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A B S T R A C T

Common pollutants such as heavy metals and cadmium is among those with high environmental concerns. In
vivo studies had shown that cadmium (Cd) causes oocyte degeneration and embryo mortality, and lowers
pregnancy rates in mammals. However, there is limited information available about direct effects of Cd on
oocyte maturation and/or embryo development. This study was aimed to investigate if Cd has any effect on the
oocyte maturation and/or embryo development in vitro. Bovine COCs were collected from the slaughter house
and cultured for 24 h in serum-free media only (Controls) or supplemented with 0.2, 2.0 and 20.0 μM CdCl2. At
24 h cumulus cell expansion was assessed in all COCs. COCs were either denuded and stained for determination
of nuclear maturation or fertilized for assessment of subsequent embryo development. Cd at the lowest con-
centration (0.2 μM) did not affect any of the parameters studied. However, at higher concentrations (2.0 and
20.0 μM) it significantly (P < 0.05) reduced the percentage of fully-expanded COCs and significantly
(P < 0.05) increased the percentage of partially and/or non-expanded COCs compared to controls and 0.2 μM.
Cadmium at higher concentrations (2.0 and 20.0 μM) also significantly (P < 0.01) reduced the percentage of
oocytes reaching metaphase II stage compared to controls and 0.2 μM. Post-fertilization cleavage rate in pre-
sumptive zygotes and blastocyst development significantly (P < 0.05) reduced 0.2, 2.0 and 20.0 μM CdCl2
compared to the controls (0.0 μM). In conclusion, these results suggest that Cd had direct detrimental effects on
the bovine oocyte maturation and its developmental competence.

1. Introduction

The possible exposure of humans and animals to many industrial
chemicals and pesticides has been a growing concern over the last
decade for both the scientific community and the general public.
Several studies have suggested that these environmental contaminants
could adversely affect reproductive functions and embryo abnormalities
in animal populations [1–6]. Cadmium (Cd; atomic number 48; relative
atomic mass 112.40) is one of the most toxic environmental and in-
dustrial heavy metals because of its long half-life (15–30 years) and its
widespread occurrence. Relevant industrial Cd-emitting processes in-
clude the combustion of fossil fuels, leachate from landfill sites, run-off
agricultural land, mining and smelting operations. Electroplating and
manufacture of pigments, plastics, plastic stabilizers and nickel-Cd
batteries also produce Cd as a by-product [6]. Moreover, it is also
produced by the gradual process of erosion and abrasion of rocks and
soils which are caused by events such as forest fires and volcanic

eruptions [7,8].
The real problem with Cd is that it is not eliminated from ecosys-

tems, mainly because of very long half-life but enters the food chain
through environmental contamination of soil and is bioaccumulated
[9]. Cadmium is excreted at a low rate from the body and is accumu-
lated over time in various body organs including reproductive organs.
Various sources of Cd exposure are reported, such as occupational,
ecosystem-linked, diet-associated and non-occupational sources [10].
In cows and ewes, effects on various systems have been reported due to
Cd present in feed and water [11,12]. Industrial cadmium (pesticides,
batteries, tobacco, rubber processing) is strongly implicated in human
and animal poisoning and its low-level exposure is a strong re-
productive toxicant to humans too. Physiological concentrations of Cd
in blood from cattle reared around different industrial/urban areas
have been reported to range from 0.03 to 0.12 µg/mL [13], whereas in
humans these values are 2.9 ± 2.5mg/mL (human blood) [14], and
6.73 ± 0.31 ng/mL (follicular fluid) [15]. In several species, long-term
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exposure to Cd causes organ damage or functional deficiency [16] and
in female mammals Cd affects ovarian function both directly and in-
directly [17–19].

Oocyte maturation is crucial for nuclear maturation, successful
fertilization and embryo development [20,21]. Oocyte maturation is a
process during which the oocyte acquires its intrinsic ability to support
the subsequent stages of development in a stepwise manner, ultimately
reaching to the activation of embryonic genome. This process involves
complex and distinct, although linked, events of nuclear and cyto-
plasmic maturation [22]. Nuclear maturation involves resumption of
meiosis, progression to metaphase II (MII), and the accompanying cy-
toplasmic changes that prepare the oocyte for fertilization and sub-
sequent embryonic development [23].

