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13 Abstract:

14 In birds, optic flow is processed by a retinal-recipient nucleus in the pretectum, 

15 the nucleus lentiformis mesencephali (LM), which then projects to the cerebellum, a key 

16 site for sensorimotor integration. Previous studies have shown that the LM is 

17 hypertrophied in hummingbirds, and that LM cell response properties differ between 

18 hummingbirds and other birds. Given these differences in anatomy and physiology, we 

19 ask here if there are also species differences in the connectivity of the LM. The LM is 

20 separated into lateral and medial subdivisions, which project to the oculomotor 

21 cerebellum and the vestibulocerebellum. In pigeons, the projection to the 

22 vestibulocerebellum largely arises from the lateral LM, and projection to the oculomotor 

23 cerebellum largely arises from the medial LM (Pakan et al., 2006). Here, using retrograde 

24 tracing, we demonstrate differences in the distribution of projections in these pathways 

25 between Anna’s hummingbirds (Calypte anna), zebra finches (Taeniopygia guttata) and 

26 pigeons (Columba livia). In all three species, the projections to the vestibulocerebellum 

27 were largely from lateral LM. In contrast, projections to the oculomotor cerebellum in 

28 hummingbirds and zebra finches do not originate in the medial LM (as in pigeons) but 

29 instead largely arise from pretectal structures just medial, the nucleus laminaris 

30 precommissuralis and nucleus principalis precommissuralis. These species differences in 

31 projection patterns provide further evidence that optic flow circuits differ among bird 

32 species with distinct modes of flight.
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33 1.  Introduction:

34 Image motion across the retina due to self-motion, termed optic flow, is a critical 

35 input for visuomotor control and navigation through the environment. In all vertebrates, 

36 retinal-recipient nuclei of the accessory optic system and pretectum form visual pathways 

37 that process global visual motion (Simpson, 1984; Giolli et al., 2006). In birds, key nuclei 

38 involved in these specialized pathways include the nucleus of the basal optic root (nBOR) 

39 of the accessory optic system (Brecha et al., 1980) and the nucleus lentiformis 

40 mesencephali (LM) of the pretectum (Gamlin and Cohen, 1988a; b). In vertebrates, these 

41 pathways, or their homologues, are responsible for generating the optokinetic reflex to 

42 maintain retinal image stabilization (Waespe and Henn, 1987). Projections from the LM, 

43 nBOR, and other visual nuclei converge in the oculomotor cerebellum (folia VI-VIII) and 

44 folium IXcd of the vestibulocerebellum where sensorimotor control is coordinated 

45 (Clarke, 1977; Pakan et al., 2006). 

46 The LM, but not other visual nuclei, is hypertrophied in hummingbirds relative to 

47 other birds (Iwaniuk and Wylie, 2007). This enlargement may represent a neural 

48 specialization related to hovering flight. Hummingbirds are very sensitive to small 

49 changes in their visual environment while hovering, and will drift to compensate for optic 

50 flow in all directions (Goller and Altshuler, 2014). In nearly all tetrapods studied to date, 

51 the typical pattern observed is that LM neurons prefer temporo-nasal (back-to-front) 

52 motion across the retina, and nBOR neurons prefer naso-temporal (front-to-back), 

53 upward or downward motion (Hoffmann and Schoppmann, 1981; Fite, 1985; Mckenna 

54 and Wallman, 1985; Winterson and Brauth, 1985; Mustari and Fuchs, 1990; Ibbotson et 

55 al., 1994; Wylie and Crowder, 2000). However, in hummingbirds, a different pattern of 

56 response properties in the LM emerged (Gaede et al., 2017). The majority of LM neurons 

57 do not prefer temporo-nasal motion; instead, there is a more uniform distribution of 

58 preferred directions, with cells preferring upward, downward, and naso-temporal motion 

59 as frequently as temporo-nasal motion (Gaede et al., 2017). Consistent with other 

60 tetrapods, there is a strong population-level preference for temporo-nasal motion among 

61 LM neurons of zebra finches and pigeons. Furthermore, hummingbird and zebra finch 

62 LM neurons prefer higher velocities of visual motion than pigeon LM neurons (Gaede et 
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63 al., 2017). This suggests a role for the LM in responding to high-speed visual motion 

64 during hovering and collision avoidance in hummingbirds. 

