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Abstract  26 

The outcome of infection with Leishmania infantum in dogs is variable, which is 27 

thought to be due to the nature of the immune response mounted by the host. As a 28 

consequence, the clinical signs and severity of canine leishmaniosis vary between 29 

individual dogs.  Host immunogenetic factors might play an important role in 30 

determining the outcome of infection. The aim of this study was to examine 31 

polymorphisms in innate and adaptive immune response genes, to determine whether 32 

any of these were associated with susceptibility or resistance to L. infantum 33 

infection. Genomic DNA was obtained from two groups: pet dogs in endemic 34 

regions of Europe and a group of Beagles exposed to sand fly infection as part of a 35 

vaccine study. Genotyping was performed using a SNP (single nucleotide 36 

polymorphism) array for selected immune response genes.  The first part of the study 37 

compared 62 clinical cases with 101 clinically unaffected dogs that were 38 

seronegative for Leishmania antibodies.  One SNP in the CIITA gene demonstrated a 39 

significantly higher minor allele frequency in the case group, compared with the 40 

control group at the individual SNP level after permutation, but was not significant 41 

after correction for multiple testing.  The second part of the study examined 48 42 

Beagle dogs exposed to L. infantum over two transmission seasons.  Twenty-seven 43 

dogs with a resistant phenotype (no evidence of clinical disease, seronegative at the 44 

end of the study period, negative on lymph node culture and only transiently PCR 45 

positive in bone marrow) were compared with 21 dogs demonstrating a susceptible 46 

phenotype (clinical disease, seropositive, positive lymph node culture and 47 

consistently PCR positive in bone marrow).  Three SNPs in TLR3, two SNPs in 48 

PTPN22 and one SNP in TLR4 and IL1A were associated with the susceptible 49 



phenotype in the Beagle group at the individual SNP level after permutation 50 

analysis, but were not significant after correction for multiple testing.  Further 51 

validation of these SNPs is required in a larger cohort of dogs, ideally with extreme 52 

phenotypes to confirm an association with the outcome of L. infantum infection. 53 
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Abbreviations 57 

CIITA: class II major histocompatibility complex transactivator, C6: complement 58 

C6, C7: complement C7, CLEC16A: C-type lectin domain family 16 member A, 59 

DEXI: dexamethasone-induced protein, DLA: dog leukocyte antigen, EDTA: 60 

ethylenediaminetetraacetic acid, ELISA: enzyme linked immuno-absorbant assay, 61 

EU: ELISA units, GAPDH: glyceraldehyde 3-phosphate dehydrogenase, gDNA: 62 

genomic DNA, GSPL: glycosphingophospholipids, GWAS: genome wide 63 

association study, HWE: Hardy Weinberg equilibrium, IFAT: indirect 64 

immunofluorescence assay, IFN: interferon IgG: immunoglobulin G, IL: interleukin, 65 

IL1A: interleukin-1 alpha,IL2RA: interleukin-2 receptor alpha, IL7R: interleukin-7 66 

receptor,IL15RA: interleukin-15 receptor alpha, LIFR: leukemia inhibitor factor 67 

receptor alpha, LPS: lipopolysaccharide, MAF: minor allele frequency, MHC: major 68 

histocompatability complex, NO: nitric oxide, PTPN22: protein tyrosine phosphatase 69 

non-receptor type 22, qPCR: quantitative PCR, SD: standard deviation, SLC11A1: 70 

solute carrier family 11 (formally NRAMP), SOCS1: suppressor of cytokine 71 

signalling 1, SNP: single nucleotide polymorphism, TLR: toll-like receptor 72 

 73 

Introduction 74 

Canine leishmaniosis is caused by the protozoan parasite Leishmania infantum, which 75 

is also responsible for zoonotic visceral and cutaneous leishmaniosis in humans 76 

(Gramiccia and Gradoni, 2005).  L. infantum is endemic in the Mediterranean basin, 77 



Central and South America and parts of Africa and Asia (Palatnik-de-Sousa and Day, 78 

2011), with evidence of emerging disease elsewhere (Maia and Cardoso, 2015), as a 79 

result of increasing phlebotomine sand fly vector distribution and dogs travelling to 80 

and from endemic areas potentially spreading disease to Northern areas of Europe 81 

