. 5G). Here, one tract arcs from the posterior metaphysis 
18 
19 

312 anteriorly towards the cnemial crests, whereas the other arcs from the anterior metaphysis 
20 
21 

22 313 posteriorly towards the articular condyles. A small quantity of cancellous bone is present 
23 

24 314 under the fibular crest of moa, but was usually not abundant enough to permit quantitative 
25 

26 315 fabric analysis. This is on account of both the relatively low projection of the crest from the 
27 
28 

29 316 diaphysis in these species, and the fact that the crest comprised a large proportion of 
30 

31 317 relatively high-porosity cortical bone. Similar to the femur of moa, a transect through the 
32 

33 318 metaphysis from the proximal end of the tibia towards the diaphysis sometimes reveals 
34 
35 

319 increased ‘disorganization’ of the orientations of u1 (Fig. 5H). 

37 

38 320 [Fig. 5] 
39 

40 321 In the distal tibiotarsus, moa exhibit the same characteristic pattern previously reported 
41 

42 322 for birds (Bishop et al. 2018b). Here, u1 is largely oriented proximodistally and parallel to 
43 
44 

45 323 the sagittal plane, whereas u2 is largely oriented anteroposteriorly and parallel to the sagittal 
46 

47 324 plane (Fig. 6A–E). Within the condyles themselves, u1 and u2 can become ‘rotated’ within 
48 
49 325 the sagittal plane to a variable degree. As in extant birds, this pattern reflects a highly 
50 
51 

52 326 anisotropic arrangement of plate-like trabeculae, parallel to the sagittal plane, as is evident in 
53 

54 327 3-D renderings of the segmented CT scans (Fig. 6F). The ‘disorganization’ of u1 vectors 
55 

56 328 often observed for the femur and proximal tibiotarsus of moa (above) was not observed in 
57 
58 

329 the distal tibiotarsus and any specimens examined. 
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1 

2 

3 330 [Fig. 6] 
4 
5 

6 331 
7 

8 332 Fibula 
9 

10 333 Cancellous bone architecture in the moa fibula demonstrates the same spatial patterns as 
11 
12 

334 observed in extant birds (Bishop et al. 2018b). The orientation of u1 is consistent throughout 

14 

15 335 the fibular head, being oriented proximodistally and subparallel to the local bone margin, 
16 

17 336 with a gentle posterior inclination of up to 20° form the long-axis of the bone (Fig. 7). This 
18 
19 

337 posterior inclination tends to be greater in the more posterior parts of the fibular head. A 
20 
21 

22 338 small quantity of cancellous bone extends distally from the head, maintaining the same 
23 

24 339 general fabric orientation as observed in the head. Some cancellous bone often occurs under 
25 

26 340 the iliofibularis tubercle on the fibular shaft, but it was not extensive enough for quantitative 
27 
28 

29 341 analysis; rather, cortical thickness in this part of the bone is increased. Cancellous bone is 
30 

31 342 virtually absent distal to the tubercle, where the bone rapidly diminishes to a thin splint of 
32 

33 343 low-porosity cortical bone. 
34 
35 

344 [Fig. 7] 

37 

38 345 
39 

40 346 Diaphyses 
41 
42 

347 The results of the categorical analyses of diaphyseal cancellous bone architecture are 
43 
44 

45 348 presented in Fig. 8 and Table 2. As in large extant bird species, the femoral and tibial 
46 

47 349 diaphyses of moa contain considerable quantities of cancellous bone, in which individual 
48 
49 350 trabeculae are obliquely oriented relative to the bone long-axis, by about 45°. However, the 
50 
51 

52 351 patterns they exhibit are sometimes exaggerated compared to extant birds. The femoral 
53 

54 352 diaphysis of all three moa species examined has a higher quantity of cancellous bone than 
55 

56 353 would be predicted for their size, based on extant birds (higher ‘extent scores’, Fig. 8A); the 
57 
58 

354 data for moa consistently plot above the regression line derived previously for extant birds, 
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1 

2 

3 355 were it extrapolated to their size (dashed line in Fig. 8A). The same result occurs for the 
4 
5 

6 356 tibial diaphysis in D. robustus and P. elephantopus, although the result is mixed for M. 
7 