Cadmium being an environmental contaminant has been reported to
be toxic, carcinogenic [24,25] and mutagenic [25]. Cadmium chloride
has been shown to be toxic to the cumulus oocyte complexes [26].
Oocyte development and associated events have been disrupted by Cd
administration in different species [6]. The role of Cd in suppressing
FSH-induced cumulus expansion in oocyte–cumulus complexes (OCC)
isolated from large antral porcine follicles has been described by Mly-
narcikova et al. [21]. High concentrations of Cd completely suppressed
oocyte maturation and also significantly suppressed an integral com-
ponent of expanded cumulus cells in porcine oocytes [27].

There is limited number of studies done on the effect of Cd on the
processes of maturation and fertilization of the oocyte. Therefore, the
aim of this study was, to investigate, in vitro effect of Cd on the bovine
oocyte maturation, (IVM) fertilization (IVF), and subsequent embryo
development.

2. Materials and methods

2.1. Chemicals and reagents

All chemicals and reagents were purchased from Sigma Chemical
Company unless otherwise stated.

2.2. Experiments

Water soluble Cadmium chloride (CdCl2) was used as a source of
Cadmium (Cd). Four different concentrations 0.0 µM, 0.2 µM, 2.0 µM
and 20 µM CdCl2 were added to serum-free oocyte maturation medium
(M-199). In this study, a total of 1081 Cumulus-oocyte complexes
(COCs) (grade 1; with homogenous ooplasm and more than four com-
plete layers of cumulus cells) were used. COCs (n: 331) were used for
checking nuclear maturation and 360 COCs were used for fertilization
and/or cleavage rate of presumptive zygotes.

In the 1st experiment, effect of increasing concentrations of ‘Cd’ on
oocyte nuclear maturation was studied. A total of 331 COCs were used
in three independent repeats, allocating about 25–30 oocytes per re-
plicate (0 µM Control, 0.2 µM, 2.0 µM and 20 µM CdCl2). Cumulus cell
expansion was recorded after 24 h of culture in all 1081 oocytes, and
assessment of nuclear maturation of oocytes was done by fixation and
staining.

In the 2nd experiment, effect of increasing concentrations of ‘Cd’ in
the oocyte maturation medium was studied on the cleavage rate and
blastocyst formation. A total of 360 oocytes were used in three in-
dependent repeats, divided into four treatments having about 20–25
oocytes per replicate. Oocytes were matured in the serum-free medium
supplemented with either 0 µM controls, or 0.2, or 2.0, or 20 µM CdCl2.
The matured oocytes were fertilized using frozen semen. Cleavage rate
was recorded on day 2 of culture, and blastocyst formation was re-
corded on day 8 of culture.

2.3. Collection of ovaries and oocytes

Cow ovaries collected from a local slaughter house were transported

to the laboratory, within 2 h after slaughtering, in a thermos bottle
containing 1× PBS at 37–38 °C. The ovaries were washed with fresh 1X
PBS several times immediately after arrival in the laboratory. Cumulus-
oocyte complexes (COCs) were aspirated from follicles of 3–8mm in
diameter with an 18-gauge needle using 10mL syringe. The grade 1
COCs were selected under a stereomicroscope and washed two times in
M-199 supplemented with 25 µM HEPES and 0.4% (w/v) BSA.

2.4. In vitro maturation

Oocytes were matured in four-well dishes (NUNC, Thermo Fisher
Scientific, Loughborough, Leicestershire, UK) containing 20 µL serum-
free maturation medium (M-199 supplemented with 0.6% (w/v) fatty
acid-free BSA, 10mg/mL FSH (Follitropin; Bioniche Animal Health,
Belleville, Ontario, Canada), 10mg/ml LH (Leutropin; Bioniche Animal
Health), 10mg/mL oestradiol and 10mg/mL gentamycin) for 24 h at
38.5 °C under 5% CO2 in humidified air [28].