(Shaw et al., 2009).   82 

There is a spectrum of clinical leishmaniosis in dogs, varying from mild skin lesions 83 

and localised lymphadenomegaly to multi-organ involvement and renal failure 84 

(Koutinas et al., 1999).  Disease progression and severity of clinical signs, and/or 85 

clinicopathological abnormalities observed, vary between individual dogs, which 86 

suggests that some dogs might be more resistant to disease than others.  Diagnosis of 87 

canine leishmaniosis is based on the presence of clinical signs and clinicopathological 88 

abnormalities compatible with disease, alongside diagnostic methods of determining 89 

infection with L. infantum (Solano-Gallego et al., 2009). The most commonly used 90 

indirect diagnostic methods are serological tests, including the indirect 91 

immunofluorescence assay (IFAT) and enzyme linked immunoabsorbant assay 92 

(ELISA), which determine the presence of Leishmania antibodies in the serum 93 

(Paltrinieri et al., 2010).  High anti-Leishmania antibody reactivity has been associated 94 

with high parasite loads and clinical disease (Solano-Gallego et al., 2001).  Direct 95 

demonstration of the parasite by cytological examination of affected tissues 96 

(Paltrinieri et al., 2010) or detection of Leishmania DNA in the tissues, using PCR or 97 

quantitative PCR (qPCR), are also used (Cortes et al., 2004; Francino et al., 2006).  A 98 

definitive diagnosis of canine leishmaniosis can be difficult to achieve, although there 99 

is a high index of suspicion for individuals with clinical signs of overt leishmaniosis 100 

and a highly positive serology result (Paltrinieri et al., 2010).  However, when dogs 101 



present with a low clinical suspicion index, or where anti- Leishmania antibody 102 

reactivity is low, multiple diagnostic tests might be required to confirm the diagnosis 103 

(Solano-Gallego et al., 2009; Paltrinieri et al., 2010).   104 

A number of host and parasite factors seem to play a role in determining the outcome 105 

of infection. The host immune response might be particularly important in disease 106 

outcome, with CD4+ T helper type 1 (Th1) lymphocytes and their ability to induce 107 

macrophages to kill intracellular amastigotes via production of IFN-γ considered to be 108 

crucial in controlling infection (Pinelli et al., 1994). Although the immune response in 109 

dogs affected with leishmaniosis has been studied in some detail, knowledge gaps still 110 

remain in terms of the precise mechanisms involved in disease 111 

susceptibility/resistance. 112 

It has been suggested that host immunogenetic factors might determine whether the 113 

immune response is protective or not. A previous study examined dog leukocyte 114 

antigen (DLA) genes, which encode MHC Class II molecules and found an association 115 

between one particular DLA haplotype and increased anti-Leishmania IgG and 116 

presence of Leishmania DNA in the bone marrow (Quinnell et al., 2003).  Genome 117 

wide association studies (GWAS) have also been performed more recently, in which 118 

polymorphisms on chromosomes 1 and 4 were found to be significant and a potential 119 

locus on chromosome 4 that includes immune response genes (IL7R, LIFR, C6 and 120 

C7) (Quilez et al., 2012). Two further SNPs have been associated with leishmaniosis, 121 

one located on chromosome 2, proposed to be in linkage with a causal variant in the 122 

IL2RA or IL15RA gene and another on chromosome 1, which might be in linkage with 123 

a gene involved in Notch signalling (Utsunomiya et al., 2015).  A more recent GWAS 124 

identified SNPs on chromosome 20 to be associated with increased TNF-α 125 



concentration in Leishmania antigen stimulated lymphocytes, whilst SNPs on 126 

chromosome 17 were associated with increased IL-10 concentration (Cortes et al., 127 

2012). 128 

The aim of this study was to interrogate polymorphisms in candidate innate and 129 

adaptive immune response genes in dogs naturally infected with L. infantum to 130 

determine whether there are associations with clinical disease and/or infection status. 131 