8 357 didinus (Fig. 8B, dashed line). Trabeculae in the femoral diaphysis consequently tend to be 
9 

10 358 more strongly associated with each other: they are more closely packed together with high 
11 
12 

359 ‘association scores’ (Fig. 8C). The pattern of association in the tibial diaphysis is more in 

14 

15 360 line with what would be expected based on extant birds (Fig. 8D). Similarly, the average 
16 

17 361 orientation of trabeculae in the femoral and tibial diaphyses is comparable to what would be 
18 
19 

362 expected for birds of their size (comparable ‘orientation scores’, Fig. 8E,F), although it must 
20 
21 

22 363 be acknowledged that the sample size for tibiae in extant birds was not large. 
23 

24 364 [Fig. 8] 
25 

26 365 [Table 2] 
27 
28 

29 366 Three-dimensional visualization of the segmented CT scans further highlights the 
30 

31 367 aberrant nature of diaphyseal cancellous bone in moa in comparison to extant birds (Fig. 9, 
32 

33 368 Supplementary Movie S1). The medullary cavity is much reduced in volume, as a result of 
34 
35 

369 extensive encroachment by cancellous bone into the diaphysis. Individual trabeculae can 

37 

38 370 also often be quite massive, being both long (> 20 mm) and thick (> 1 mm), and sometimes 
39 

40 371 plate-like as well. Despite this, moa display the same whole-bone gross architectural pattern 
41 
42 

372 observed in the diaphyses of extant birds; in the femur especially, the typically oblique 
43 
44 

45 373 trabeculae form conjugate helices that spiral about the length of the diaphysis. The condition 
46 

47 374 observed in moa may therefore be seen as quite similar to that of extant birds, just that it is 
48 

49 375 greatly exaggerated through a greater quantity of bone material per unit volume. 
50 
51 

52 376 [Fig. 9] 
53 

54 377  
55 

56 378 
57 
58 

379 Discussion 
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1 

2 

3 380 This study investigated the 3-D architecture of cancellous bone in the femur, tibiotarsus and 
4 
5 

6 381 fibula of three species of moa, and comparisons were made to previously reported 
7 

8 382 observations for these bones in a variety of extant species of ground-dwelling bird (Bishop 
9 

10 383 et al. 2018b). Overall, it was found that the spatial variation in cancellous bone fabric 
11 
12 

384 patterns was quite comparable between moa and extant birds, for all three bones 

14 

15 385 investigated. Where notable differences were found to exist between the two groups, these 
16 

17 386 can probably be attributed to either the unique osteology or generally large size of moa. For 
18 

19 
387 example, the ‘radiating pattern’ of the primary fabric direction (u1) in the coronal plane of 

20 
21 

22 388 the distal femur of D. robustus and P. elephantopus (Fig. 2B) is probably a consequence of 
23 

24 389 the strong mediolateral flaring of the distal end of the bone relative to the shaft in these large 
25 

26 390 (and in the case of the latter, robust) species. Previously, it was shown that extant birds can 
27 
28 

29 391 exhibit significant intra- and interspecific variation in cancellous bone architectural patterns 
30 

31 392 (Bishop et al. 2018b), and some results of the present study affirm this (Figs 4, 8). The 
32 

33 393 currently available sample sizes do not permit proper exploration of how such variation may 
34 
35 

394 relate to differences in limb segment proportions, bone robusticity, ecology or other factors, 

37 

38 395 but this topic is well deserved of future study, and may provide further insight into moa 
39 

40 396 biology. 
41 
42 

397 
43 
44 

45 398 That the fabric patterns of moa are qualitatively quite comparable to those reported for 
46 

47 399 extant birds, particularly large species, implies that moa limb bones experienced similar 
48 

49 400 loading regimes to those experienced by extant bird limb bones. This is further suggested by 
50 
51 

52 401 the results of quantitative analysis of mean primary fabric directions in the femoral head and 
53 

54 402 medial femoral condyle (Fig. 4). Here, moa have clarified and reinforced the tendency for 
55 

56 403 larger birds to exhibit a lower degree of anterior inclination of the mean direction of u1 in 
57 
58 

404 the femoral head, and a lower degree of posterior inclination of the mean direction of u1 in 
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1 

2 

3 405 the medial femoral condyle. This pattern parallels the tendency for larger birds to use a more 
4 
5 