2.5. Assessment of cumulus cell expansion

Expansion of cumulus cells was recorded after 24-h of maturation
under a stereomicroscope as described previously [29]. Levels of ex-
pansion recorded were a). Fully expanded (all cumulus cells were loo-
sened or spreaded), b). Partially expanded (only outer layers of cells
were loosened or spreaded) and c). Not expanded.

2.6. Assessment of stage of nuclear maturation of oocytes by staining

Nuclear maturation of oocytes was assessed by staining of oocytes as
previously described Marei et al. [29]. All oocytes were denuded and
placed on a slide holding the cover slip supported by four droplets of
vaseline/paraffin mixture (40:1). Fixation of denuded oocytes was done
by placing the slides in acetic acid:methanol fixative (1:3 v/v) for at
least 48 h. For staining, aceto-orcein stain (1% orcein in 45% acetic
acid) was used. Nuclear maturation of the oocytes was determined
according to the morphology of the nuclear material under phase
contrast microscope (Leica, Milton Keynes, UK).

2.7. In vitro fertilization

Oocytes matured in vitro with maturation medium containing 0, 0.2,
2.0 and 20 µM CdCl2 were fertilized with frozen semen (gift from Genus
ABS, Nantwich, Cheshire, UK) from a single bull as previously described
[18]. Sperms were selected by swim up for 45min at 38.5 °C under 5%
CO2 in humidified air in Calcium-free medium. After that, supernatant
was centrifuged at 300g at 20 °C and pellet was re-suspended in ferti-
lization medium (Tyrode’s albumin-lactate-pyruvate media supple-
mented with 0.6% (w/v) fatty acid-free BSA, 1mg/mL heparin, 50 ng/
mL adrenaline and 50 ng/mL hypotaurine). For removing or de-ag-
gregating cumulus cells, COCs were gently pipetted leaving only few
layers of cumulus cells. Nearly 30 of these COCs were washed with
oocyte wash medium once and then transferred into 400mL of fertili-
zation medium containing 1×106 sperm/mL. These cultures were in-
cubated for 18 h at 38.5 °C in a humidified incubator of 5% CO2 in air.

2.8. Embryo culture

After gentle pipetting, presumptive zygotes were denuded from
cumulus cells and cultured in 500mL of synthetic oviductal fluid
medium containing amino acids, sodium citrate and myoinositol [30]
supplemented with 0.4% (w/v) fatty acid-free BSA at 38.5 °C in a hu-
midified incubator with 5% O2, 5% CO2 and 90% N2. This was con-
sidered as day 1 (fertilization as day 0) of culture and continued up to
day 8 for the formation of blastocyst. Cleavage rate and blastocyst de-
velopment was measured on day 2 and 8 of culture, respectively.
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2.9. Statistical analysis

In all the experiments, the data were from at least three independent
repeats. Binominal data from cumulus expansion, oocyte nuclear ma-
turation, cleavage, and blastocyst rates were converted into percentages
and are presented as Means ± SEM. The data on cumulus expansion
were analysed by Chi-square, whereas the data on oocyte nuclear ma-
turation, cleavage rate and blastocyst development were checked for
equal variances and normal distribution before being subjected to
ANOVA using SPSS 20 (version 20, SPSS Inc., Chicago, IL, USA).
Differences were considered significant at 5% probability level.

3. Results

Table 1 gives a summary of the effects of Cd on the expansion of
oocyte cumulus cells, nuclear maturation, post-fertilization cleavage
and blastocyst development rate.

3.1. Cumulus cell expansion

Fig. 1 shows percentage of COCs with different levels of expansion
of cumulus cells around the oocytes as affected by different con-
centrations of Cd. Cadmium (Cd) at 2.0 and 20.0 µM significantly
(P < 0.05) reduced the percentage of fully-expanded COCs compared
to controls and 0.2 µM. However, no difference was observed between
the controls and 0.2 µM Cd. Moreover, percentage of oocytes with
partial or no expansion of cumulus cells significantly (P < 0.05) in-
creased when treated with 2.0 and 20.0 µM compared to controls and
0.2 µM, whereas no differences were observed between the controls

(0.0 µM CdCl2) and lowest concentration group (0.2 µM CdCl2).