65 The projection to and from both the LM and nBOR have been studied extensively 

66 in pigeons (reviewed in Wylie, 2013; Wylie et al., 2018). The projection to the 

67 vestibulocerebellum largely arises from the lateral LM, with fewer inputs from the medial 

68 LM. Conversely, the majority of LM projections to the oculomotor cerebellum originate 

69 from the medial LM, with fewer inputs from the lateral LM. Additionally, in pigeons the 

70 nBOR projects preferentially to folium IXcd of the vestibulocerebellum (Pakan et al., 

71 2006). These two pathways of optic flow to the cerebellum of birds have been proposed 

72 to serve different functions in visuo-motor control, particularly during flight (Wylie et al., 

73 2018). The marked differences in flight behavior between hummingbirds and other birds, 

74 and the unique characteristics of the hummingbird LM, motivated us to ask if differences 

75 in the connectivity of the LM and nBOR exist between species. We addressed this 

76 question by injecting retrograde tracers in the oculomotor cerebellum (folia VI,VII) and 

77 the vestibulocerebellum (folium IXcd) of hummingbirds, zebra finches and pigeons. We 

78 focused our analysis on projections from the accessory optic system and the pretectum. 

79 2.  Materials and Methods:

80 Animals.

81 All experimental procedures were approved by the University of British Columbia 

82 Animal Care Committee in accordance with the guidelines set out by the Canadian 

83 Council on Animal Care. Experiments were performed on four adult male Anna’s 

84 hummingbirds (Calypte anna; caught on the University of British Columbia campus), 

85 two adult male zebra finches (Taeniopygia guttata; Eastern Bird Supplies, Quebec, 

86 Canada), and two adult male pigeons (Columba livia).

87 Surgery and retrograde labeling procedures.

88 Birds were anesthetized by intramuscular injection in the pectoral muscles with a 

89 ketamine/xylazine mixture (65 mg/kg ketamine / 8 mg/kg xylazine). Supplemental doses 

90 were administered as required. Subcutaneous injections of 0.9% saline were given to 

91 maintain fluids. Once anesthetized, hummingbirds and zebra finches were placed in a 
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92 custom-built stereotaxic frame (Herb Adams Engineering, Glendora, CA, USA) with ear 

93 bars and an adjustable beak bar suitable for both species. The head was angled downward 

94 at an angle of 45° to the horizontal plane. Bone and dura mater overlying the cerebellum 

95 were removed to expose the surface of the brain and allow access to either folia VI/VII 

96 (oculomotor cerebellum) or folium IXcd (vestibulocerebellum) with vertical penetrations. 

97 Anatomical markers on the surface of the brain were used to identify injection sites in 

98 folia VI/VII (oculomotor cerebellum) and lateral IXcd (vestibulocerebellum). 

99 Electrophysiological recordings were used to identify the medial ventral layer of folium 

100 IXcd. After identifying an injection site, a glass micropipette (tip diameter 20–30 µm) 

101 containing a retrograde tract tracer conjugated to a fluorescent dye (cholera toxin B-

102 AlexaFluor 488 (green) or 594 (red), Invitrogen, USA) was lowered to the appropriate 

103 level to inject into the granule cell layer of the target folium. The cholera toxin-B (CTB) 

104 conjugates were injected into folium IXcd and folium VI or VII of the cerebellum using 

105 iontophoresis (+/- 4 μA, 7s on, 7s off) for 15 minutes. At the end of the injection period, 

106 the electrode was left undisturbed for 5 minutes, and then withdrawn. 