6 406 upright limb posture with more extended hip and knee joints, which likely causes 
7 

8 407 reorientation of joint contact forces to be more parallel to the long-axis of the femur (Bishop 
9 

10 408 et al. 2018a,b). In this regard, moa are simply following the same size-related biomechanical 
11 
12 

409 trends observed in extant birds. The results therefore collectively suggest that moa used limb 

14 

15 410 postures and locomotor kinematics similar to those of large extant bird species, an 
16 

17 411 interpretation also suggested by bony articular surface morphology (Anderson 1989, Worthy 
18 
19 

412 & Holdaway 2002, Zinoviev 2013). In light of the small sample sizes used for each species 
20 
21 

22 413 and bone in the present study, this interpretation should be viewed as tentative, pending a 
23 

24 414 more comprehensive study that would facilitate more rigorous analysis. Nevertheless, if 
25 

26 415 locomotor biomechanics in moa did not appreciably differ from that of large extant birds, 
27 
28 

29 416 this suggests that maximal locomotor performance – such as speed and agility capability – 
30 

31 417 of large moa species may have been relatively poorer compared to extant birds (but see 
32 

33 418 Hutchinson, 2004). This inference is based upon general principles derived from extant 
34 
35 

419 terrestrial vertebrates: in the absence of major locomotor specialization or innovation, 

37 

38 420 relative locomotor performance declines with increasing body size (Garland 1983, Biewener 
39 

40 421 1989, Gatesy & Biewener 1991, Hutchinson et al. 2003, Sellers & Manning 2007, Clemente 
41 
42 

422 et al. 2009, Dick & Clemente 2017). 
43 
44 

45 423 
46 

47 424 One striking difference between moa and extant birds that does not seem explicable by large 
48 

49 425 body size is the nature of cancellous bone in the femoral and tibial diaphyses. The medullary 
50 
51 

52 426 cavity in both groups of bird is encroached by cancellous bone from the proximal and distal 
53 

54 427 ends of the bone, but it is generally much more ‘filled’ in moa compared to what would be 
55 

56 428 expected for their size (Figs 8, 9, Supplementary Movie S1). Additionally, individual 
57 
58 

429 trabeculae in moa are often quite long and thick. This observation parallels those made for 
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1 

2 

3 430 external diaphyseal (cortical) dimensions in moa limb bones: the diaphyses of moa, 
4 
5 

6 431 particularly emeids (e.g., P. elephantopus), are more robust than what would be expected for 
7 

8 432 birds of their size (Alexander 1983a,b, Doube et al. 2012, Brassey et al. 2013). Hence, the 
9 

10 433 limb bones of moa are robust both inside and out. One hypothesis proposed to explain this is 
11 
12 

434 that, since moa lacked any natural predators, they could afford to evolve more robust limb 

14 

15 435 bones that were more resistant to fracture, yet being heavier were more cumbersome to 
16 

17 436 move around (Alexander 1983b, 1985). This is incorrect, however, as abundant fossil 
18 
19 

437 evidence indicates that moa were preyed upon by the extinct giant eagle Harpagornis 
20 
21 

22 438 moorei Haast, 1872 (Worthy & Holdaway 1996, 2002). Increased bone robusticity could 
23 

24 439 alternatively be a mechanical adaptation to increased unpredictability of loads, providing a 
25 

26 440 higher factor of safety against accidental and extreme, but rare, loading regimes (Currey & 
27 
28 

29 441 Alexander 1985, Blob et al. 2014). Yet, many of the more robust moa species lived in low- 
30 

31 442 relief, sparsely forested environments (Worthy & Holdaway 2002), where locomotor- 
32 

33 443 induced bone loading would be expected to be relatively predictable (Brassey et al. 2013). 
34 
35 

444 

37 

38 445 Given that mechanical hypotheses have so far proven inadequate in explaining moa limb 
39 

40 446 bone robusticity, the possibility must be considered that one or more other, non-mechanical, 
41 
42 

447 reasons exist. Moa had a unique suite of life history traits among birds, and it is possible that 
43 
44 

45 448 this may have influenced limb bone robusticity. They had a strongly K-selected reproductive 
46 

47 449 strategy, with prolonged juvenile growth phases before reaching maturity (taking several 
48 