Methods 132 

 133 

Canine population and study design 134 

 135 

The study dogs consisted of two populations that were analysed separately. The first 136 

study comprised of pet dogs from two Leishmania endemic regions of Europe 137 

consisting of clinical cases and controls. The second study comprised of Beagle dogs 138 

kept outdoors in an endemic region and thus exposed to sand flies and Leishmania 139 

infection for two years and regularly monitored (longitudinal study). 140 

 141 

In Study 1, blood samples were obtained from dogs that presented to first-opinion 142 

veterinary practices, one in Paphos, Cyprus and the other in Zaragoza, Spain. Dogs 143 

vaccinated with Canileish (Virbac) or with a history of immunosuppressive therapy 144 

were excluded. Clinical cases of leishmaniosis were identified based on clinical 145 

examination and confirmation testing by PCR and serology.  Samples from clinically 146 



healthy control dogs, breed and age matched where possible, resident in the same 147 

endemic regions were also recruited through these veterinary practices.  Signed 148 

informed consent was obtained from owners for permission to use any excess blood 149 

for clinical research after completion of diagnostic testing.  Approval was granted from 150 

the Clinical Research Ethics Review Board of the Royal Veterinary College (reference 151 

number URN 2014 1292; date of approval 03/09/2014) for use of the samples in 152 

research. 153 

In Study 2, residual genomic DNA samples were provided from Beagles enrolled in a 154 

natural infection model, where dogs were studied over a 2 year period.  Clinical and 155 

clinicopathological abnormalities were observed over the period of the study and 156 

diagnostic testing was performed every 3 months after an initial 6 month exposure 157 

period. Leishmania testing included Immunofluorescence Antibody Test (IFAT) and 158 

nested PCR on the bone marrow and lymph node parasite culture as previously 159 

described (Oliva et al., 2014).  The study was approved by the Veterinary Board of the 160 

Italian Ministry of Health following the European Directive 86/609/EEC, adopted by 161 

the Italian Government with the Law 116/1992.  Approval was granted from the 162 

Clinical Research Ethics Review Board of the Royal Veterinary College (approval 163 

number URN 2015 1329; date of approval 05/03/2015) for the use of these samples in 164 

research. 165 

 166 

Diagnostic procedures 167 

 168 

i. Culture technique 169 



 170 

Parasite isolation by culture was performed on lymph node aspirates from dogs in 171 

Study 2.  Briefly, lymph node aspirates were cultured in Evans’ modified Tobie’s 172 

medium at 22.5°C and were examined for promastigote growth after 1 month (Oliva 173 

et al., 2006). 174 

 175 

ii. Molecular analyses 176 

 177 

Real-time qPCR for L. infantum kinetoplast DNA was performed for Study 1 (Shaw 178 

et al., 2009). Genomic DNA (gDNA) was extracted from EDTA blood samples using 179 

the GenElute Blood Genomic DNA Kit (Sigma-Aldrich, Dorset, UK) according to the 180 

manufacturer’s instructions.  This was submitted to the Acarus laboratory (Molecular 181 

Diagnostic Unit, Langford Vets, Bristol) for qPCR testing.  Results were normalised 182 

against the median GAPDH reference value for the group. Dogs were categorised as 183 

qPCR negative for Leishmania kinetoplast DNA if a CT value could not be determined 184 

for the sample.  Samples were categorised as borderline positive if they had a CT value 185 

>35 and considered positive if the CT value ≤35. 186 

Nested PCR for L. infantum kinetoplast DNA was performed on gDNA extracted from 187 

bone marrow samples from dogs in Study 2 as previously described (Oliva et al., 188 

2006).  Bone marrow samples from Leishmania-free dogs were used as negative 189 

controls in each step of the procedure.  The amplification products were analysed on 190 



1.5% (w/v) agarose gels and visualized under UV light. Positive samples yielded a 191 

PCR product of 358 bp. 192 

 193 

iii. Serological techniques 194 

 195 

ELISA testing was performed on serum samples from Study 1 dogs to assess the 196 

presence of anti-Leishmania antibodies as previously described (Solano-Gallego et al., 197 

2014). Results were quantified as ELISA units (EU), relative to the calibrator 198 

(arbitrarily set at 100 EU). The positive cut-off value had previously been established 199 

at 35 EU (mean + 4 SD of values from 80 dogs from a non- endemic area). Positive 200 

sera were classified as borderline (35-≤37 EU), low (37-≤150 EU) medium (150-≤300 201 