107 After the injections, the craniotomy was filled with bone wax, the wound was 

108 sutured with cyanoacrylate (Vetbond, 3M, USA), and the animals were given 

109 buprenorphine (0.012 mg/kg i.m.) as an analgesic. After a recovery period of 3-5 days for 

110 zebra finches and pigeons, or 2 days for hummingbirds, birds were deeply anesthetized 

111 (ketamine/xylazine mixture i.m.) and transcardially perfused with saline (0.9 % NaCl) 

112 and 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4). Brains were extracted and 

113 immersed in paraformaldehyde for at least 24 hours at 4°C. Subsequently, brains were 

114 cryoprotected in 30% sucrose in 0.01M phosphate buffered saline (PBS, pH 7.4). Next, 

115 the brains were embedded in gelatin and again cryoprotected in 30% sucrose in PBS 

116 overnight. Using a freezing stage microtome, brains were sectioned in the coronal plane 

117 (40 μm sections) through the cerebellum and rostral extent of the pretectum, and sections 

118 were stored in individual wells containing PBS. 

119 Antibody characterization.

120 Detailed information for the antibodies used in this study can be found in Table 1. 

121 The primary antibody was a rabbit polyclonal anti-calretinin previously characterized in 
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122 Western blots and immunohistochemical assays, and was shown to specifically recognize 

123 calretinin from tissues of multiple species (Schwaller et al., 1993). Furthermore, this 

124 antibody has been validated previously in the species used in this study (Wylie et al., 

125 2008; Iwaniuk et al., 2009; Gutierrez-Ibanez et al., 2018).

126 Immunohistochemistry.

127 Immunohistochemical labelling for calretinin (CR) and Nissl staining with thionin 

128 aided the identification of structures and borders in the pretectum. Free-floating brain 

129 sections were washed five times in 0.01M PBS and blocked with 10% normal donkey 

130 serum (Jackson Immunoresearch Laboratories, West Grove, PA) and 0.4% Triton X-100 

131 in PBS for 1 h at room temperature. Sections were then incubated for 48 h at 4°C in PBS 

132 containing 2.5% normal donkey serum, 0.4% Triton X-100 and a rabbit polyclonal 

133 antibody for CR (see Table 1; 1:2000; Swant Inc., Switzerland; immunogen: recombinant 

134 human calretinin; rabbit polyclonal, Cat-#7697, RRID: AB_2721226). Sections were 

135 washed in PBS and then incubated in PBS containing 2.5% normal donkey serum, 0.4% 

136 Triton X-100, and Alexa Fluor 488 (green)- or AMCA (blue)- conjugated donkey anti-

137 rabbit IgG (H+L) (1:200, Jackson Immunoresearch Laboratories; Cat# 711-545-152, 

138 RRID: AB_2313584 and Cat# 711-155-152, RRID: AB_2340602 respectively) for 2 h at 

139 room temperature. Subsequently, the sections were rinsed in PBS and mounted on 

140 gelatinized slides for microscopy. After images of retrogradely labelled cells were 

141 acquired, we next stained the slides with thionin to confirm precise boundaries of the 

142 lateral and medial LM, and other pretectal nuclei. 

143 Microscopy and image analysis.

144 Slide images were acquired on a compound light microscope (Leica DMRE) 

145 using a Retiga EXi FAST Cooled mono 12-bit camera (Qimaging, Burnaby, BC, Canada), 

146 and then analyzed with OPENLAB imaging software (Improvision, Lexington, MA, 

147 USA, RRID:rid_000096). Panoramic images were stitched together using PTGui 

148 (Rotterdam, Netherlands). Adobe Photoshop was used to compensate for brightness and 

149 contrast. 

150 3.  Results:
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151 Comparative morphology of the pretectal region in nissl-stained sections.

