1	Analysis of neurofilament concentration in healthy adult horses
2	and utility in the diagnosis of equine protozoal
3	myeloencephalitis and equine motor neuron disease
4	
5	Adriana M. Morales Gómez ^a , Sophie Zhu ^a , Scott Palmer ^a , Emil
6	Olsen ^a , Sally L. Ness ^a , Tom J Divers ^a , Karyn Bischoff ^a , Hussni O.
7	Mohammed ^{a, *}
8	
9	^a College of Veterinary Medicine, Cornell University, Ithaca, NY
10	14853, USA
11	
12	*Corresponding author at: S1 070 Schurman Hall, Department of
13	Population Medicine and Diagnostic Sciences, College of
14	Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
15	E-mail address: <u>hom1@cornell.edu</u> (H.O. Mohammed).
16	
17	Running title: Neurofilaments as biomarker for neurological
18	disorders

Abstract: Neurofilaments (NFs) are structural proteins of neurons that are released in significant quantities in the cerebrospinal fluid and blood as a result of neuronal degeneration or axonal damage. Therefore, NFs have potential as biomarkers for neurologic disorders. Neural degeneration increases with age and has the potential to confound the utility of NFs as biomarkers in the diagnosis of neurologic disorders. We investigated this relationship in horses with and without neurological diagnosis. While controlling for horse type (draft, pleasure, and racing), we evaluated the relationship between serum heavy-chain phosphorylated neurofilaments (pNF-H) and age, sex, and serum vitamin E concentrations. Serum pNF-H concentrations increased by 0.002 ng/mL for each year increase in age. There were significant differences in the serum pNF-H concentration among the type of activity performed by the horse. The highest serum pNF-H concentration was found in horses performing heavy work activity (racehorse) and with lower serum pNF-H concentration found among light (pleasure riding) and moderate (draft) activity. There was no significant association between the pNF-H concentration and sex or vitamin E concentration. Serum pNF-H concentration was elevated among horses afflicted with EMND and EPM when compared with control horses without evidence of neurologic disorders. Accordingly, serum pNF-H concentration can serve as a

114 42 useful biomarker to complement the existing diagnostic work-up of 117 43 horses suspected of having EPM or EMND. 120 44 121 45 Key words: Biomarker; equine motor neuron disease; equine 122 46 protozoal mycloencephalitis; neurofilaments. 128 48 129 49 130 49 131 49 132 50 133 50 134 51 135 52 136 52 137 52 138 53 140 54 141 54 142 55 153 56 154 56 155 51 156 51 157 52 158 56 159 59 153 60 154 54 155 61 156 61 157 62 158	113		
 useful biomarker to complement the existing diagnostic work-up of horses suspected of having EPM or EMND. Key words: Biomarker; equine motor neuron disease; equine protozoal mycloencephalitis; neurofilaments. protozoal mycloencephalitis; neurofilaments. 50 51 52 53 53 54 55 56 57 58 59 60 61 62 63 64 65 61 62 63 64 65 	114		
116 42 useful of offinitient the existing diagnostic work-up of 117 43 horses suspected of having EPM or EMND. 118 44 119 44 111 45 112 45 112 46 112 46 113 47 114 46 115 47 116 47 117 50 118 50 119 50 111 51 112 50 113 51 114 54 115 56 116 52 117 57 118 58 119 59 111 59 112 50 113 59 114 54 115 59 115 59 116 61 117 62 118 63 119 63	115	40	wasful his marker to complement the existing discredie work up of
117 43 horses suspected of having EPM or EMND. 120 44 121 45 Key words: Biomarker; equine motor neuron disease; equine 122 46 protozoal myeloencephalitis; neurofilaments. 126 47 127 48 128 48 129 50 129 50 120 51 121 52 123 50 124 53 125 53 126 53 127 52 128 53 129 53 120 54 121 54 122 55 123 56 124 56 125 51 126 58 127 57 128 60 129 60 129 61 129 62 120 63 121 64 122 65 <td>116</td> <td>42</td> <td>useful biomarker to complement the existing diagnostic work-up of</td>	116	42	useful biomarker to complement the existing diagnostic work-up of
118 43 horses suspected of having EPM or EMND. 119 44 120 44 121 45 Key words: Biomarker; equine motor neuron disease; equine 123 46 protozoal myeloencephalitis; neurofilaments. 125 47 126 47 127 48 128 48 129 49 131 49 132 50 133 50 134 51 135 52 136 52 137 52 138 53 144 54 145 56 146 56 147 57 148 58 159 59 151 59 152 60 153 60 154 61 155 61 156 61 157 62 158 63 159 63 <td>117</td> <td></td> <td></td>	117		
119 44 121 45 Key words: Biomarker; equine motor neuron disease; equine 123 46 protozoal myeloencephalitis; neurofilaments. 126 47 127 48 128 49 129 49 120 49 121 50 122 50 123 50 124 51 125 53 126 53 127 53 128 56 140 54 141 54 142 55 143 56 144 56 145 56 146 57 147 57 148 58 150 61 151 59 152 63 153 63 154 64 155 63 156 61 157 62 158 65 <td>118</td> <td>43</td> <td>horses suspected of having EPM or EMND.</td>	118	43	horses suspected of having EPM or EMND.
120 44 121 45 Key words: Biomarker; equine motor neuron disease; equine 123 46 protozoal myeloencephalitis; neurofilaments. 126 47 127 48 128 49 129 48 120 49 121 50 122 50 123 50 124 51 125 52 126 52 127 52 128 53 129 53 120 54 121 54 122 55 123 50 124 56 125 59 126 61 127 62 128 63 129 63 131 64 132 65	119		
121 45 Key words: Biomarker; equine motor neuron disease; equine 123 46 protozoal myeloencephalitis; neurofilaments. 126 47 127 48 128 49 129 50 131 50 132 50 133 51 134 51 135 52 136 53 141 54 142 55 143 56 144 56 145 56 146 57 147 57 148 58 150 59 151 59 152 60 154 61 155 61 156 61 157 62 158 63 159 63 150 63 151 64 152 63 153 64 154 65 <td>120</td> <td>44</td> <td></td>	120	44	
122 45 Key words: Biomarker; equine motor neuron disease; equine 123 46 protozoal myeloencephalitis; neurofilaments. 126 47 127 48 128 48 129 48 130 49 131 50 132 50 133 51 134 51 135 51 136 52 137 52 138 53 140 54 141 54 142 56 143 55 144 56 145 56 146 57 151 59 152 60 153 60 154 56 155 61 156 61 157 62 158 63 159 63 161 64 162 65 163 65 <td>121</td> <td></td> <td></td>	121		
123 46 protozoal myeloencephalitis; neurofilaments. 125 47 128 48 129 49 130 49 131 50 132 50 133 51 134 51 135 52 136 52 137 52 138 53 140 54 142 55 143 55 144 56 145 56 146 56 155 61 156 61 157 62 158 63 159 63 150 63 151 64 152 63 153 64 154 65 155 63 156 65 157 62 158 63 164 65 165 65	122	45	Key words: Biomarker; equine motor neuron disease; equine
124 46 protozoal mycloencephalitis; neurofilaments. 125 47 126 47 127 48 130 49 131 50 132 50 133 51 134 52 135 51 136 52 137 52 138 53 140 54 142 55 143 56 144 56 145 56 146 59 151 59 152 60 154 61 155 61 156 63 157 62 158 63 159 63 150 63 151 59 152 61 153 62 154 65 155 61 156 63 157 62 158 63 159 63 156 61 157 62 158 63 159 63 156	123		
125 1 126 47 127 1 128 48 129 49 131 50 132 50 133 50 134 51 135 52 136 52 137 52 138 53 140 54 141 54 142 55 143 55 144 56 145 56 146 59 152 61 155 61 156 61 157 62 158 61 159 63 150 63 151 59 152 61 154 63 155 63 161 64 162 65 163 65 164 165 165 65 <td< td=""><td>124</td><td>46</td><td>protozoal myeloencephalitis; neurofilaments.</td></td<>	124	46	protozoal myeloencephalitis; neurofilaments.
128 47 128 48 130 49 131 50 132 50 133 51 136 52 137 52 138 53 140 54 142 55 143 55 144 54 145 56 146 57 148 14 149 58 150 59 151 59 152 60 154 56 155 61 156 62 157 62 158 63 160 63 161 64 162 65 163 65 164 65 165 65 166 65 166 65 166 65 166 65	125		
127 128 48 130 49 131 50 132 50 133 51 134 51 135 52 136 52 137 53 140 54 142 55 143 56 144 141 145 56 146 58 150 59 152 61 155 61 156 61 157 62 158 63 160 63 161 64 162 65 163 65 164 65 165 65 166 65 166 65 166 65	126	47	
129 48 130 49 131 50 132 50 133 51 134 51 135 52 136 52 137 52 138 53 140 54 142 55 143 55 144 56 145 56 146 59 150 59 151 59 152 60 154 61 155 61 156 61 157 62 158 61 159 63 160 63 161 64 162 65 163 65 164 65 165 65 166 65	127		
129 x 130 49 131 50 132 50 133 51 135 51 136 52 137 52 138 53 140 54 141 54 142 55 143 55 144 56 145 56 146 58 150 59 151 59 152 60 154 61 155 61 156 61 157 62 158 61 159 63 161 64 152 63 163 65 164 65 159 63 161 64 162 65 163 65 164 65 165 65 166 65 <	128	48	
130 49 131 50 132 50 133 51 135 52 137 52 138 53 139 53 140 54 142 55 143 55 144 56 145 56 146 57 148 58 150 59 152 59 153 60 154 56 155 61 156 61 157 62 158 61 159 63 160 63 161 64 162 65 163 65 164 65 165 65 166 65 167 65 168 65 168 65 168 65	129	10	
131 0 1325013351134511355213853140541415414255143561441411455614614114757148142150591526115360154155155611566115762158150154611556115663160641636516416516565166166167165168166	130	49	
132 50 133 51 136 52 137 52 138 53 139 53 140 54 142 55 144 56 145 56 146 7 148 149 150 59 152 51 153 60 154 59 155 61 156 61 157 62 158 63 160 63 161 64 162 63 163 65 164 55 165 61 166 64 167 62 168 65 164 65 165 65 166 65 167 65 168 65 166 65 167 65 <td< td=""><td>131</td><td>17</td><td></td></td<>	131	17	
133 50 134 51 135 52 137 52 138 53 140 54 141 54 142 55 144 56 145 56 146 147 147 57 148 149 150 59 152 151 153 60 154 56 155 61 156 62 157 62 158 63 160 64 162 65 163 65 164 56 165 63 166 65 167 65 168 65	132	50	
134 51 135 52 138 53 139 53 140 54 141 54 142 55 143 55 144 56 145 56 146 57 147 57 148 59 150 59 152 60 154 60 155 61 156 62 157 62 158 63 160 64 162 65 163 65 164 65 165 61 166 65 167 62 168 65 164 65 165 65 166 65 167 65 168 65	133	50	
136511365213753138531395314054142141143551441411455614614114757148141149581501511515915215215360154155155611561561606316064162164164165165166166166167168	134	E 1	
136 52 137 53 138 53 140 54 141 54 142 55 143 56 144 66 145 56 146 77 147 57 148 78 150 59 152 60 153 60 154 75 155 61 156 61 157 62 158 63 160 63 161 64 162 65 163 65 164 75 165 75 164 75 165 75 166 75 167 65 168 75	135	51	
137521385313954140541425514356144145145561461471475714814915059152151153601541551556115661157621586316065161641626516465165631646516565166166167168	136	50	
138 53 140 54 142 55 144 56 145 56 146 57 147 57 148 58 150 59 152 60 153 60 154 51 155 61 156 61 157 62 158 61 159 63 160 63 161 64 162 65 163 65 164 65 165 61 166 65 167 63 168 65	137	52	
139531405414154142551445614671475714814914958150591521511536015415515611576215811606316064161641621163651641165116611671	138		
140 54 141 55 144 56 144 56 146 57 148 58 150 59 152 60 154 59 152 60 154 61 156 61 156 61 156 61 156 63 160 63 161 64 162 65 164 65 166 166 167 168	139	53	
141541425514356144145145561461471475714814915059152152153601541551556115615615762158161160611616416265164165165161166165166166167168	140		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	141	54	
143 55 144 56 145 56 146 57 147 57 148 149 149 58 150 59 152 50 153 60 154 59 155 61 156 61 157 62 158 63 160 64 162 65 163 65 164 65 165 65 166 65 167 63 168 65	142		
144 56 145 56 146 57 147 57 148 58 150 59 151 59 152 60 154 1 155 61 156 1 157 62 158 63 160 63 161 64 162 65 164 65 165 63 166 65 167 65 168 1	143	55	
145 56 146 57 147 57 148 58 149 58 150 59 152 1 153 60 154 1 155 61 156 1 157 62 158 1 159 63 160 64 162 1 163 65 164 1 165 1 166 1 167 65 168 1	144		
146 147 57 148 58 149 58 150 59 151 59 152 60 154 1 155 61 156 61 157 62 158 1 159 63 160 64 162 65 163 65 164 1 165 1 166 1 167 1 168 1	145	56	
147 57 148	146		
148 149 58 150 151 59 152 153 60 154 155 61 156 157 62 158 159 63 160 161 64 162 163 65 164 165 166 167 168	147	57	
149 58 150 151 151 59 152 10 153 60 154 1 155 61 156 1 157 62 158 1 159 63 160 1 161 64 162 1 163 65 164 1 165 1 166 1 167 1 168 1	148		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	149	58	
151 59 152 153 153 60 154 1 155 61 156 1 157 62 158 1 159 63 160 1 161 64 162 1 163 65 164 1 165 1 166 1 167 1 168 1	150		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	151	59	
153 60 154	152		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	153	60	
155 61 156 62 157 62 158 63 160 64 162 64 163 65 164 65 165 166 167 168	154		
156 157 62 158 159 63 160 161 64 162 163 65 164 165 166 167 168	155	61	
157 62 158 63 160 64 161 64 162 65 164 65 165 166 167 168	156		
158 159 63 160 161 64 162 163 65 164 165 166 167 168	157	62	
159 63 160 64 161 64 162 65 163 65 164 65 165 166 167 168	158	02	
160 161 64 162 163 65 164 165 166 167 168	159	63	
161 64 162 65 163 65 164 165 166 167 168 168	160	00	
162 163 65 164 165 166 167 168	161	64	
163 65 164 165 166 167 168	162	0 4	
164 165 166 167 168	163	65	
165 166 167 168	164	05	
166 167 168	165		
167 168	166		
168	167		
	168		