3.2. Nuclear maturation

Cadmium at 2.0 and 20.0 µM significantly (P < 0.01) reduced the
percentage of oocytes reaching metaphase II stage compared to controls
and 0.2 µM Cd. Both 2 and 20 µM CdCl2 were also significantly different
with respect to Telophase I but only from control group (0.0 µM CdCl2).
Percentages of oocytes in other stages of nuclear maturation (GV,
GVBD, MI and AI) were similar among different treatment groups
(Fig. 2).

3.3. Embryo development

Post-fertilization cleavage rate in presumptive zygotes (Fig. 3A) and
blastocyst development (Fig. 3B) were significantly (P < 0.05) dif-
ferent between the controls (0.0 μM) and the Cd-treated groups.

4. Discussion

Animal populations in the world are exposed daily to varying levels
of environmental contaminants causing adverse affects on reproductive,
endocrine, and immune functions. Common pollutants are heavy metals
and pesticides. The toxic heavy metals of high environmental concern
are cadmium, lead, arsenic, and mercury [12]. The results of the pre-
sent study have shown a significant adverse effect of cadmium on the in
vitro bovine oocyte maturation and embryo development. Our results
are in consistent with a number of studies reported earlier. For example,
female Wistar rats treated subcutaneously with a single concentration

Table 1
The effects of different concentrations of cadmium (Cd) on the expansion of oocyte cumulus cells, nuclear maturation, cleavage rate and Blastocyst Development.

Cadmium Cumulus Cell Expansion Nuclear Maturation Embryo Development

Dose Full (%) Partial (%) None (%) GV (%) GVBD (%) MI (%) AI (%) TI (%) MII (%) Cleavage Rate
(%)

Blastocyst (%)

0.0 µM 92.9 ± 3.2a 5.1 ± 2.2a 1.9 ± 1.3a 1.4 ± 1.4a 0.0 ± 0.0a 2.9 ± 2.9a 1.4 ± 1.4a 2.9 ± 3.0a 91.2 ± 5.0a 75.0 ± 5.7a 19.0 ± 3.5a

0.2 µM 86.3 ± 3.3a a10.9± 2.2a,b 2.7 ± 1.6a 3.6 ± 1.8a 0.0 ± 0.0a 1.8 ± 1.8a 0.0 ± 0.0a 8.0 ± 1.4a,b 86.6 ± 4.0a 54.0 ± 4.5a 10.0 ± 2.0b

2.0 µM 50.3 ± 12.9b 28.3 ± 8.6,a,b 21.4 ± 6.2a 3.9 ± 0.8a 3.0 ± 3.0a 6.4 ± 3.2a 0.8 ± 0.8a 17.1 ± 3.7a,b 68.7 ± 3.4b 32.0 ± 4.6c 6.0 ± 1.5b,c

20 µM 14.6 ± 7.7c 33.0 ± 8.5b 52.4 ± 9.4b 6.7 ± 3.4a 0.0 ± 0.0a 10.9 ± 3.5a 0.0 ± 0.0a 19.6 ± 5.3b 62.8 ± 1.4b 15.0 ± 4.1d 1.0 ± 0.0c

The values are given as Mean ± SEM. Values with different superscripts within a column differ significantly (P < 0.05; Cumulus cell expansion and embryo development) (P < 0.01;
Nuclear maturation).