49 450 years, possibly even over a decade), and potentially living for a very long time thereafter 
50 
51 

52 451 (Turvey & Holdaway 2005, Turvey et al. 2005). At least some species also exhibited 
53 

54 452 extreme reversed sexual size dimorphism, with females up to 280% larger than males 
55 

56 453 (Bunce et al. 2003, Huynen et al. 2003). Coupled with their large size, this raises the 
57 
58 

454 possibility of heterochrony – in particular, hypermorphosis – playing an important role in 
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1 

2 

3 455 shaping the adult morphology of these birds (Churchill 1998, McNamara 2012). For a given 
4 
5 

6 456 bone, the present study sampled two large individuals for each species, and for D. robustus 
7 

8 457 and P. elephantopus at least it is known that only adult females were sampled here (Allentoft 
9 

10 458 et al. 2010). In addition to allometric effects and heterochrony, it may also be the case that 
11 
12 

459 repeated deposition and resorption of medullary bone during each reproductive cycle over 

14 

15 460 many years may have had an effect on the morphologies observed here. Yet another 
16 

17 461 possibility is that strong seasonality in temperature, food availability or food quality in 
18 
19 

462 Pleistocene–Holocene New Zealand (Anderson 1989, Worthy & Holdaway 2002) may have 
20 
21 

22 463 resulted in moa undergoing marked annual fluctuations in body mass, with subsequent 
23 

24 464 effects on bone loading magnitudes and in turn bone adaptation. Currently these hypotheses 
25 

26 465 are purely speculative, yet by using a combination of CT and histological approaches, future 
27 
28 

29 466 work should be able to investigate the above possibilities. This will require greatly expanded 
30 

31 467 sample sizes than that used here, incorporating material from both males and females, from a 
32 

33 468 wide range of ontogenetic stages and from a wide range of geographic localities. 
34 
35 

469 

37 

38 470 Conclusion 
39 

40 
471 The 3-D architecture of cancellous bone in the femur, tibiotarsus and fibula of three extinct 

 

42 

43 472 moa species is on the whole comparable to that of extant ground-dwelling birds, especially 
44 

45 473 larger species. Notwithstanding the small sample size of the present study, this would 
46 

47 474 suggest much similarity in posture and locomotor biomechanics between moa and extant 
48 

49 

50 475 birds, which could be further clarified through computational modelling of whole-body 
51 

52 476 centre of mass location (e.g., Henderson 1999, Hutchinson et al. 2007, Bates et al. 2009) or 
53 

54 477 muscle moment arms (e.g., Hutchinson et al. 2005, Bates & Schachner 2012, Maidment et 
55 
56 

478 al. 2014). By incorporating greater samples sizes and more species than that used in the 

58 

59 479 current study, future work may be able to refine the interpretations made here. Additionally, 
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1 

2 

3 480 such future studies could explicitly address the potential for phylogenetic influences on 
4 
5 

6 481 cancellous bone architecture, which was not examined in the present study. Previously, it 
7 

8 482 was noted that comparably-sized small palaeognaths and neognaths showed similar 
9 

10 483 architectural patterns, suggesting minimal phylogenetic influence (Bishop et al. 2018b), but 
11 
12 

484 whether this holds true at larger body size remains to be determined. One salient difference 

14 

15 485 between the cancellous bone architecture of moa and extant birds is the markedly greater 
16 

17 486 extent of cancellous bone in the diaphyses of the femur and tibiotarsus. The reason for the 
18 
19 

487 great robusticity of moa limb bones, inside and out, may not be mechanical in nature, but 
20 
21 

22 488 rather related to one or more aspects of their unique life history or environment. 
23 

24 489 
25 

26 
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12 

754 Figure captions 

14 

15 755 
16 

17 756 Fig. 1. The main architectural features of cancellous bone in the proximal femur of moa. A, 
18 

19 
757 B, vector field of u1 in the femoral head and inferior neck of D. robustus (CM Av8488) 

20 
21 

22 758 plotted on a translucent rendering of the external bony geometry, in anterior (A) and medial 
23 

24 759 (B) views. C, D, vector field of u1 under the facies antitrochanterica of P. elephantopus (CM 
25 

26 760 Av 8716), in posterior (C) and lateral (D) views. E, F, vector field of u1 in the trochanteric 
27 
28 

29 761 crest of M. didinus (CM Av8507J), in anterior (E) and lateral (F) views. G, H, vector field 
30 

31 762 of u1 in the trochanteric crest of D. robustus (CM Av 8488), in anterior (G) and lateral (H) 
32 

33 763 views. In this and all subsequent illustrations of fabric vector fields, all images are of bones 
34 
35 

764 from the right side of the body. 