1. Introduction

Current diagnostic methods used to diagnose equine
neurologic disorders such as equine protozoal myeloencephalitis
(EPM) and equine motor neuron disease (EMND) are based heavily
on clinical examinations and invasive laboratory tests, i.e., tissue
biopsies and cerebrospinal centesis, and definitive diagnosis can
only be determined by autopsy (Dubey et al., 2001; Reed et al.,
2013).

Neurofilaments (NFs) are structural proteins of neurons that are densely located in axons of the neurons (Boylan et al., 2009; Gresle et al., 2014) and mainly consist of 3 subclasses: light (NF-L), medium (NF-M), and heavy (NF-H) (Gresle et al. 2014). These proteins are released into the cerebrospinal fluid (CSF) and blood as a result of neuronal degeneration or axonal damage (Inoue et al., 2017; Petzold, 2005). Neurofilaments have been demonstrated to be stable in blood, serum, or CSF over time, and no effect has been detected in pNF-H concentrations when freezing CSF or serum (Gendron et al., 2017; Hamishehkar et al., 2016). The fact that NFs have a relatively long half-life makes the concentration of NFs in serum a possible biomarker for neurologic diseases or neuronal disintegration (Millecamps et al., 2007; Yuan et al., 2009).

87 Our studies and those of others have confirmed elevated88 concentrations of neurofilaments in animals affected with several

pathologic conditions or trauma (Intan-Shameha et al., 2017; Nishida et al., 2014). Little is known about the changes in the concentrations of NFs during the normal aging process. Our suspicion is that the concentrations of the phosphorylated NFheavy (pNF-H) in the serum increases with age as a result of progressive neuronal loss and axonal disintegration. The literature on the relationship between age and neuronal degeneration is conflicting. Although one study in humans reported that the serum concentration of phosphorylated NF-light (pNF-L) increases with age (Burianová et al., 2015); studies on the relationship between the serum concentration of NFs and age are lacking in horses. A study in rats demonstrated non-significant changes in the number of neurons with age Vågberg et al., 2015). If the serum concentration of NFs increases significantly with age in the horse, this finding has the potential to confound the utility of NFs as a test for equine neurologic disorders. Furthermore, in a previous study we reported that horses afflicted with EPM had significantly increased concentrations of pNF-H compared to healthy horses. Since we did not account for the age of the animals in that report (Intan-Shameha et al. 2017), we conducted this study to determine if there was a relationship between pNF-H concentrations and age.

Another factor that has the potential to influence theconcentrations of NFs in animals is treatment with vitamin E.

Vitamin E is commonly administered to animals and humans for disease prevention or treatment of neurodegenerative diseases, including EMND and motor neuron diseases in other species (Brown et al., 2017; Finno et al., 2017; Mohammed Dr. et al., 2012; Ng et al., 2017). The impact of serum concentrations of vitamin E on the concentration of NFs is not clear and has a potential to confound the utility of this biomarker as a diagnostic parameter for neurologic disorders.

120 In this study we aim to investigate the association between 121 pNF-H and the age of the horse, while controlling for other possible 122 confounding factors, (effect of serum levels of vitamin E, level of 123 activity of the horse, and sex) in order to evaluate the potential use 124 of these proteins as biomarkers for 2 common neurologic disorders 125 of the horse; EMND and EPM.

126 2. Materials and methods

127 2.1. Study design, target and study population

128 This cross-sectional study included horses residing in New 129 York State. The study population included healthy horses and horses 130 with a confirmed neurologic diagnosis of EMND or EPM. The case 131 horses were either admitted to the Cornell University Hospital for 132 Animals (CUHA) or had blood samples submitted to the Animal 133 Health Diagnostic Center (AHDC). Control horses included horses 134 admitted to CUHA for evaluation and treatment of non-neurologic

conditions or horses without reported neurologic clinical signs
whose blood was submitted to the AHDC for determination of
Vitamin E levels. Horses with or without neurologic disorders were
categorized into 3 activity categories: light (pleasure or trail riding
horses), moderate (working draft horses or low-level event horses)
and heavy (Thoroughbred race horses).