EU) or high (>300 EU). 202 

The IFAT was performed on serum samples from Study 2 dogs.  Briefly, L. infantum 203 

parasites (MHOM/TN/1980/IPT-1) were fixed to microscope slides. Serial dilutions 204 

of serum were added to the slides and incubated for 30 min at 35-37°C.  Serum 205 

antibody reactivity to parasites was detected using a fluorescent secondary rabbit anti-206 

dog IgG antibody (Sigma-Aldrich).  The antibody titre represents the final dilution at 207 

which at least 50% of the parasites were visible by fluorescence.  Titres ≥ 1:160 were 208 

considered to be positive for infection (Oliva et al., 2014). 209 

 210 

Genotyping of candidate canine immune response genes and data analysis 211 



 212 

Sequenom MassARRAY genotyping was performed at the Centre for Integrated 213 

Genomic Medical Research, University of Manchester as previously described (Short 214 

et al., 2007).  Twenty-four candidate genes were selected, consisting of both innate 215 

and adaptive immune response genes across different chromosomes (Supplementary 216 

Table 1).  Sixty-five SNPs had been reported previously (Supplementary Table 2) and 217 

a further 47 SNPs had been identified by sequence-based typing for other genetic 218 

studies undertaken at the Royal Veterinary College (Supplementary Table 3). 219 

The data was analysed using PLINK whole genome data analysis toolset version 1.07 220 

(http://pngu.mgh.harvard.edu/~purcell/plink/) (Purcell et al., 2007). Results were 221 

filtered according to the following criteria for quality control purposes: SNPs with a 222 

minor allele frequency (MAF) below 5% and a call rate below 90% were excluded 223 

from the analysis. Individuals with more than 10% of the SNP information missing 224 

(low genotyping rate) were also excluded from the study.  Hardy Weinberg 225 

equilibrium (HWE) was assessed for each SNP.  Whilst HWE amongst the case 226 

population can be indicative of selection, deviation from HWE in the controls can be 227 

a result of poor genotyping of these SNPs and HWE was therefore assessed in the 228 

Study 1 control population. 229 

Information about the chromosomal location of each SNP included in the array was 230 

included in the map document provided with the analysis results.  This was based on 231 

the NCBI dog genome assembly, version 3.1 232 

(http://www.ncbi.nlm.nih.gov/genome/85). 233 

http://pngu.mgh.harvard.edu/~purcell/plink/


SNPs were tested for association using Chi square analysis or Fisher’s exact test.  234 

SNPs were considered as candidate for further investigation if the p value was below 235 

the significance cut-off p<0.05.  Corrected p values for multiple testing were obtained 236 

after 1000 permutations.  For each permutation the maximum statistic across all SNPs 237 

was recorded and from this distribution of maximum statistics, the statistic in the top 238 

5% is used to give the corrected p value. Linkage disequilibrium and haplotype 239 

assignment was performed in Haploview 4.2 (Barrett et al., 2005).  Haplotypes were 240 

tested for association using logistic regression in PLINK. 241 

 242 

Results 243 

 244 

Diagnostic testing and case definition 245 

 246 

The first study examined a heterogenous group of dogs that presented to first opinion 247 

practices in two geographically distinct regions where L. infantum is endemic. Sixty-248 

two cases of leishmaniosis were recruited (50 dogs from Cyprus and 12 dogs from 249 

Spain).  One hundred and one controls were recruited (90 dogs from Cyprus and 11 250 

dogs from Spain). The clinical signs observed in the cases were variable 251 

(Supplementary Figure 1).  The most common clinical abnormalities observed were 252 

lymphadenomegaly (enlargement of the peripheral lymph nodes), weight loss and skin 253 

lesions.  Qualitative assessment of clinicopathological abnormalities as assessed by 254 

veterinarians from endemic regions based on in-house biochemistry, complete blood 255 



count and urinalysis was available (Supplementary figure 2) and anaemia and 256 

hyperproteinaemia, hyperglobulinaemia and hypoalbuminaemia were the most 257 

commonly described abnormalities. 258 

Serological testing revealed that all leishmaniosis cases (n=62) were highly positive 259 

(>350 EU) using the ELISA. Fifty-five of the 62 dogs were qPCR positive for 260 

Leishmania kinetoplast DNA in the blood, 4 dogs were borderline positive and 3 dogs 261 

were qPCR negative (Figure 1).  The majority of dogs (85/101) in the control group 262 

were negative in both ELISA and qPCR tests. Two control dogs were borderline 263 

positive for Leishmania antibodies by ELISA but qPCR negative and serum was not 264 

available for testing in 4 dogs, but these were qPCR negative. Ten dogs were positive 265 

by qPCR (7 of which were borderline) but were all ELISA negative. 266 

In Study 2, clinical and diagnostic test information was provided for 48 Beagle dogs 267 