152 For the nomenclature of the pretectal region, we adopted the detailed description 

153 of Gamlin and Cohen (Gamlin and Cohen, 1988a; b). In pigeons, the LM is divided into 

154 the lateral and medial subnuclei (LMl/LMm), which can be relatively easily distinguished 

155 in Nissl stained sections (Figure 1a-d). LMm is bordered medially by the nucleus 

156 laminaris precommisuralis (LPC), a crescent of darkly stained neurons (Figure 1a). The 

157 LPC and LMm appear contiguous with the external and internal layers of the ventral 

158 leaflet of the lateral geniculate nucleus (Glv) (Figure 1a,b). Medial to the LPC is the 

159 nucleus principalis precommisuralis (PPC), a pale region just lateral to nucleus rotundus 

160 (nRt) (Figure 1a,b). Caudally, the LMl merges into the rostral tectal gray (GTr), which 

161 contains small darkly stained cells that appear continuous with tectal layer five. The 

162 caudal tectal gray (GTc) appears darker in Nissl stain, with more densely packed cells, 

163 and is continuous with tectal layer eight. Although optic flow-sensitive cells have been 

164 attributed to LMl and LMm, the function of these other pretectal areas is unknown, 

165 though they are also retinal-recipient (Gamlin and Cohen, 1988b). The pretectal layers 

166 were readily distinguishable in zebra finches (Figure 1e-h) and hummingbirds (Figure 1i-

167 l) from examination of Nissl stained sections.

168 Calretinin expression in the pretectal region.

169 Another tool we used to distinguish the layers in the pretectal region was 

170 calretinin (CR) expression. Previously, we have shown in pigeons that the LMm appears 

171 continuous with the internal layer of Glv, with light staining in the neuropil (Pakan et al., 

172 2006; Iwaniuk et al., 2009). In both LMm and LMl, large multipolar neurons are CR 

173 immunopositive (CR+) (Gamlin and Cohen, 1988a; Iwaniuk et al., 2009). Additionally, 

174 we have shown that the projection from the LM to the cerebellum arises from large 

175 multipolar neurons, half of which are CR+ (Iwaniuk et al., 2009). CR immunoreactivity 

176 is generally absent in the LPC and PPC in pigeons. In hummingbirds, CR 

177 immunoreactivity is slightly different (Figure 3g,h). Similar to pigeons, CR+ cells are 

178 seen in the hummingbird LMl and there is light CR immunoreactivity in the neuropil of 

179 LMm, such that it appears continuous with the Glv. Compared to pigeon, there are fewer 

180 large CR+ cells in the hummingbird LMm. Also unlike the pigeon, CR+ neurons are 

181 observed in the LPC, and occasionally the PPC of hummingbirds. CR immunoreactivity 
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182 in the pretectal region of zebra finches resembles that of hummingbirds more so than 

183 pigeons (not shown).

184 Retrograde labeling from injections in the cerebellum.

185 Our description of retrograde labeling in the pretectal region from injections in the 

186 cerebellum is based on 8 cases, as outlined in Table 2. Figure 2 shows some of the 

187 injections of retrograde tracer in the cerebellum. The intent was to retrogradely label 

188 neurons that project as mossy fibers to the granular layer. As expected, extensive labeling 

189 was seen in the pretectal region and nBOR (see below). Additionally, and consistent with 

190 previous studies, some labeling was also seen in the medial spiriform nucleus and the 

191 pontine nuclei after injections in the oculomotor cerebellum, but not the 

192 vestibulocerebellum (Clarke, 1977; Wild, 1992; Pakan et al., 2006). A few retrogradely 

193 labeled neurons where seen in the vestibular nuclei complex and the cerebellar nuclei 

194 (Pakan et al., 2008). Invariably the injections included the molecular layer, thus, labeling 

195 was seen in the inferior olive. Consistent with previous studies (Gamlin and Cohen, 

196 1988b; Lau et al., 1998; Wylie et al., 1999; Crowder et al., 2000; Pakan et al., 2005, 

197 2006) from injections in the oculomotor cerebellum, retrogradely labeled cells were seen 

198 in the dorsal lamella and/or the ventral lamella of the inferior olive (Figure 2f), whereas 

199 from injections in IXcd (vestibulocerebellum), retrogradely labeled cells were found in 

200 the medial column of the inferior olive (Figure 2g).

201 Because the goal was to assign cells to the different pretectal layers, we developed 

202 a process illustrated in Figure 3. Using fluorescence microscopy, CR+ and retrogradely 

203 labeled cells were visualized and photomicrographs were obtained (Figure 3b,c,e,f,h). 