2.2 Inclusion criteria

The inclusion criteria for enrollment of case horses with neurological diseases was a definitive diagnosis of EMND or EPM (based on necropsy findings that included histopathological examination of the brain and spinal cord and vitamin E values in their medical record. All horses without a neurologic disorder (lack of reporting of neurologic signs) were included as healthy horses.

148 2.3 Determination of serum pNF-H concentration

The pNF-H assay was conducted using the pNF-H sandwich enzyme-linked immunosorbent assay (ELISA) kit (ELISA, EMD Millipore, Billerica, MA). The protocol used chicken polyclonal antibodies generated against pNF-H, which were pre-coated onto a 96–well plate, later rabbit polyclonal antibodies and a goat antirabbit alkaline phosphatase conjugate were used to detect the captured pNF-H from the samples.

156 The pNF-H ELISA kit uses antibodies specific for pNF-H157 from mammalian species, additional ELISA protocol details are

described previously (Anderson et al., 2008; Intan-Shameha et al., 2017). Frozen serum samples from each horse were thawed prior to assay. All samples were tested in duplicate and the assay was performed according to the manufacturer's protocol. The person who performed the assays was completely blinded to the clinical information. The mean absorbance of the pNF-H standard, measured as optical density (OD), was plotted on a logarithmic scale. As a result, a standard curve was created and was used to calculate the pNF-H concentration of each sample (range of detection was 0.0293 ng/mL to 15 ng/mL), since duplicates were used for every sample, an average value of each sample was calculated.

2.4 Determination of vitamin E concentration

Serum was harvested from the horse whole blood samples. and 1 mL of serum was added into a sterile polypropylene microtubes containing an antioxidant mixture, consisting of 100 mL of an ethanol mixture of propyl gallate and EDTA. The samples were then frozen at -75° C until testing. Serum concentrations of α -tocopherol were measured at the AHDC at Cornell University by means of high-performance liquid-liquid partition chromatography. Analytes of interest were detected by spectrophotometry (molecular fluorescence emission at 330 nm for 7.05 minutes) with a tandem arrangement of a variable-wavelength UV detector and a

- spectrofluorometric detector. The concentration of vitamin E was reported as µg/ml. Further details on method are delineated previously (Mohammed et al., 2007). 2.5 Data collection and analysis Data on the age, sex and type of activity (draft, pleasure, or racing; which recoded into light, moderate, or heavy) of the horse was acquired from the CUHA horses' medical records or collected by personal interviews with the horse's owner/trainer. The data was initially reported using frequency distribution and graphics, and the measure of central tendency (mean or median) and dispersion (standard deviation and range) were calculated. The bivariate relationship between each of the factors/variables (age, vitamin E concentrations and type of horse activity) and the concentration of pNF-H was assessed using regression analysis or analysis of variance for categorical variables. In the final analysis, factors that were significantly associated with the concentrations of pNF-H in the bivariate analysis were evaluated jointly using the general linear model to assess the significance of association of each factor while simultaneously controlling for other factors. The probability of neurologic diseases (EMND or EPM) was calculated from the logistic regression analysis equation and the dependent variable was whether the horse had neurologic disorder or not. Only horses with vitamin E values were included in this analysis. All

- statistical analyses were performed using the SPSS v.24 (IBM SPSS
 Statistical Software, White Plain, NY) and statistical significance
 differences were considered a type I error (*p*-value) of 0.05.
- **3. Results**
- *3.1 pNF-H as a function of age, sex and activity*

A total of 169 horses without clinical signs of neurologic disease met the inclusion criteria and were enrolled for this part of the study. Table 1 shows the distribution of the pNF-H horse serum concentrations by the type of activity, sex and age of the horse. There was significant variation in the serum neurofilament concentrations among horses with different levels of work activity (light, moderate, and heavy). Those horses with heavy activity (Thoroughbred race horses), had significantly higher serum levels of neurofilaments compared to either horses with moderate work activity (working draft horses or low-level event horses) or light work activity (pleasure horses or trail horses) (**Table 1**). There was no significant difference in the serum concentration of neurofilaments among horses in our study population based upon the sex of the horse.

The average age of the healthy horses in our study was 11.65 years (SD = 6.8 years) (**Table 1**). There was a tendency for the concentrations of pNF-H to increase with the age of the horse (**Figure 1**). The initial correlation (bivariate) between age and the

level of neurofilaments was evaluated using a regression analysis
with different transformation (linear and second order) to ensure
capturing any variability in age. Although there was significant
positive linear relationship between the age of the horses in this
study and the concentrations of the pNF-H; the concentrations of
pNF-H increased by only 0.002 ng/ml for each year of increase in
age.

3.2 pNF-H concentration and vitamin E concentration

Serum vitamin E concentrations were obtained from 93 healthy horses. The average serum vitamin E concentration in healthy horses was 2.56 μ g/ml (**Table 1**). There was no significant correlation between the concentration of vitamin E and the concentration of pNF-H in our study (**Figure 2**) and in the bivariate analysis.

3.3 Multivariate Analysis

Table 2 shows the results of the multivariate analysis for the relationship between the age of the horses and the serum concentrations of pNF-H when controlled for the activity of the horses. The concentrations of neurofilaments increased by 0.002 ng/ml for each year of increase in age of the horse (regression coefficient). That means for each year increase in age of the horse the concentration of pNF-H increases by 0.002 What that means

There was a significant association between the type of activity of the horse and the concentrations of pNF-H. The adjusted mean pNF-H values for the reference category of the activity was 0 ng/ml, horses with heavy activity was 0.359 ng/ml which was significantly higher than that for moderate (0.225 ng/mL) or light (0.0246 ng/mL) activity horses (**Table 2**).

3.4 pNF-H and neurologic disorders

We investigated the association between serum pNF-H concentration and the likelihood of neurologic disorders using a logistic regression analysis. A total of 61 horses with confirmed diagnosis of EMND (23 horses) or EPM (38 horses) were identified. The probability of neurologic disorder given the concentrations of neurofilaments was calculated using the logistic regression analysis as follows: $P(Neurolog ic) = \frac{1}{1 + (\exp^{-(\alpha + \beta(pNFH))})}$. Where P (Neurologic) is the probability of neurologic disorders (EMND or EPM), α is the constant of the logistic regression, and β is the regression coefficient for the changes in the probability of pNF-H per unit change in the pNF-H concentrations. In the analysis the constant value was -3.786 and the regression coefficient was 2.977. Figure 3 shows the relationship between the probability of neurologic disorder and the pNF-H serum values. The probability of a neurologic disorder reaches 0.9 as the concentrations of pNF-H reaches 2.0 ng/ml (Figure 3).

272 4. Discussion

The long-term objective of our research is to investigate the usefulness of pNF-H as a diagnostic parameter for the presence and severity of neurologic disorders in the horse. The use of pNF-H as a diagnostic marker for neurologic disorders, i.e., amyotrophic lateral sclerosis (ALS), or brain injuries in humans, has proven to be useful (Chen et al., 2016; Gaiani et al., 2017; Gendron et al., 2017; Poesen et al., 2017; Shibahashi et al., 2016). Studies have linked the concentrations of these proteins to certain neurologic conditions in humans and in horses (Idland et al., 2017, Takei, 1992). Most of the aforementioned neurologic conditions, in humans or animals, are age related and it is not clear whether the observed association with pNF-H was confounded by the age of the study units-either humans or animals. Hence, it is imperative to investigate whether an association between serum concentrations of pNF-H and the likelihood of neurologic disorders in horses is likely to be confounded by the age of the horse.

The potential confounding effect of age is plausible. It is common knowledge that the neurons degenerate and die with age, so as a consequence it is reasonable to expect a proportionate increase of the concentration of NFs with age. Neurofilaments are found in both the central and peripheral nervous system (Petzold, 2015). As a consequence of neuronal or axonal damage associated with the aging process or trauma, NFs are believed to be released
into the extracellular space increasing the concentration of pNF-H
in the CSF and serum (Petzold, 2015; Steinacker et al., 2016b,
2016a). Several studies have used this finding to develop biomarkers
for neurodegenerative diseases and traumatic conditions in humans
and experimental animals (Intan-Shameha et al., 2017; Kirkcaldie
and Collins, 2016; Yilmaz et al., 2017).

This study showed that although there was a positive change in the relationship between age and serum pNF-H with age, the degree of change was not high. Reports in humans have demonstrated similar association based upon examination of CSF (Bjerke et al., 2014; Steinacker et al., 2016b, 2016a). The difference between our study and the aforementioned studies is that in the human studies the concentrations of pNF-H were measured in the CSF and not serum.