selected from a larger research study designed to investigate susceptibility to L. 268 

infantum infection over a two-year period.  Twenty-seven dogs were considered to 269 

have a resistant phenotype as they did not display any clinical or clinicopathological 270 

abnormalities for the duration of the study, were only transiently Leishmania DNA 271 

positive in the bone marrow, were negative on lymph node culture and IFAT negative 272 

at the end of the study period.  In contrast, 21 dogs were considered to have a 273 

susceptible phenotype as they demonstrated clinical and clinicopathological 274 

abnormalities compatible with leishmaniosis, first detected 6 to 20 months from 275 

commencement of the study, remained consistently Leishmania DNA positive in the 276 

bone marrow, were positive on lymph node culture and were IFAT positive at the end 277 

of the study period. 278 



 279 

SNP array analysis 280 

 281 

Seventy-three SNPs were included in the final analysis after exclusions for low MAF 282 

(<5%), call rate below 90% or lack of variability.  Four SNPs significantly deviated 283 

from HWE (P<0.00001) in the control population; TLR1 c.1665T>C, TLR1 284 

c.1776T>C, IL6 c.572A>G and IL10 c.-1330G>A.  285 

Linkage disequilibrium between SNPs was estimated using D’, a normalised 286 

measure of allele association and by r2, the correlation coefficient between 2 SNPs.  287 

Multiple SNPs appeared to be in linkage disequilibrium and haplotype blocks were 288 

assigned in Haploview based on D’ confidence intervals as described previously 289 

(Gabriel et al., 2002). 290 

 291 

Case-control association study: Study 1  292 

 293 

After initial analysis, 6 individuals were excluded due to a genotyping rate of less than 294 

90% (2 cases, 4 controls).  The genotyping rate in the remaining individuals was 295 

95.2%.  The final analysis was therefore performed on 60 clinical cases and 97 296 

controls. Two SNPs showed significantly higher MAFs in the case group compared 297 

with the control group; CIITA c.2595C>T (p=0.008) and IL6 c.572A>G (p=0.008) 298 

(Table 2).  The SNP IL6 c.572A>G was not in HWE and no dogs were found to be 299 

heterozygous at that position in our study population.  After permutation was 300 



performed, only one SNP was significant at the individual SNP level, CIITA 301 

c.2595C>T (p=0.036) and neither SNP was significant after the correction for multiple 302 

testing, implemented during permutation (p>0.05). 303 

There were no significant differences in genotype frequencies between case and 304 

control group for any of the SNPs and no evidence of a significant dominant or 305 

recessive penetrance model for any of the SNPs (significance level p<0.05).  The 306 

CIITA c.2595C>T SNP did not demonstrate a significant difference in genotypes 307 

between cases and controls (p=0.080).  A recessive model for this SNP appeared to 308 

be the best fit, but there was no significant difference in frequency of the TT 309 

genotype or in the combined frequency of CT and CC genotypes between cases and 310 

controls (p=0.053). 311 

 312 

Case-control association study: Study 2 313 

 314 

Three individuals were excluded from the genetic analysis, due to having a genotyping 315 

rate <90% (1 susceptible, 2 resistant phenotypes).  Four SNPs showed significantly 316 

different MAFs in the susceptible phenotype group compared with the resistant 317 

phenotype group (Table 2).  Two SNPs had significantly higher MAFs in the 318 

susceptible group; TLR3 c.369C>T (p=0.020) and TLR4 c.1795G>A (p=0.036).  In 319 

contrast, two SNPs had significantly higher MAFs in the resistant group; TLR3 320 

c.1380T>C (p=0.015) and TLR3 c.1104T>C (p=0.015).  After permutation, all four 321 

SNPs were still significant at the individual SNP level (p<0.01) and three more SNPs 322 

were significant comparing the two groups; PTPN22 c.88-39G>A (p=0.040), PTPN22 323 



c.915+87T>C (p=0.047) and IL1A c.-151A>C (p=0.048).  However, after correction 324 

for multiple testing implemented during permutation, there was no significant 325 

difference seen in any of these SNPs comparing the two groups (p>0.05).   326 

The SNPs in TLR3 and TLR4 that demonstrated significantly different allele 327 

frequencies were also significant when genotype frequencies were assessed between 328 

the two groups (Table 3); TLR3 c.369C>T (p=0.015), TLR3 c.1104T>C (p=0.011), 329 

TLR3 c.1380T>C (p=0.011) and TLR4 c.1795G>A (p=0.033).  Two SNPs in PTPN22 330 

also demonstrated significant differences in genotype frequency between groups; 331 