37 

38 765 
39 

40 766 Fig. 2. The main architectural features of cancellous bone in the distal femur of moa. A, 
41 

42 767 vector field of u1 in the central metaphysis of D. robustus (CM Av 8422), in a 3-D slice, 
43 
44 

45 768 parallel to the sagittal plane and between the condyles, shown in lateral view. Schematic 
46 

47 769 inset illustrates the modestly developed double-arcuate pattern. B, vector field of u1 in the 
48 
49 770 central metaphysis of P. elephantopus (CM Av15029), in a 3-D slice, parallel to the coronal 
50 
51 

52 771 plane, shown in anterior view. Schematic inset illustrates the ‘radiating’ pattern. C, D, vector 
53 

54 772 field of u1 in the medial condyle of P. elephantopus (CM Av8716), shown in anterior (C) 
55 

56 773 and medial (D) views. E, F, vector field of u1 in the lateral condyle of D. robustus (CM 
57 
58 

774 Av8422), shown in anterior (E) and lateral (F) views. G, vector field of u2 in a 3-D slice 
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1 

2 

3 775 through the middle of the condyles in M. didinus (CM Av8507O), shown in distal view. 
4 
5 

6 776 Schematic inset illustrates the ‘butterfly’ pattern. 
7 

8 777 
9 

10 778 Fig. 3. Examples of increased disorganization or obliquity in the vector field of u1 in the 
11 
12 

779 femoral metaphyses. A, proximal femoral metaphysis of D. robustus (CM Av8422). B, 

14 

15 780 distal femoral metaphysis of M. didinus (CM Av8507J). Regions of increased 
16 

17 781 disorganization are indicated by the braces. 
18 
19 

782 
20 
21 

22 783 Fig. 4. The mean orientation of u1 in the femoral head and medial femoral condyle of moa 
23 

24 784 and extant birds, referenced in an explicit anatomical coordinate system. A, the mean 
25 

26 785 directions as plotted on an equal-angle stereoplot (using StereoNet 9.5; Allmendinger et al. 
27 
28 

29 786 2013, Cardozo and Allmendinger, 2013). The data for the femoral head are plotted with a 
30 

31 787 northern hemisphere projection, and are shown as filled symbols; the data for the medial 
32 

33 788 femoral condyle are plotted with a southern hemisphere projection, and are shown as hollow 
34 
35 

789 symbols. Grey symbols are extant birds as reported previously (Bishop et al. 2018b), black 

37 

38 790 symbols are moa; for moa, squares represent D. robustus, triangles represent P. 
39 

40 791 elephantopus and diamonds represent M. didinus. For each dataset, the large circle symbol 
41 
42 

792 indicates the mean direction across the group, and the surrounding dotted line indicates the 
43 
44 

45 793 95% confidence cone about the mean. B, comparison of the anterior inclination of u1 in the 
46 

47 794 sagittal plane of the femoral head versus femur length in moa and extant birds. C, 
48 

49 795 comparison of the posterior inclination of u1 in the sagittal plane of the medial femoral 
50 
51 

52 796 condyle versus femur length in moa and extant birds. In both B and C, the data for extant 
53 

54 797 birds are as reported previously (Bishop et al. 2018b) and are shown in grey, whereas the 
55 

56 798 data for moa are shown in black, with the same symbols as for A. Major axis regressions are 
57 
58 

799 plotted and associated statistics are shown. 
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1 

2 

3 800 
4 
5 

6 801 Fig. 5. The main architectural features of cancellous bone in the proximal tibiotarsus of moa. 
7 

8 802 A, B, vector field of u1 in the cranial and lateral cnemial crests of D. robustus (CM Av8488) 
9 

10 803 shown in anterior (A) and medial (B) views. C, D, vector field of u1 under the medial 
11 
12 