204 Subsequently, sections were Nissl stained to aid identification of the borders of pretectal 

205 regions (Figure 3a,d,g) and super-imposed on the fluorescent images. The number of 

206 cells in each region was then tabulated (Figure 3i-k). Figure 4 shows representative 

207 examples of retrogradely labeled cells in the pretectum and nBOR.

208 Differential labeling in the pretectum and nBOR from injections in IXcd and VI/VII.

209 The location of retrogradely labeled cells is shown in drawings of serial coronal 

210 sections through the midbrain. Figure 5 illustrates labeling resulting from injections in 
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211 folium IXcd (vestibulocerebellum) in pigeons, zebra finches, and hummingbirds. For all 

212 three species, and as previously shown in pigeons, retrogradely cells were found in the 

213 nBOR and pretectum (Brauth and Karten, 1977; Brecha et al., 1980; Pakan et al., 2006). 

214 Within the pretectum, the majority of these cells are located within the LMl. 

215 Figure 6 illustrates retrograde labeling following injections in folia VI/VII 

216 (oculomotor cerebellum). For all three species, and as previously shown in pigeons, 

217 retrogradely cells were found in the nBOR and pretectum (Gamlin and Cohen, 1988b; 

218 Pakan et al., 2005; Wylie et al., 2007). However, there were differences between species 

219 with respect to labeling within pretectal regions. In pigeons, the majority of labeling was 

220 in LMm, while in hummingbirds and zebra finches there was much more labeling in the 

221 LPC and PPC.

222 In all three species, we quantify the proportion of retrogradely labeled cells in the 

223 nBOR and pretectum from injections in folium IXcd (vestibulocerebellum) and folia 

224 VI/VII (oculomotor cerebellum) (Figure 7, see Table 3 for cell counts). With respect to 

225 IXcd (vestibulocerebellum), hummingbirds have a greater proportion of inputs 

226 originating from the nBOR (73.7%) than the pretectum (26.3%), compared to zebra 

227 finches (36.3% from nBOR) and pigeons (51.7% from nBOR). With regard to folia 

228 VI/VII (oculomotor cerebellum), all species receive a greater proportion of input from the 

229 pretectum. Although, this is clearly higher in zebra finches (96.1%) compared to 

230 hummingbirds (77.3%) and pigeons (75.0%). Within the pretectum, clear differences in 

231 the pretectal-IXcd (vestibulocerebellum) projections were apparent across species (Figure 

232 8, see Table 3 for cell counts). In hummingbirds, the vast majority of the pretectal cells 

233 projecting to folium IXcd were LMl cells (97.5%). Whereas a greater proportion of the 

234 pretectal cells projecting to IXcd arose from LMl in all three species, the proportion is 

235 markedly less in zebra finches (56.2%) and pigeons (65.1%). With respect to folia VI/VII 

236 (oculomotor cerebellum), in pigeons, a majority of the pretectal inputs arise from LMm 

237 (69.8%). Conversely, very few pretectal inputs to VI/VII (oculomotor cerebellum) arise 

238 from LMm in zebra finches (7.7%) and hummingbirds (8.0%). Furthermore, in 

239 hummingbirds and zebra finches a greater proportion of the pretectal inputs arise from 
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240 the LPC and PPC (hummingbirds: LPC: 19.3%, PPC: 31.9%; zebra finches: LPC: 27.4%, 

241 PPC: 46.5%). 

242 4.  Discussion:

243 Here we examined the proportions of projections from the nBOR and pretectum 

244 to the cerebellum in three different species of birds. The nBOR and LM process optic 

245 flow information resulting from self-motion and project to two distinct areas of the 

246 cerebellum: folium IXcd of the vestibulocerebellum and folia VI-VIII of the oculomotor 

247 cerebellum (Clarke, 1977; Brecha et al., 1980; Voogd and Barmack, 2006). The pathway 

248 to IXcd provides the optokinetic input mediating retinal stabilization (Pakan et al., 2006; 

249 Wylie, 2013; Wylie et al., 2018). In contrast, the inputs to folia VI-VIII are likely to 

250 integrate the global visual motion information, largely arising from the LM, with local 

251 motion cues from tectal-pontine pathways (Clarke, 1977; Brecha et al., 1980; Hellmann 

252 et al., 2004; Pakan and Wylie, 2006; Wylie et al., 2018). In this study we show clear 

253 differences in these projections between three species with different flight modes. 