PTPN22 c.-515T>C (p=0.016) and PTPN22 c.88-39G>A (p=0.035).  After 332 

permutation all five SNPs were still significant at the individual SNP level (p<0.05).  333 

However, after the correction for multiple testing implemented during permutation 334 

there was no significant difference between groups for  any of these SNPs (p>0.05).   335 

The TLR3 SNPs, TLR3 c.1380T>C and TLR3 c.1104T>C were in linkage 336 

disequilibrium (D’=1) and formed a haplotype.  There was a significant difference in 337 

the frequency of the TLR3 CC haplotype in the resistant phenotype dogs compared 338 

with the susceptible phenotype dogs, with the CC haplotype showing decreased odds 339 

of disease (OR= 0.207, p=0.010) (Table 4).  Haplotypes were still significant at the 340 

individual haplotype level after permutation (p=0.005).  However, after correction 341 

for multiple testing implemented during permutation, there was no significant 342 

difference seen between groups (p=0.092). 343 

The two PTPN22 SNPs, PTPN22 c.88-39G>A and PTPN22 c.915+87T>C were also 344 

in linkage disequilibrium (D’=1) and formed a haplotype with one other SNP, 345 

PTPN22 c.-515T>C, which did not appear to be associated at the individual SNP 346 



level.  The TAT haplotype showed decreased odds of disease (OR= 0.231, p=0.033), 347 

whilst the CGT and CGC haplotypes were not significantly associated with disease 348 

(p>0.05).  The TAT haplotype was significant at the individual haplotype level after 349 

permutation was implemented (p=0.039) but not after correction for multiple testing 350 

(p=0.326). 351 

 352 

Discussion 353 

 354 

Polymorphisms in innate and adaptive immune response genes were examined in 355 

different dog populations exposed to L. infantum infection to determine whether any 356 

of these were associated with disease susceptibility. Although some SNPs showed a 357 

significant association with the disease phenotype, these did not reach statistical 358 

significance after correction for multiple testing. 359 

A case-control study, performed using samples from a heterogeneous population of 360 

client-owned dogs, revealed a SNP (c.2595C>T) in the CIITA gene to be associated 361 

with canine leishmaniosis.  CIITA is a key transcriptional activator of MHC Class II, 362 

with studies in CIITA knockout mice demonstrating significantly lower MHC Class II 363 

expression in lymphoid tissues compared with wild type mice (Itoh-Lindstrom et al., 364 

1999).  There is evidence of CIITA gene variation influencing susceptibility to other 365 

infectious diseases in humans, with promoter polymorphisms being associated with 366 

persistent infection with hepatitis B virus (Zhang et al., 2007). Furthermore, a recent 367 

GWAS identified CIITA as a susceptibility gene for leprosy, which, like L. infantum, 368 

is an intracellular pathogen (Liu et al., 2015).   369 



The CIITA c.2595C>T SNP could be in linkage disequilibrium with an as yet 370 

unidentified polymorphism in the CIITA gene or another gene located nearby on 371 

chromosome 6.  Other genes, on the same chromosome, which might contain causal 372 

variants include CLEC16A, encoding a membrane associated endosomal protein, 373 

DEXI, which encodes a protein of unknown function and SOCS1, a suppressor of 374 

cytokine signalling; all of which have been found to be associated with immune-375 

mediated disease in humans (Davison et al., 2012).  Future studies should interrogate 376 

multiple SNPs in this region, to understand which genes, if any, might be of 377 

importance in susceptibility to canine leishmaniosis. 378 

Three SNPs in TLR3 were found to be associated with the disease phenotype in Beagle 379 

dogs; two of which were in linkage disequilibrium and did not appear to have 380 

independent effects.  A significant association with disease was also observed for a 381 

SNP in TLR4.  Although TLR3 recognises double stranded RNA, and is thus important 382 

for recognition of viral pathogens, there is some evidence that TLR3 might also 383 

recognise Leishmania parasites. One study indicated that by inhibiting expression of 384 

TLR3 by RNA interference production of nitric oxide (NO) and TNF-α by 385 

macrophages infected in vitro with L. donovani promastigotes was reduced (Flandin 386 

et al., 2006).  Furthermore, a recent study revealed a positive correlation between TLR3 387 

expression and parasite density in the skin of dogs in early experimental infection with 388 