To the authors' knowledge, this is the first study to investigate the association between serum concentration of NFs and age in the horse. Since CSF and serum pNF-H concentrations have a direct proportional relationship, we looked at previous studies that evaluated the association between serum pNF-H concentrations and age in human patients. Although several studies demonstrated that the concentration of pNF-H in the CSF was associated with age-related neurodegeneration in cognitively healthy adults, other

studies were not able to make similar conclusions (Idland et al., 2017; Vågberg et al., 2015). Most of these human studies examined the relationship between age and the CSF-NFs concentrations by assessing the deterioration in the whole-brain (Bjerke et al., 2014; Steinacker et al., 2016b, 2016a; Vågberg et al., 2015; Zetterberg, 2017). The consensus among those studies was that there are age-related changes in the human brain tissue that reflect the ageing process and that concentration of the NFs measured in the CSF demonstrated high correlation between the NF-L and NF-H. Whereas in two studies the age was biased towards elderly individuals, other studies patients' age range was skewed (Idland et al., 2017; Steinacker et al., 2016a, Takasaki et al., 2002). Interestingly, the human study populations included only mature subjects ranging from 20 to 70 years of age (Vågberg et al., 2015; Zetterberg, 2017). In our study, horse age ranged from 0.58 to 31 years of age (11.65 mean) and included juvenile individuals.

The vitamin E concentrations in serum are known to be associated with aging in several neurologic disorders in animals and humans (Divers et al., 2006; Hamishehkar et al., 2016). The criteria for including horses in the normal category included a cutoff point for vitamin E of concentrations > 1.5 ug/mL. This cut-off point was based both upon our clinical experience and experimental findings (Divers et al., 2006). In the final analysis for assessing the

association between age and concentrations of vitamin E. only horses with vitamin E values recorded in the medical record were included in the study. Since there is an association between the NF concentrations and age, it is not unreasonable to hypothesize that the NF serum concentrations might be associated with serum vitamin E concentration. However, in our study population there was no significant association between serum concentrations of NF and serum vitamin E among the healthy horses. To the authors' knowledge there is no previous study that examined this association in blood samples from human or animals. The only study that indirectly investigated the relationship between vitamin E and pNF-H, did so by examining histopathological changes and concluded that there was no significant association (Takei, 1992). That observation is consistent with the findings of this study.

Our study demonstrated significant differences in the concentration of pNF-H among horses performing different levels of activity. Horses undergoing heavy exercise (Thoroughbred racing horses) had higher serum pNF-H concentration than horses undergoing light or moderate (draft, pleasure riding, event horses). Although there are no previous studies in animals that demonstrated an association between serum pNF-H concentrations and levels of activity, several studies in human subjects showed that the serum pNF-H concentrations are increased among competitive athletes

(Oliver et al., 2016; Shahim et al., 2017). These studies attributed the increase of pNF-H concentrations among performing athletes to increased likelihood of trauma, concussion, or injury. Given the relatively high level of training activity experienced by Thoroughbred racehorses, it is reasonable to suggest that the significantly higher serum levels of pNF-H found in Thoroughbred racehorses in this study may reflect an increased exposure to exercise-related trauma in comparison to pleasure or draft horses.

Recent studies have promoted the use of NFs as a diagnostic biomarker for neurologic conditions in animals and humans (Disanto et al., 2017; Intan-Shameha et al., 2017; Nishida et al., 2014; Steinacker et al., 2016b, 2016a; Toedebusch et al., 2017). In our study we explored the potential use of serum pNF-H concentrations to complement clinical observations and conventional diagnostic tests in the diagnosis of EMND and EPM in the horse. A definitive diagnosis for horses afflicted with these conditions requires histopathological examination of the spinal cord to detect pathognomonic lesions (Divers, T.J.; Mohammed, H.O.; Cummings, J.F.; Valentine, B.A.; De Lahunta, A.; Jackson, C.A.; Summers, 1994; Reed et al., 2016). Both conditions affect the neurons in the CNS and associated axons leading to the release of neurofilaments in the serum. This study demonstrated the value of using elevated concentrations of serum pNF-H as a biomarker to

predict the probability of the diagnosis of EMND and EPM inneurologic horses.

Previous studies of the prognostic value of the neurofilament concentrations had proposed positive cut-off points for the diagnosis of the respective neurologic condition (Nishida et al., 2014; Steinacker et al., 2016b, 2016a). Unlike the previous studies, the authors propose the use of a probability approach for the interpretation of neurofilaments concentrations in the diagnosis of EMND or EPM. This approach is based upon two premises: First, both of these neurologic conditions are progressive in nature and may have subclinical and clinical phases in which the serum concentrations of neurofilaments would likely differ. The probability of the disease would be associated with the specific level of the serum pNF-H value for a particular patient. Second, it is envisaged that serum concentrations of neurofilaments would be only one of the parameters a clinician would use in the diagnostic work-up, including medical history and clinical examination to make a specific diagnosis of EMND or EPM.

Finally, it can be difficult for equine practitioners to make a differential diagnosis between hind leg lameness and neurologic disease, i.e., EPM. The inclusion of serum neurofilament concentrations in the diagnostic work-up of hind leg lameness of performance horses has the potential to aid the clinician in making

an accurate differential diagnosis between EPM and a hindlimborthopedic lameness, thus enabling evidence-based treatment of thecondition.

In conclusion, our results showed that although serum concentrations of pNF-H increased slightly with the age of the horse, the degree of this increase was not statistically significant. Serum pNF-H concentrations were not affected by the concentration of vitamin E in the serum, nor did they vary with the sex of the horse. Finally, the serum pNF-H concentration did vary with the activity of the horse, with horses undergoing heavy activities had significantly higher pNF-H values in comparison to light and moderate activities.

423 Declaration conflicting interests

424 The authors declared no potential conflicts of interest with respect425 to the research, authorship, and/or publication of this article.

426 Funding

The research is partially supported with funds from The Zweig
Memorial Funds, College of Veterinary Medicine, Cornell
University

- **References**
- 432 Anderson, K.J., Scheff, S.W., Miller, K.M., Roberts, K.N., Gilmer,
- 433 L.K., Yang, C., Shaw, G., 2008. The Phosphorylated Axonal

1066		
1067	404	Form of the Neurofilement Subunit NE H (nNE H) or a
1068	434	Form of the Neuromanient Subunit NF-H (pNF-H) as a
1069	405	Dlaad Diamarkar of Traumatic Drain Injury, I. Neurotrauma
1070	435	Blood Blomarker of Traumatic Brain Injury. J. Neurotrauma
1071		
1072	436	25, 10/9–1085. https://doi.org/10.1089/neu.200/.0488
1073		
1074	437	Bjerke, M., Jonsson, M., Nordlund, A., Eckerström, C., Blennow,
1075		
1076	438	K., Zetterberg, H., Pantoni, L., Inzitari, D., Schmidt, R.,
1077		
1078	439	Wallin, A., 2014. Cerebrovascular Biomarker Profile Is
1079		
1080	440	Related to White Matter Disease and Ventricular Dilation in
1081		
1082	441	a LADIS Substudy. Dement. Geriatr. Cogn. Dis. Extra.
1003		
1085	442	https://doi.org/10.1159/000366119
1086		
1087	443	Boylan, K., Yang, C., Crook, J., Overstreet, K., Heckman, M.,
1088		
1089	444	Wang, Y., Borchelt, D., Shaw, G., 2009. Immunoreactivity
1090		
1091	445	of the phosphorylated axonal neurofilament H subunit (pNF-
1092		
1093	446	H) in blood of ALS model rodents and ALS patients:
1094		
1095	447	Evaluation of blood pNF-H as a potential ALS biomarker. J.
1096		
1097	448	Neurochem. 111, 1182–1191.
1098		
1099	449	https://doi.org/10.1111/j.14714159.2009.06386.x
1100		
1101	450	Brown, J.C., Valberg, S.J., Hogg, M., Finno, C.J., 2017. Effects of
1102		
1104	451	feeding two RRR- α -tocopherol formulations on serum,
1104		
1106	452	cerebrospinal fluid and muscle α -tocopherol concentrations
1107		1 1
1108	453	in horses with subclinical vitamin E deficiency. Equine Vet.
1109		
1110	454	J. https://doi.org/10.1111/evj.12692
1111		1 6 5
1112	455	Burianová, J., Ouda, L., Syka, J., 2015. The influence of aging on
1113		
1114	456	the number of neurons and concentrations of non
1115		
1116		
1117		
1118		