254 Namely, within the pretectum, the majority of VI/VII-projecting cells arise from LMm in 

255 pigeons, while in hummingbirds and zebra finches a greater proportion of these cells arise 

256 from the LPC and PPC. 

257 Hummingbirds display unique behaviors and have specialized features within 

258 their visual system, making them a powerful model for investigating the role of visual 

259 motion processing in avian flight guidance. Previous studies have established that the 

260 hummingbird LM is hypertrophied relative to other visual nuclei, that neurons in this 

261 nucleus prefer high velocity visual motion, and unlike other tetrapods, hummingbird LM 

262 cells do not exhibit a strong population-level bias for forward visual motion (Iwaniuk and 

263 Wylie, 2007; Gaede et al., 2017; Ibbotson, 2017). 

264 Given that there are lateral and medial subdivisions within the LM, it is possible 

265 that one subdivision is primarily responsible for the hypertrophy observed in the 

266 hummingbird LM, and that this imbalance is reflected in projections to the cerebellum. In 

267 other avian species, the LMl is associated with slow velocities and a preference for 

268 forward motion and LMm cells prefer up, down or backward motion and high velocities 
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269 (Winterson and Brauth, 1985; Gamlin and Cohen, 1988a). This distinction is noteworthy 

270 because the LMl and LMm project to different regions of the cerebellum. Given that the 

271 hummingbird LM does not exhibit a strong population-level preference for forward 

272 motion (Gaede et al., 2017) – direction preference is more uniformly represented 

273 compared to other species – we expect that it is the LMm that is hypertrophied in 

274 hummingbirds, rather than the LMl (reviewed in Wylie et al., 2018). The LMm may be 

275 hypertrophied to support increased processing demands associated with the pathway to 

276 the oculomotor cerebellum (VI-VIII), and generated as hummingbirds fly through 

277 cluttered environments while feeding. Thus, if we were to expect a difference in 

278 cerebellar projections in hovering and non-hovering species, it would be with respect to 

279 the magnitude of projections from the LMm to the oculomotor cerebellum. Future 

280 investigation is required to elucidate the functional neuroanatomy of the LMm in 

281 hummingbirds. Further study using an anterograde tract tracer injected solely within the 

282 boundaries of the LMm could serve to demonstrate the locations of LMm efferent 

283 terminals.

284 Increased size and lamination of brain structures is associated with more complex 

285 processing capabilities (Pubols Jr et al., 1965; Pubols Jr and Pubols, 1972; Jerison, 1973; 

286 Finger, 1997; Barton, 1998; Reiner et al., 1998; Striedter, 2005). In this study, we show 

287 that the LPC and PPC, rather than the LMm, provide the majority of pretectal input to the 

288 oculomotor cerebellum in hummingbirds and zebra finches. In contrast, in pigeons, the 

289 largest pretectal input to the oculomotor cerebellum is from the LMm. This surprising 

290 result suggests that the LPC and PPC may be additional laminae of the LM in 

291 hummingbirds and zebra finches; such a finding may mean that the hummingbird and 

292 zebra finch LM are more laminated than that of the pigeon, indicating more sophisticated 

293 processing in these species. The relationship between increased lamination and more 

294 complex function is paralleled in other avian brain structures, namely the isthmo-optic 

295 nucleus (ION) and the nucleus isthmi magnocellularis (Imc) (Sohal and Narayanan, 1975; 

296 Repérant et al., 1989; Uchiyama, 1999; Faunes et al., 2013). For example, the ION is 

297 larger and has a more complex organization in songbirds, pigeons and hummingbirds 

298 than many other taxa (Repérant et al., 1989; Gutiérrez-Ibáñez et al., 2012). Gutiérrez-

299 Ibáñez et al. (2012) propose that this structural difference supports the more complex 
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300 processing needs of visually-guided foraging behavior, aiding attention-switching 

301 between two parts of the retina (e.g. between myopic and emmetropic regions), allowing 

302 shifts between near- and long-range vision (Gutiérrez-Ibáñez et al., 2012).