L. infantum (Hosein et al., 2015).   389 

Potential Leishmania ligands for TLR4 are glycosphingophospholipids (GSPL), 390 

which have been shown to induce a TLR4 mediated inflammatory response and 391 

parasite clearance of L.donovani in mice (Karmakar et al., 2012).  In mouse models, 392 

TLR4 is key to controlling the number of L.major parasites (Kropf et al., 2004a; 393 



2004b).  In dogs infected with L. infantum, the role of TLR4 is unclear; a recent study 394 

demonstrated TLR4 expression in the lymph node and spleen was reduced in infected 395 

dogs, compared with uninfected controls (Hosein et al., 2015). 396 

Two SNPs in the PTPN22 gene appeared to be associated with disease at the individual 397 

SNP level, and one other PTPN22 SNP was significant at the genotype level.  PTPN22 398 

is a susceptibility gene for immune-mediated diseases in humans (Criswell et al., 399 

2005) and with Type 1 diabetes and hypoadrenocorticism in the dog (Short et al., 2007; 400 

2013).  PTPN22 is believed to inhibit activation of T cells by dephosphorylation of 401 

signal transduction mediators (Stanford and Bottini, 2014), however, the role of 402 

PTPN22 has not been investigated with respect to leishmaniosis.   403 

The SNPs associated with disease susceptibility, and the genes in which they were 404 

located, were different between the two studies.  These differences could be due to the 405 

breed profiles and nature of the two studies.  Furthermore, in Study 1, the control group 406 

of dogs were mostly negative by both ELISA and qPCR testing. These dogs are 407 

assumed to have been exposed to L. infantum infected sand flies, since they lived in 408 

endemic regions, however exposure to sand flies was likely variable due to differences 409 

in owner lifestyle. Test sensitivity for Leishmania DNA is thought to be low in 410 

peripheral blood, when compared with other tissues (Maia and Campino, 2008) and it 411 

is therefore possible that these dogs were infected at a low level that could not be 412 

detected.  An ELISA for the detection of IgG antibodies against sand fly saliva 413 

antigens has been shown to correlate with the number of feeding events (Hostomska 414 

et al., 2008; Vlkova et al., 2011) and could have been used to confirm exposure to sand 415 

flies if not exposure to L. infantum.  A small number of dogs within the control group 416 

were positive by either ELISA or by qPCR, but did not display any clinical signs and 417 



were possibly more representative of resistant dogs provided they remained 418 

asymptomatic.  Disease progression for these infected but clinically healthy dogs is 419 

variable, with longitudinal studies suggesting that some dogs develop severe disease 420 

in the short to medium term whereas other dogs remain free from clinical signs for 421 

long periods or even indefinitely (Quinnell et al., 2001; Oliva et al., 2006). There are 422 

other limitations to this genetic study in terms of the sample size and potential 423 

population stratification, which were difficult to overcome in terms of the availability 424 

of suitable samples from dogs in endemic regions. Use of a larger number of control 425 

dogs might have increased the power and reduced stratification effects (Cardon and 426 

Bell, 2001).  The Beagle dogs were selected from a larger trial population and were 427 

considered to represent extreme phenotypes in terms of resistance and susceptibility 428 

to Leishmania infection.   429 

 430 

Conclusions 431 

Although the study was likely to be underpowered, as a result of small sample size, 432 

several genes of interest have been identified that could be involved in susceptibility 433 

to canine leishmaniosis.  Identification of immune response genes involved in disease 434 

susceptibility could inform breeding and disease prevention strategies in the future, as 435 

well as more targeted selection of dogs for vaccine challenge studies.  Furthermore, 436 

these susceptibility genes might represent good targets for manipulation (e.g. via use 437 

of specific adjuvants) in development of immunomodulatory therapies and vaccines. 438 
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Figure Legends 629 

Figure 1 630 

Leishmania diagnostic summary for Study 1 clinical cases and controls.  Clinical 631 

case (n=62) and control (n=101) dogs were tested for Leishmania antibodies by 632 

ELISA and Leishmania DNA in the peripheral blood was assessed by qPCR.  +/- = 633 

positive/negative result, Sero = ELISA result, qPCR = qPCR result.  Cases are 634 

indicated by black bars and controls are indicated by grey bars. 635 
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