1122						
1123	- 7	nhosnorulated	nourofilama	nt protoinc	in the cont	ral auditory
1124 43	57	phosporylated	neuromanie	in proteins	s in the cent	rai auditory
1125	-0		. ,		<u>.</u> .	NT ·
1126 45	58	system of	rats.	Front.	Aging	Neurosci.
1127						
1128 45	59	https://doi.org	/10.3389/fna	igi.2015.00	0027	
1129						
1130 40	50 Chen, 2	X., Chen, Y., W	Vei, Q., Ou, F	R., Cao, B.,	Zhao, B., S	Shang, H.F.,
1131						
1132 40	51	2016. Assess	ment of a	multiple	biomarker	panel for
1133				-		-
1134 40	52	diagnosis of	amvotrophic	lateral sc	lerosis. BN	AC Neurol.
1135						
1136 40	43	https://doi.org	/10 1186/s12	2883-016-0)689-x	
1137		110195.// 001.015	10.1100/512	2005 010 0	1007 A	
1138	4 Disont	C Parro (C Ponkort	D Naaga	lin V So	hädalin S
1139 40	DISallu), U., Dallo, V	., Delikelt,	r., nacge	iiii, 1., SC	nauenn, S.,
1140	/ -	C: 1: 11 A	7 0	ות		1 11
1141 40	55	Giardiello, A	., Zecca, C	., Blennov	v, K., Zett	erberg, H.,
1142						
1143 40	66	Leppert, D., K	Cappos, L., C	jobbi, C., I	Kuhle, J., 2	017. Serum
1144						
1145 40	67	Neurofilamen	t light: A bi	iomarker c	of neuronal	damage in
1146						
1147 40	58	multiple	selerosis	2	Ann	Neurol
		rrr	501010513	<i>.</i>		1
1148			501010513			1.0001011
1148 1149 4 0	69	https://doi.org	/10.1002/ana	n.24954		
1148 1149 40 1150	59	https://doi.org	/10.1002/ana	a.24954		
1148 1149 40 1150 1151 4	69 70 Divers	https://doi.org	/10.1002/ana	a.24954 Cummings	J.F.: Vale	ntine. B.A.:
1148 1149 40 1150 1151 47 1152	69 70 Divers	https://doi.org	/10.1002/ana med, H.O.; (a.24954 Cummings,	, J.F.; Vale	ntine, B.A.;
1148 1149 40 1150 1151 47 1152 1153 47	59 70 Divers	https://doi.org T.J.; Mohami De Lahunta	/10.1002/ana med, H.O.; (a.24954 Cummings,	, J.F.; Valer	ntine, B.A.;
1148 1149 40 1150 1151 47 1152 1153 47 1154	59 70 Divers 71	https://doi.org T.J.; Mohami De Lahunta,	/10.1002/ana med, H.O.; (A.; Jacksor	a.24954 Cummings, n, C.A.; S	, J.F.; Valer Summers, H	ntine, B.A.; B.A., 1994.
1148 1149 1150 1151 1152 1153 1154 1155	59 70 Divers 71	https://doi.org T.J.; Mohami De Lahunta,	/10.1002/ana med, H.O.; (A.; Jacksor	a.24954 Cummings, n, C.A.; S	, J.F.; Valer Summers, E	ntine, B.A.; B.A., 1994.
1148 1149 1150 1151 1152 1153 1154 1155 1156	59 70 Divers 71 72	https://doi.org , T.J.; Mohami De Lahunta, Equine motor	/10.1002/ana med, H.O.; (A.; Jacksor	a.24954 Cummings, n, C.A.; S ease: findi	, J.F.; Valer Summers, F ings in 28	ntine, B.A.; B.A., 1994. horses and
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157	59 70 Divers 71 72	https://doi.org T.J.; Mohami De Lahunta, Equine motor	/10.1002/ana med, H.O.; (A.; Jacksor neuron dis	a.24954 Cummings, n, C.A.; S ease: findi	, J.F.; Valer Summers, E ings in 28	ntine, B.A.; B.A., 1994. horses and
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158	59 70 Divers 71 72 73	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p	/10.1002/ana med, H.O.; C A.; Jacksor neuron dis pathophysiol	a.24954 Cummings, n, C.A.; S ease: findi ogical mec	, J.F.; Valer Summers, F ings in 28 chanism for	ntine, B.A.; B.A., 1994. horses and the disease.
1148 1149 40 1150 47 1151 47 1152 47 1153 47 1154 47 1155 47 1156 47 1157 47 1158 47 1159 47	 59 70 Divers 71 72 73 74 	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p	/10.1002/ana med, H.O.; (A.; Jacksor neuron dis pathophysiol	a.24954 Cummings, n, C.A.; S ease: findi ogical mec	, J.F.; Valer Summers, F ings in 28 Shanism for	ntine, B.A.; B.A., 1994. horses and the disease.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160	59 70 Divers 71 72 73 74	https://doi.org , T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V	/10.1002/ana med, H.O.; (A.; Jacksor • neuron dis pathophysiol- fet. J.	a.24954 Cummings, n, C.A.; S ease: findi ogical mec https://d	, J.F.; Valer Summers, E ings in 28 Shanism for loi.org/10.1	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042-
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161	59 70 Divers 71 72 73 74	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V	/10.1002/ana med, H.O.; C A.; Jacksor neuron dis pathophysiol	a.24954 Cummings, n, C.A.; S ease: findi ogical mec https://d	, J.F.; Valer Summers, E ings in 28 Chanism for loi.org/10.1	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042-
1148 1149 40 1150 1151 47 1152 47 1153 47 1154 47 1155 47 1156 47 1157 47 1158 47 1159 47 1160 47 1161 47	59 70 Divers 71 72 73 74 75	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0	/10.1002/ana med, H.O.; C A.; Jacksor neuron dis pathophysiol fet. J.	a.24954 Cummings, n, C.A.; S ease: findi ogical mec https://d	, J.F.; Valer Summers, F ings in 28 Shanism for loi.org/10.1	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042-
1148 1149 40 1150 1151 1151 47 1152 47 1153 47 1154 47 1155 47 1156 47 1157 47 1158 47 1159 47 1160 47 1161 47 1163 47	59 70 Divers 71 72 73 74 75	https://doi.org , T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0	/10.1002/ana med, H.O.; (A.; Jacksor neuron dis pathophysiol fet. J.	a.24954 Cummings, n, C.A.; S ease: findi ogical mec https://d	, J.F.; Valer Summers, E ings in 28 Shanism for loi.org/10.1	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042-
1148 1149 40 1150 1150 1151 42 1152 1153 1153 42 1155 42 1156 42 1157 42 1158 42 1159 42 1160 42 1161 42 1163 42 1164 42	 59 70 Divers. 71 72 73 74 75 76 Divers. 	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm	/10.1002/ana med, H.O.; (A.; Jacksor → neuron dis pathophysiol- /et. J. 04411.x hings, J.E.,	a.24954 Cummings, n, C.A.; S ease: findi ogical mec https://d de Lahur	, J.F.; Valer Summers, H ings in 28 hanism for loi.org/10.1	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042-
1148 1149 40 1150 1151 42 1152 42 1153 42 1154 42 1155 42 1156 42 1157 42 1158 42 1159 42 1160 42 1161 42 1163 42 1164 42	 59 70 Divers 71 72 73 74 75 76 Divers 	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm	/10.1002/ana med, H.O.; (A.; Jacksor neuron dis pathophysiol et. J. 04411.x nings, J.E.,	a.24954 Cummings, n, C.A.; S ease: findi ogical mec https://d de Lahur	, J.F.; Valer Summers, F ings in 28 hanism for loi.org/10.1 nta, A., H	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042-
1148 1149 40 1150 1151 47 1152 1153 1153 47 1154 47 1155 47 1156 47 1157 47 1158 47 1159 47 1160 47 1161 47 1163 47 1164 47 1165 47	 59 70 Divers 71 72 73 74 75 76 Divers 77 	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm Mohammed, 1	/10.1002/ana med, H.O.; (A.; Jacksor neuron dis pathophysiol et. J. 04411.x hings, J.E., H.O., 2006.	a.24954 Cummings, n, C.A.; S ease: findi ogical mec https://d de Lahun Evaluation	, J.F.; Valer Summers, F ings in 28 Shanism for loi.org/10.1 nta, A., H n of the ris	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042- fintz, H.F., k of motor
1148 1149 40 1150 1150 1151 42 1152 1153 1153 42 1155 42 1156 42 1157 42 1158 42 1159 42 1161 42 1163 42 1163 42 1164 42 1165 42 1166 42 1167 43	 59 70 Divers 71 72 73 74 75 76 Divers 77 	https://doi.org , T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm Mohammed, 1	/10.1002/ana med, H.O.; (A.; Jacksor → neuron dis bathophysiol- /et. J. 04411.x hings, J.E., H.O., 2006.	a.24954 Cummings, h, C.A.; S ease: findi ogical mec https://d de Lahun Evaluation	, J.F.; Valer Summers, E ings in 28 chanism for loi.org/10.1 nta, A., H n of the ris	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042- fintz, H.F., k of motor
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 59 70 Divers 71 72 73 74 75 76 Divers 77 78 	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm Mohammed, 1 neuron disease	/10.1002/ana med, H.O.; C A.; Jacksor → neuron dis pathophysiol- /et. J. 04411.x hings, J.E., H.O., 2006. e in horses fe	a.24954 Cummings, h, C.A.; S ease: findi ogical mec https://d de Lahun Evaluation d a diet low	, J.F.; Valer Summers, E ings in 28 Chanism for loi.org/10.1 nta, A., H n of the ris v in vitamin	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042- fintz, H.F., k of motor
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 59 70 Divers 71 72 73 74 75 76 Divers 77 78 	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm Mohammed, 1 neuron disease	/10.1002/ana med, H.O.; C A.; Jacksor r neuron dis pathophysiol et. J. 04411.x hings, J.E., H.O., 2006. e in horses fe	a.24954 Cummings, h, C.A.; S ease: findi ogical mec https://d de Lahun Evaluation d a diet low	, J.F.; Valer Summers, F ings in 28 Chanism for loi.org/10.1 hta, A., H n of the ris w in vitamin	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042- fintz, H.F., k of motor a E and high
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 59 70 Divers 71 72 73 74 75 76 Divers 77 78 	https://doi.org , T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm Mohammed, 1 neuron disease	/10.1002/ana med, H.O.; (A.; Jacksor → neuron dis bathophysiol fet. J. 04411.x hings, J.E., H.O., 2006. e in horses fe	a.24954 Cummings, h, C.A.; S ease: findi ogical mec https://d de Lahun Evaluation d a diet lov	, J.F.; Valer Summers, F ings in 28 shanism for loi.org/10.1 nta, A., H n of the ris v in vitamin	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042- fintz, H.F., k of motor a E and high
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 59 70 Divers. 71 72 73 74 75 76 Divers. 77 78 	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm Mohammed, 1 neuron disease	/10.1002/ana med, H.O.; (A.; Jacksor → neuron dis pathophysiol- /et. J. 04411.x hings, J.E., H.O., 2006. e in horses fe	a.24954 Cummings, h, C.A.; S ease: findi ogical mec https://d de Lahun Evaluation d a diet low	, J.F.; Valen Summers, H ings in 28 hanism for loi.org/10.1 hta, A., H n of the ris w in vitamin	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042- fintz, H.F., k of motor a E and high
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 59 70 Divers 71 72 73 74 75 76 Divers 77 78 	https://doi.org T.J.; Mohami De Lahunta, Equine motor proposal of a p Equine V 3306.1994.tb0 T.J., Cumm Mohammed, 1 neuron disease	/10.1002/ana med, H.O.; C A.; Jacksor → neuron dis pathophysiol- /et. J. 04411.x hings, J.E., H.O., 2006. e in horses fe	a.24954 Cummings, h, C.A.; S ease: findi ogical mec https://d de Lahun Evaluation d a diet low	, J.F.; Valer Summers, E ings in 28 hanism for loi.org/10.1 hta, A., H n of the ris w in vitamin	ntine, B.A.; B.A., 1994. horses and the disease. 111/j.2042- fintz, H.F., k of motor a E and high