Fig. 1. The effect of different concentrations of Cadmium (Cd) on the percentage of Cumulus cell expansion. The bars (Mean ± SEM) with different letters within the same expansion
category are significantly (P < 0.05) different.
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of 0.02, 0.04, 0.06 or 0.08mmol CdCl2 per kg body weight showed a
decreased (P < 0.001) in oocyte maturation rate with a metaphase II
(MII) rate of 86.6%, 77.6%, 43%, 4.3% for 0.02, 0.04, 0.06 or
0.08mmol CdCl2, respectively [31]. Nandi et al. [12] investigated the
effects of nine concentrations (0, 0.005, 0.05, 0.5, 1.0, 1.5, 2.5, 5, and
10 µg/ml) of cadmium on buffalo oocyte viability, morphological ab-
normities, maturation, and embryonic development in vitro. Cadmium
was found to have a dose-dependent effect on the viability, morpho-
logical abnormalities, maturation, cleavage and morula/blastocyst
yield, and blastocyst hatching. A significant decline in viability of oo-
cytes was observed at 1.0 mg/mL cadmium compared to the control

group. The concentration of cadmium causing 100% oocyte death (1-
day culture) was 18 µg/mL. Cadmium at 1.0 µg/mL caused a significant
reduction in the maturation of oocytes compared to the lower con-
centrations.

Cadmium chloride was quite potent to reduce oocyte nuclear ma-
turation in vitro. At 1.48 µM CdCl2 the percentage of the oocytes that
reached MII stage was already reduced to 50% compared to the control
[32]. Moreover, Cadmium chloride has been reported to be toxic to the
in vitro process of bovine oocyte maturation in a concentration-depen-
dent manner [26]. In experiments with the ovine oocytes, Leoni et al.
[33] found that maturation rate was significantly affected at 2 and
20 µM CdCl2, with a metaphase II (MII) rate of 63.8% and 32.0%, re-
spectively when compared with controls (96.8%). Both Cd concentra-
tions used also reduced the numbers of fertilized oocytes in culture
(25.9% and 4.7%, respectively; control rate, 76.1%) and increased the
rate of oocyte degeneration (16.0 and 60.6%, control rate: 4.3%) (22).
De et al. [34] reported that two-cell embryos of the mouse were re-
markably resistant to Cd, but toxicity increased with development, and
morulae readily degenerated after Cd exposure.

It is clear from the results of this and the above-mentioned studies
that Cadmium at physiological concentrations can negatively affect
oocyte maturation, fertilization and subsequent embryo development.
This negative effect observed in our study may be because of
Cadmium’s ability to suppress hyaluronic acid synthesis and therefore
cumulus cell expansion, as has been reported in porcine oocytes [9,15]
or because of its cytotoxic effect as in the case of the bovine cumulus
cells (CCs) [35]; the denuded oocytes (without cumulus cells) became
less sensitive to Cd than cumulus-enclosed oocytes, indicating higher
Cd-induced cytotoxicity on CCs than the oocyte [35]. It is also a pos-
sibility that there might be more than one mechanism in operation at
the same time. In addition, Cd may exert its effect by interacting with
membrane transporters involved in the uptake of nutritive metals, such
as calcium, iron, zinc, copper and manganese, through a process called
“ionic mimicry” or alternatively by depleting cell protein sulfhydryl
reserves and interfering with normal protein folding [11] or by indu-
cing cumulus-oocyte mitochondria over-activity and oxidative damage
as has been reported in case of ovine COCs [36]. However, it was not
the aim of this study to investigate how Cd may achieve its effect on
IVM of bovine oocytes and subsequent IVF and embryo development
and therefore, is a matter for further research.

Fig. 2. The effect of different concentrations of CdCl2 (0.0, 0.2, 2.0, 20.0 µM) on the percentage of oocytes at different stages of nuclear maturation. The bars (Mean ± SEM) with
different letters within a certain stage of nuclear maturation are significantly (P < 0.01) different.

Fig. 3. The effect of different concentrations of CdCl2 (0.0, 0.2, 2.0, 20.0 µM) on the%
cleavage rate of presumptive zygotes (A) and % Blastocyst development (B). The bars
(Mean ± SEM) with different letters are significantly (P < 0.05) different.
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5. Conclusions

Cadmium chloride inhibited the bovine oocyte growth and devel-
opment in vitro. Our results showed that cadmium at higher con-
centrations (2 and 20 µM CdCl2) reduce the in vitro bovine oocyte cu-
mulus expansion, nuclear maturation, the cleavage rate and blastocyst
development. These results suggest that Cadmium has detrimental ef-
fects on the bovine oocyte maturation and its developmental compe-
tence.
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