804 condyle of M. didinus (CM Av8513T) shown in posterior (C) and medial (D) views. E, F, 

14 

15 805 vector field of u1 under the lateral condyle of P. elephantopus (CM Av8383) shown in 
16 

17 806 posterior (E) and lateral (F) views. G, vector field of u1 in a 3-D slice through the middle of 
18 
19 

807 the proximal metaphysis, cnemial crests and condyles of D. robustus (CM Av8422), parallel 
20 
21 

22 808 to the sagittal plane and shown in medial view. Schematic inset illustrates the well- 
23 

24 809 developed double-arcuate pattern present. H, vector field of u1 throughout the entire 
25 

26 810 proximal tibia of P. elephantopus (CM Av8716), shown in medial view, illustrating 
27 
28 

29 811 increased obliquity and disorganization of vectors in the distal metaphysis and transition to 
30 

31 812 the diaphysis (region with braces). 
32 

33 813 
34 
35 

814 Fig. 6. The main architectural features of cancellous bone in the distal tibiotarsus of moa. A– 

37 

38 815 D, vector field of u1 (A, C) and u2 (B, D) in the distal tibiotarsus of P. elephantopus (CM 
39 

40 816 Av8383) in oblique anterolateral (A, B) and oblique anteromedial (C, D) views. E, vector 
41 

42 817 field of u1 (black) and u2 (white) in the condyles of P. elephantopus (CM Av8383) in 
43 
44 

45 818 proximal view. Note how both u1 and u2 are aligned approximately parallel to the sagittal 
46 

47 819 plane. F, isosurface rendering of cancellous bone in the distal tibiotarsus of D. robustus (CM 
48 
49 820 Av8488), shown in oblique anterolateral view, with multiple cuts through the bone to 
50 
51 

52 821 illustrate the 3-D architecture. Cut surfaces are coloured black to better illustrate the nature 
53 

54 822 of the cancellous bone architecture, in particular the plate-like nature of many trabeculae, 
55 

56 823 largely aligned parallel to the sagittal plane. 
57 
58 

824 
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1 

2 

3 825 Fig. 7. The main architectural features of cancellous bone in the proximal fibula of moa, as 
4 
5 

6 826 exemplified here by D. robustus (CM Av8490), which shows the vector field of u1 in lateral 
7 

8 827 view. 
9 

10 828 
11 
12 

829 Fig. 8. Size-dependent variation in the nature of diaphyseal cancellous bone architecture in 

14 

15 830 the femora and tibiae of moa compared to extant birds. A, B, the extent of cancellous bone 
16 

17 831 in the femur (A) and tibia (B); a higher score indicates greater extent. C, D, the degree of 
18 
19 

832 association of trabeculae with one another in the femur (C) and tibia (D); a higher score 
20 
21 

22 833 indicates that trabeculae tend to be more closely associated with other trabeculae of similar 
23 

24 834 character. E, F, the average orientation of trabeculae in the femur (E) and tibia (F); a higher 
25 

26 835 score indicates that trabeculae are at a higher angle to the bone’s long axis. The data for 
27 
28 

29 836 extant birds are as reported previously (Bishop et al. 2018b) and are shown in grey; data for 
30 

31 837 moa are shown in black, with the same symbols as for Fig. 4. The major axis regression 
32 

33 838 lines derived for the whole data set are also plotted as solid lines; regression statistics are 
34 
35 

839 reported in Table 2. Additionally plotted in A and B are the major axis regressions derived 

37 

38 840 previously for just the extant bird sample (dashed lines); these demonstrate that moa 
39 

40 841 diaphyses almost ubiquitously have a greater quantity of cancellous bone than would be 
41 
42 

842 predicted for their size based on extant birds. 
43 
44 

45 843 
46 

47 844 Fig. 9. Cancellous bone in the diaphyses of moa, illustrated here with several examples 
48 

49 845 illustrating the variety of manifestations it can assume. A, femur of D. robustus (CM 
50 
51 

52 846 Av8488); see also Supplementary Movie S1. B, proximal tibiotarsus of D. robustus (CM 
53 

54 847 Av8488). C, femur of P. elephantopus s (CM Av8716). D, proximal tibiotarsus of P. 
55 

56 848 elephantopus (CM Av8716). Note especially the abundant, oblique trabeculae throughout 
57 
58 