1178		
1179	170	in conner and iron Am I Vet Res
1180	477	in copper and non. Ann. 5. Vet. Res.
1181	490	https://doi.org/10.2460/aivr.67.1.120
1182	400	https://doi.org/10.2400/ajvi.07.1.120
1183	404	Dubay ID Lindson DC Saville WIA Dood SM Cronstrom
1184	401	Dubey, J.P., Lindsay, D.S., Savine, W.J.A., Reed, S.M., Gransuoni,
1185	40.0	
1186	482	D.E., Speer, C.A., 2001. A review of Sarcocystis neurona
1187	100	
1188	483	and equine protozoal myeloencephalitis (EPM). Vet.
1189	_	
1190	484	Parasitol. https://doi.org/10.1016/S0304-4017(00)00384-8
1191		
1102	485	Finno, C.J., Kaese, H.J., Miller, A.D., Gianino, G., Divers, T.,
1104		
1194	486	Valberg, S.J., 2017. Pigment retinopathy in warmblood
1195		
1190	487	horses with equine degenerative myeloencephalopathy and
1198		
1199	488	equine motor neuron disease. Vet. Ophthalmol.
1200		
1201	489	https://doi.org/10.1111/vop.12417
1202		
1203	490	Gaiani, A., Martinelli, I., Bello, L., Querin, G., Puthenparampil, M.,
1204		
1205	491	Ruggero, S., Toffanin, E., Cagnin, A., Briani, C., Pegoraro,
1206		
1207	492	E., Soraru, G., 2017. Diagnostic and prognostic biomarkers
1208		
1209	493	in amyotrophic lateral sclerosis: Neurofilament light chain
1210		
1211	494	concentrations in definite subtypes of disease. JAMA
1212		
1213	495	Neurol. https://doi.org/10.1001/jamaneurol.2016.5398
1214		1 6 5
1215	496	Gendron, T.F., Daughrity, L.M., Heckman, M.G., Diehl, N.N.,
1216		
1217	497	Wuu J Miller TM Pastor P Trojanowski IO
1210		
1219	498	Grossman M Berry ID Hu W T Ratti A Benatar M
1220	470	
1221	/00	Silani V Glass I.D. Floeter M.K. Jeromin A. Boylan
1223	777	
1224	500	K.B. Petrucelli I. Prudencio M. Canuto A.M. Decaro
1225	000	K.D., I Cu ucciii, E., I Iudencio, Wi., Caputo, A.Wi., Desalo,
1226	501	D. Dalmucci C. Robertson A. Song V. Duch D.V.
1227	201	I., I annucci, C., Robertson, A., Song, I., Rush, D.R.,
1228		
1229		

1234		
1235	502	Pedraza O Lacomis D Ladha S Fournier CN
1236	502	Tearaza, O., Eaconnis, D., Eacana, S., Tournier, C.N.,
1237	502	McCluskey J. F. Elman J. R. Toledo, J.R. McBride, J.D.
1238	503	Meetuskey, L.F., Elinan, L.D., Toledo, J.D., Mebride, J.D.,
1239	504	
1240	504	1110ca, C., Morelli, C., Poletti, B., Verde, F., Prelle, A.,
1241		
1242	505	Jockel-Balsarotti, J., Rademakers, R., Miller, B.L., Boxer,
1243		
1244	506	A.L., Rosen, H.J., Brown, R.H., Boeve, B.F., Bowser, R.,
1245		
1246	507	Diez, M., Aguilar, M., Rothstein, J.D., Traynor, B.J., 2017.
1247		
1248	508	Phosphorylated neurofilament heavy chain: A biomarker of
1249		
1250	509	survival for C9ORF72-associated amyotrophic lateral
1251		
1252	510	sclerosis. Ann. Neurol. 82. 139–146.
1253		
1254	511	https://doi.org/10.1002/ana.24980
1255		114p5.//doi.org/10.1002/ana.21900
1256	512 Greele	M Liu V Dagley I F Haartsen I Pearson F Purcell
1257	JIZ GIUSIC	, 101., Elu, 1., Dagiey, E.F., Maarisen, J., Fearson, F., Furcen,
1258	510	A.W. Lowariak I. Datzald A. Lucas P.M. Van Dar Walt
1259	515	A. W., Lavenck, L., Feizolu, A., Lucas, K.Wi., Vali Dei Wali,
1260		A Drives II Marria D.D. Taylar D. V. Chavy C.
1201	514	A., Prime, H., Morris, D.K., Taylor, B. V., Snaw, G.,
1262		
1203	515	Butzkueven, H., 2014. Serum phosphorylated
1204	_	
1266	516	neurofilamentheavy chain concentrations in multiple
1267		
1268	517	sclerosis patients. J. Neurol. Neurosurg. Psychiatry.
1269		
1270	518	https://doi.org/10.1136/jnnp2013-306789
1271		
1272	519 Hamis	hehkar, H., Ranjdoost, F., Asgharian, P., Mahmoodpoor, A.,
1273		
1274	520	Sanaie, S., 2016. Vitamins, are they safe? Adv. Pharm. Bull.
1275		
1276	521	https://doi.org/10.15171/apb.2016.061
1277		
1278	522 Idland.	A.V., Sala-Llonch, R., Borza, T., Watne, L.O., Wyller, T.B.,
1279	,	
1280	523	Brækhus A Zetterberg H Blennow K Walhovd K B
1281		
1282	524	Fiell A M 2017 CSF neurofilament light concentrations
1283		1 jon, 1 min, 2017. Cor neuromanent light concentrations
1284		
1285		
1286		
1287		

1290	
1291 525	prodict hippocompol atrophy in cognitivaly healthy older
1292 525	predict inppocatipat autopity in cognitivery heating order
1293	
1294 526	adults. Neurobiol. Aging.
1295	
1296 527	https://doi.org/10.1016/j.neurobiolaging.2016.09.012
1297	
1298 528	Inoue, R., Sumitani, M., Ogata, T., Chikuda, H., Matsubara, T.,
1299	
1300 529	Kato, S., Shimojo, N., Uchida, K., Yamada, Y., 2017. Direct
1301	
1302 530	evidence of central nervous system axonal damage in
1303	evidence of central nervous system axonal damage m
1304 521	notients with postonerative delirium: A preliminary study of
1305	patients with postoperative definition. A premimary study of
1306 500	nNE II as a mamising some higher Neurossi I att (52
1307 532	pNF-H as a promising serum biomarker. Neurosci. Leu. 655,
1308	
1309 533	39–44. https://doi.org/10.1016/j.neulet.2017.05.023
1310	
1311 534	Intan-Shameha, A.R., Divers, T.J., Morrow, J.K., Graves, A., Olsen,
1312	
1313 535	E., Johnson, A.L., Mohammed, H.O., 2017. Phosphorylated
1314	
1315 536	neurofilament H (pNF-H) as a potential diagnostic marker
1316	
1317 537	for neurological disorders in horses Res Vet Sci 114 401–
1318	
1319 538	405 https://doi.org/10.1016/j.rvsc.2017.07.020
1320	405. https://doi.org/10.1010/j.1050.2017.07.020
1321 520	Kirkaldia MTK Calling IM 2016 The even as a physical
1322	KIRCalule, M.I.K., Collins, J.M., 2010. The axon as a physical
1323	structure in boolth and courts torong L. Cham. Normanat
1324 540	structure in nearth and acute trauma. J. Chem. Neuroanat.
1325	
1326 541	https://doi.org/10.1016/j.jchemneu.2016.05.006
1327	
1328 542	Millecamps, S., Gowing, G., Corti, O., Mallet, J., Julien, JP., 2007.
1329	
1330 543	Conditional NF-L Transgene Expression in Mice for In Vivo
1331	
1332 544	Analysis of Turnover and Transport Rate of Neurofilaments.
1333	
1334 545	J. Neurosci. https://doi.org/10.1523/INEUROSCI 5299-
1335	
1336 546	06 2007
1337	00.2007
1000	
1338	

1346		
1347		Chammad Dr. H.O. Divara T.I. Kuvali I. Oman A.H. White
1348	547 IV	Ionammed Dr., H.O., Divers, T.J., Kwak, J., Omar, A.H., white,
1349		
1350	548	M.E., de Lahunta, A., 2012. Association of oxidative stress
1351		
1352	549	with motor neuron disease in horses. Am. J. Vet. Res.
1353		
1354	550	https://doi.org/10.2460/ajvr.73.12.1957
1355		
1356	551 N	Iohammed, H.O., Divers, T.J., Summers, B.A., De Lahunta, A.,
1357		
1358	552	2007. Vitamin E deficiency and risk of equine motor neuron
1359		5 1
1360	553	disease. Acta Vet. Scand. https://doi.org/10.1186/1751-
1361		
1362	554	014749-17
1363	554	
1364	555 N	a I. Khan F. Ca V. Galaa M. 2017 Symptomatic treatments
1365	JJJ IN	g, L., Khan, F., Ca, T., Oaica, W., 2017. Symptomatic treatments
1366	FF/	for any attentia lateral calaracia/motor neuron disease
1367	220	for amyorrophic lateral sciencis/motor neuron disease.
1368		
1369	557	Cochrane Database Syst Rev. 1:CD011//6 http://doi:
1370		
1371	558	10.1002/14651858.CD011776.pub2.
1372		
1373	559 N	ishida, H., Nakayama, M., Tanaka, H., Kamishina, H., Izawa, T.,
1374		
1375	560	Hatoya, S., Sugiura, K., Suzuki, Y., Ide, C., Inaba, T., 2014.
1376		
1377	561	Evaluation of serum phosphorylated neurofilament subunit
1378		
1379	562	NF-H as a prognostic biomarker in dogs with thoracolumbar
1380		
1381	563	intervertebral disc herniation. Vet. Surg.
1382		
1383	564	https://doi.org/10.1111/i.1532-950X 2014 12144 x
1384		
1385	565 ()	liver IM Jones MT Kirk KM Gable DA Renshas IT
1386	303 0	11ver, J.M., Jones, M.T., KIR, K.M., Gable, D.M., Repshas, J.T.,
1387	566	Johnson T. Andréasson II. Norgren N. Blennow K
1388	200	Johnson, T.A., Andreasson, O., Norgren, N., Diennow, K.,
1200	E 4 7	Zattarhara U 2016 Samun Navrafilament Light in
1201	201	Zeuerberg, n., 2010. Serum Neuronnament Light in
1202	F/0	American Easthall Athleter seen the Control of Control
1202	568	American Football Athletes over the Course of a Season. J.
120/	- / -	
1394	569	Neurotrauma.
1306		
1307		
1007		

1401	
1402	
1403	https://doi.org/10.1000/new 2015.4205Detgold A 2015
1404 570	https://doi.org/10.1089/neu.2013.4293Pet201d, A., 2013.
1405	The manufic value of COE according to available
1406 571	The prognostic value of CSF neurofilaments in multiple
1407	
1408 572	sclerosis at 15-year follow-up. J. Neurol. Neurosurg.
1409	
1410 573	Psychiatry. https://doi.org/10.1136/jnnp-2014-309827
1411	
1412 574	Petzold, A., 2005. Neurofilament phosphoforms: Surrogate markers
1413	
1414 575	for axonal injury, degeneration and loss, in: Journal of the
1415	
1416 576	Neurological Sciences.
1417	
1418 577	https://doi.org/10.1016/j.jns.2005.03.015
1419	
1420 578	Poesen, K., De Schaepdryver, M., Stubendorff, B., Gille, B.,
1421	
1423 579	Muckova, P., Wendler, S., Prell, T., Ringer, T.M., Rhode,
1424	
1425 580	H., Stevens, O., Claeys, K.G., Couwelier, G., D'hondt, A.,
1426	
1427 581	Lamaire, N., Tilkin, P., Van Reijen, D., Gourmaud, S.,
1428	
1429 582	Fedtke, N., Heiling, B., Rumpel, M., Rödiger, A., Gunkel,
1430	
1431 583	A., Witte, O.W., Paquet, C., Vandenberghe, R., Grosskreutz,
1432	
1433 584	J., Van Damme, P., 2017. Neurofilament markers for ALS
1434	
1435 585	correlate with extent of upper and lower motor neuron
1436	
1437 586	disease. Neurology.
1430	
1439 587	https://doi.org/10.1212/WNL.000000000004029
1441	
1442 588	Reed, S.M., Furr, M., Howe, D.K., Johnson, A.L., Mackay, R.J.,
1443	
1444 589	Morrow, J.K., Pusterla, N., Witonsky, S., 2016. Equine
1445	
1446 590	Protozoal Myeloencephalitis: An Updated Consensus
1447	
1448 591	Statement with a Focus on Parasite Biology, Diagnosis,
1449	
1450	
1/51	

1430		
1459	500	Treatment and Drevention I Vet Intern Med
1460	392	freatment, and Prevention. J. vet. Intern. Med.
1461		
1462	593	https://doi.org/10.1111/jvim.13834
1463		
1464	594	Reed, S.M., Howe, D.K., Morrow, J.K., Graves, A., Yeargan, M.R.,
1465		
1466	595	Johnson, A.L., Mackay, R.J., Furr, M., Saville, W.J.A.,
1467		
1468	596	Williams, N.M., 2013. Accurate antemortem diagnosis of
1469		
1470	597	equine protozoal myeloencephalitis (EPM) based on
1471		·
1472	598	detecting intrathecal antibodies against sarcocystis neurona
1473	570	deteeting infratieed antibodies against surebeystis neurona
1474	500	using the SpSAC2 and SpSAC $4/2$ ELISAs. I. Vot. Interp
1475	577	using the ShSAO2 and ShSAO4/3 ELISAS. J. Vet. Intern.
1476	(00	
1477	600	Med. https://doi.org/10.1111/jvim.12158
1478		
1479	601	Shahim, P., Zetterberg, H., Tegner, Y., Blennow, K., 2017. Serum
1480		
1481	602	neurofilament light as a biomarker for mild traumatic brain
1482		
1483	603	injury in contact sports. Neurology.
1484		
1485	604	https://doi.org/10.1212/WNL.000000000003912
1486		
1487	605	Shibahashi, K., Doi, T., Tanaka, S., Hoda, H., Chikuda, H., Sawada,
1488		
1489	606	Y Lakasu Y Chiba K Nozaki L Hamabe Y Ogata
1489 1490	606	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata,
1489 1490 1491	606 607	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T. 2016. The Serum Phosphorylated Neurofilament Heavy
1489 1490 1491 1492	606 607	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy
1489 1490 1491 1492 1493	606 607	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult
1489 1490 1491 1492 1493 1494	606 607 608	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult
1489 1490 1491 1492 1493 1494 1495	606 607 608	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult
1489 1490 1491 1492 1493 1494 1495 1496	606 607 608 609	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma.
1489 1490 1491 1492 1493 1494 1495 1496 1497	606 607 608 609	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma.
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498	606 607 608 609 610	Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499	606 607 608 609 610	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500	606 607 608 609 610 611	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V.,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501	606 607 608 609 610 611	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V.,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502	 606 607 608 609 610 611 612 	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V., Oeckl, P., Giese, A., Kuhle, J., Slivarichova, D., Zetterberg,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503	606 607 608 609 610 611 612	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V., Oeckl, P., Giese, A., Kuhle, J., Slivarichova, D., Zetterberg,
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504	 606 607 608 609 610 611 612 613 	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V., Oeckl, P., Giese, A., Kuhle, J., Slivarichova, D., Zetterberg, H., Otto, M., 2016a. Neurofilaments in blood and CSF for
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505	606 607 608 609 610 611 612 613	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V., Oeckl, P., Giese, A., Kuhle, J., Slivarichova, D., Zetterberg, H., Otto, M., 2016a. Neurofilaments in blood and CSF for
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506	606 607 608 609 610 611 612 613	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V., Oeckl, P., Giese, A., Kuhle, J., Slivarichova, D., Zetterberg, H., Otto, M., 2016a. Neurofilaments in blood and CSF for
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507	606 607 608 609 610 611 612 613	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V., Oeckl, P., Giese, A., Kuhle, J., Slivarichova, D., Zetterberg, H., Otto, M., 2016a. Neurofilaments in blood and CSF for
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508	606 607 608 610 611 612 613	 Y., Takasu, Y., Chiba, K., Nozaki, T., Hamabe, Y., Ogata, T., 2016. The Serum Phosphorylated Neurofilament Heavy Subunit as a Predictive Marker for Outcome in Adult Patients after Traumatic Brain Injury. J. Neurotrauma. https://doi.org/10.1089/neu.2015.4237 Steinacker, P., Blennow, K., Halbgebauer, S., Shi, S., Ruf, V., Oeckl, P., Giese, A., Kuhle, J., Slivarichova, D., Zetterberg, H., Otto, M., 2016a. Neurofilaments in blood and CSF for