849 the diaphysis of the femur. In all figures, proximal is towards the top of the page. In C, the 
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3 850 asterisk denotes a core produced during the extraction of cortical bone for genetic sampling 
4 
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6 851 (Allentoft et al. 2010). 
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8 852 
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10 853 Supplementary material 
11 
12 

854 

14 

15 855 Movie S1. Animated isosurface rendering of the femur of Dinornis robustus (CM Av8488), 
16 

17 856 to illustrate the architecture and extent of cancellous bone in the diaphysis. For scale, the 
18 
19 

857 total length of the bone (vertical axis in the video) is 339 mm. 
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1 

2 

3  Tables 
4 

5  Table 1. The specimens investigated in this study, as well the settings used in acquiring the CT scan data for each specimen. All specimens are curated in the Natural 
6  History Collections of the Canterbury Museum. 
7 
8 

9 
CT scan settings 

10 Specimen 

11 number  
Element  Peak tube 

 

Tube current 
 

Exposure 
 

In-plane  pixel 
 

Slice thickness 

12   voltage (kV)  (mA)  time (ms)  resolution (mm)*  (mm)*   

13 Dinornis robustus  CM Av8422 femur 80, 140 189 1,000 0.498 0.4 

14 Dinornis robustus  CM Av8422 tibiotarsus 80, 140 199 1,000 0.551 0.4 

15 Dinornis robustus  CM Av8488 femur 80, 140 221 1,000 0.553 0.6 
16 

Dinornis robustus  CM Av8488 tibiotarsus 80, 140 221 1,000 0.816 0.6 
17 
18 Dinornis robustus  CM Av8488 fibula 80, 140 199 1,000 0.551 0.4 

19 Dinornis robustus  CM Av8490 fibula 80, 140 199 1,000 0.551 0.4 

20 Pachyornis elephantopus  CM Av8383 tibiotarsus 80, 140 200 1,000 0.551 0.4 
21 

Pachyornis elephantopus  CM Av8383 fibula 80, 140 200 1,000 0.551 0.4 
22 
23 Pachyornis elephantopus  CM Av8716 femur 80, 140 180 1,000 0.498 0.4 

24 Pachyornis elephantopus  CM Av8716 tibiotarsus 80, 140 201 1,000 0.551 0.4 

25 Pachyornis elephantopus  CM Av8716 fibula 80, 140 200 1,000 0.551 0.4 
26 

Pachyornis elephantopus  CM Av15029 femur 80, 140 159 1,000 0.498 0.4 
27 
28 Megalapteryx didinus CM Av8507J femur 80, 140 201 1,000 0.551 0.4 

29 Megalapteryx didinus CM Av8507O femur 80, 140 201 1,000 0.551 0.4 

30 Megalapteryx didinus CM Av8513P tibiotarsus 80, 140 200 1,000 0.551 0.4 
31 

Megalapteryx didinus CM Av8513T tibiotarsus 80, 140 201 1,000 0.551 0.4 
32 
33 Megalapteryx didinus CM Av8506E fibula 80, 140 201 1,000 0.551 0.4 

34 Megalapteryx didinus CM Av8506N fibula 80, 140 201 1,000 0.551 0.4 

35 

36 

37 *The scans were processed according to protocol 2 of Bishop et al. (2018b), whereby the resulting images were of an isotropic voxel resolution equal to one third of 

38 the original in-plane pixel resolution. 
39 

40 
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1 
2 

Table 2. Statistical results of categorical scoring analyses of cancellous bone architecture 

4 in moa and extant bird femora and tibiotarsi versus bone length (in mm). 

5 
    Element  Feature  Slope  Intercept  r2  p   

7 extent 0.005733 0.2395 0.5624 < 0.0001 

8 Femur association 0.002625 0.8782 0.3176 <0.0001 

9   orientation  -0.005919  6.4007  0.2680  0.0002   
10 extent 0.002449 -0.006592 0.5294 <0.0001 
11 Tibiotarsus 
12 

13 

14 

15 
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31 
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33 

34 
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38 

39 

40 

41 

42 

43 
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45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 
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association 0.000982 1.157 0.4563 0.0003 

orientation  -0.00288 5.991 0.2013 0.0054 
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