1514		
1515	/ / /	diagnosis and mediation of anget in Crowt-foldt Jokah
1516	614	diagnosis and prediction of onset in Creutzieldt-Jakob
1517		
1518	615	disease. Sci. Rep. https://doi.org/10.1038/srep38737
1519		
1520	616 Steina	cker, P., Feneberg, E., Weishaupt, J., Brettschneider, J.,
1521		
1522	617	Tumani, H., Andersen, P.M., Arnim, C.A.F.V., Böhm, S.,
1523		
1524	618	Kassubek I Kubisch C Lulé D Müller H.P. Muche
1525	010	
1526	610	P. Dinkhardt F. Oackl P. Rosanhohm A. Anderl Strauh
1527	017	K., I IIKIIalut, E., OCCKI, I., KOSCHOOIIIII, A., Alucti-Stlaud,
1528	(00	C Valle A.F. Wardt D. Ladalah A.C. Otta M. 2016
1529	620	S., Volk, A.E., Weydt, P., Ludolph, A.C., Otto, M., 2016b.
1530		
1531	621 Neuro	filaments in the diagnosis of motoneuron diseases: A
1532		
1533	622	prospective study on 455 patients. J. Neurol. Neurosurg.
1534		
1535	623	Psychiatry. https://doi.org/10.1136/jnnp-2015-
1536		
1537	624	311387Takasaki, M., Yanagawa, K., Shinozaki, K., Fujii,
1538		
1539	625	H., Shibuya, T., Takeda, H., Matsumiya, T., Egashira, T.,
1540		
1541	626	2002 Relationship between aging and vitamin E Nihon
1542		
1543	627	Ronen Igakkai Zasshi 39:494-500
1544	027	Kohon Igukkui Zussini. 39.191 500.
1545	628 Takai	A 1002 An electron microscopic study of avonal dystronby
1546		A., 1992. An election incroscopic study of axonal dystrophy
1547	(00	in the entroller of eiters in T. definition to address 11-
1548	629	in the gracile nucleus of vitamin E deficient and normally
1549	_	
1550	630	aging rats. Hokkaido Igaku Zasshi. 67:772-784. Toedebusch,
1551		
1552	631	C.M., Bachrach, M.D., Garcia, V.B., Johnson, G.C., Katz,
1553		
1554	632	M.L., Shaw, G., Coates, J.R., Garcia, M.L., 2017.
1555		
1556	633	Cerebrospinal Fluid Concentrations of Phosphorylated
1557		
1558	634	Neurofilament Heavy as a Diagnostic Marker of Canine
1559	-	
1560	635	Degenerative Myelonathy I Vet Intern Med
1561		Degenerative http://pump. J. Vet. mem. Wed.
1562	636	https://doi.org/10.1111/jvjm 1/659
1563	000	nups.//doi.org/10.1111/jviiii.14037
1564		

1570							
1571	637 Våøb	erg M No	orgren N	Dring A	Lindavist	T Birgan	nder R
1572	oo, tuge	, eig, 101., 10	51 5 1 0 11, 11.,	D11115, 11	., Ellaqvist	, 1., Diigui	1001, 1C.,
1573	638	Zetterher	TO H SVA	ningeen	A 2015	Concentrat	ions and
1574	030	Zetterber	g, 11., 5vc	mingssor	I, A., 2013.	Concentrat	ions and
1575	(00	ana dama	ndanari af	maxima fila	mont light	and Clied E	:h:11
1576	039	age depe	ndency of	neuroma	ment light a	and Ghal F	Iormary
1577		4 · 1 · 5		1.1 . 1			1
1578	640	Acidic Pi	rotein in he	althy ind	ividuals and	their relation	on to the
1579			_	_			_
1580	641	brain	parenchy	/mal	fraction.	PLoS	One.
1581							
1582	642	https://dc	oi.org/10.1.	371/journ	al.pone.013	5886	
1583							
1584	643 Yilm	az, A., Ble	nnow, K.,	Hagberg	, L., Nilsso	n, S., Price	e, R.W.,
1585							
1586	644	Schouten	, J., Spud	ich, S., U	Jnderwood,	J., Zetterb	erg, H.,
1587			1				0, ,
1588	645	Gisslén.	M., 2017.	Neurofil	ament light	chain prot	ein as a
1589			-,		0	F	
1590	646	marker o	of neurona	1 iniurv.	review of	its use in	HIV-1
1591	0.10	indirio (ii iiijai y.	1011011 01		
1592	647	infection	and refer	ence vali	ues for HIV	-negative (controls
1593	047	meetion		chee van		-negative v	201111015.
1594	4 10	Export	I	Dav	Mol		Diagn
1595	040	Expert	1	NUV.	MOI.		Diagii.
1596	(10	1.44	: /10.1/	000/1472	7150 2017 1	241212	
1597	649	nups://dc	01.01g/10.1	080/14/3	/139.201/.1	341313	
1598		1:		6 X 7 X 7	A 17	• • •	D 1
1600	650 Yuar	i, A., Sasaki	, I., Kao, N	/I. V., Ku	mar, A., Kar	iumuri, v.,	Duniop,
1601	<i>(</i> - <i>.</i>	DC I.		r' D	• • • • • • • • •	C 1	(F
1602	651	D.S., Lie	m, R.K., N	Nixon, R.A	A., 2009. Ne	eurofilamer	its Form
1603			~ ~		~		
1604	652	a Highly	Stable St	ationary	Cytoskeleto	n after Rea	aching a
1605							
1606	653	Critical	Level	in	Axons.	J. N	leurosci.
1607							
1608	654	https://dc	oi.org/10.1	523/JNEU	JROSCI.194	42-09.2009	
1609							
1610	655 Zette	rberg, H., 1	2017. App	olying flu	id biomark	ers to Alzł	neimer's
1611							
1612	656	disease.	Am. J. P	hysiol	Cell Physic	iol. 313, (C3–C10.
1613				5	2	,	
1614	657	https://do	oi.org/10.1	152/aipce	11.00007.201	17	
1615				Jr			
1616	658						
1617							
1618							
1619							
1620							
1621							

1625		
1626		
1627	(50	Table 1 Distribution of some phosphorylated nourofilement II
1628	009	Table 1. Distribution of serum phosphorylated neuronnament H
1629	(/0	(nNE II) concentration among the different estivities and factors
1630	660	(pNF-H) concentration among the different activities and factors
1631		
1632	661	investigated in healthy control horses (169).
1633		
1634	662	Table 2. Regression analysis results between the relationship of the
1635		
1636	663	horse age and the serum phosphorylated neurofilament H (pNF-H)
1637		
1638	664	concentration in healthy control horses.
1639		
1640	665	Figure 1. The distribution of serum phosphorylated neurofilament
1642		
1643	666	H (pNF-H) concentration in horses without neurologic signs and the
1644		
1645	667	age of the horse.
1646		
1647	668	Figure 2. The distribution of serum phosphorylated neurofilament
1648		
1649	669	H (pNF-H) in horses without neurologic signs and vitamin E
1650		
1651	670	concentration.
1652		
1653	671	Figure 3. The relationship between serum phosphorylated
1654		
1655	672	neurofilament H (pNF-H) concentration and the probability of
1656		
1657	673	neurologic disorders (EMND and EPM) as computed in the logistic
1658		
1659	674	regression analysis.
1660		
1001		

Vitamin E concentration (µg/ml)

Factors	Mean*	Standard error	95% Confidence interval
pNF-H concentration (169)	0.278	0.015	0.248, 0.308
Type of horse activity/level of work			
Light (Pleasure) ⁶ (124)	0.270 ^a	0.017	0.236, 0.304
Moderate (Draft) (27)	0.242 ^a	0.041	0.162, 0.342
Heavy (Thoroughbred)§-(18)	0.386 ^b	0.015	0.278, 0.494
Sex of the horse			
Mare (71)	0.285	0.023	0.239,0.330
Gelding (89)	0.273	0.022	0.229, 0.317
Intact male (9)	0.271	0.060	0.133, 0.410
Vitamin E (µ/ml) (93)	2.565	1.496	2.268, 2.862
Age (years) (169)	11.65¥	0.52	0.58, 31.0

 Table 1. Distribution of serum phosphorylated neurofilament H (pNF-H) concentration among the different

 activities and factors investigated in healthy control horses (169).

*: Means with different superscript letter are significantly different from each other

[¢]: Pleasure or trail horses

 ε :_Working draft horses or low-level eventer

[§]: Racing thoroughbred horses

[¥]: Mean age of the horses in the study

Factor	Regression coefficient	Standard error	
Type of horse activity/level of work			
Light (Pleasure) ⁶ (124)	-0.130	0.041	
Moderate $(Draft)^{\epsilon}$ (27)	-0.170	0.050	
Heavy (Thoroughbred)§(18)	0.0		
Age*	0.002	0.002	
Constant	0.359	0.055	

Table 2. Regression analysis results between the relationship of the horse age and the serum phosphorylated

neurofilament H (pNF-H) concentration in healthy control horses.

*: Age was forced in the model

[•]: Pleasure or trail horses

 ϵ : Working draft horses or low-level eventer

[§]: Racing thoroughbred horses