303 The idea that the LPC and PPC are laminae of the LM in hummingbirds and zebra 

304 finches is further supported by the fact that at least some of the cerebellar-projecting 

305 neurons in the LPC/PPC are CR+. Large multipolar neurons in the LMm and LMl are 

306 CR+, while LPC and PPC neurons in many species lack CR labeling. Perhaps the 

307 presence of CR immunolabeling in hummingbirds and zebra finches indicates a migration 

308 of CR+ neurons from the LMm to the LPC and PPC. Given that in pigeons and other 

309 birds, the LM, but not the LPC or PPC, receives direct inputs from the retina (Gamlin and 

310 Cohen, 1988a; Krabichler et al., 2015), this proposed migration raises the question of 

311 whether the LMm in hummingbirds and zebra finches is now composed of interneurons 

312 doing more sophisticated processing. Alternatively, a migration of cells from LMm to 

313 LPC or PPC may not be indicative of changes in connectivity. For example, Vega-Zuniga 

314 et al. (2016) found that some cells in the LPC of chickens extend their dendrites into 

315 LMm, leading to the possibility that CR+ cells in the LPC of zebra finches and 

316 hummingbirds might still be retino-recipient (Vega-Zuniga et al., 2016). Additionally, the 

317 LPC and LMm share several inputs, including inputs from the ventral geniculate nucleus 

318 (GLv) and the adjacent nucleus intercalatus thalami (ICT; Vega-Zuniga et al., 2016, 

319 2018), as well as the visual wulst (Wylie et al., 2005). This suggests a functional link 

320 among these regions, but further study of the functional response properties of LPC and 

321 LMm neurons is required. 

322 To establish whether CR+ neurons in the LPC and PPC of hummingbirds and 

323 zebra finches are retino-recipient, further tracing studies examining retinal projections to 

324 the pretectum in these species is required. Little is known regarding the functional role of 

325 the LPC and PPC, though Gamlin and Cohen (1988) have shown that a small number of 

326 LM projections terminate in the pigeon PPC. Visual motion processing demands are 

327 likely to differ in birds with diverse flight behaviors, and this may be reflected in the 

328 functional neuroanatomy of each species. Further investigation examining the responses 
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329 of LPC and PPC neurons to visual motion may elucidate the roles of these nuclei in 

330 visuomotor processing in birds with different flight strategies.

331 Pakan and Wylie’s (2006) initial study on pigeons had a larger dataset examining 

332 pretectal projections to the cerebellum. This included injections restricted to both the 

333 medial and lateral areas in both the oculomotor cerebellum and vestibulocerebellum. 

334 Although LMm projects primarily to the oculomotor cerebellum, and the LMl projects 

335 mainly to the vestibulocerebellum, no other topography was observed. Furthermore, 

336 small, localized injections of anterograde tracer in the nBOR and LM resulted in mossy 

337 fiber terminals through a broad extent rostrocaudally and mediolaterally in folium IXcd 

338 (Pakan et al., 2010). Previous studies in pigeon have shown low between-animal 

339 variability after retrograde tracer injections in the oculomotor cerebellum (VI-VIII) and 

340 vestibulocerebellum (IXcd) (Pakan and Wylie, 2006). Because the current study 

341 employed similar techniques in the same brain regions, we did not expect to observe 

342 significant between-animal variability. Furthermore the projection patterns observed in 

343 pigeon in this study mirror those observed by Pakan and Wylie (2006).

344 A perplexing problem presented by the findings of this study is that pretectal 

345 projections to the oculomotor cerebellum in zebra finches look similar to that of 

346 hummingbirds – a result that was not expected. Anna’s hummingbirds have an average 

347 wingbeat frequency of ~34-45 Hz (Kim et al., 2014; Tobalske, 2016) and zebra finches 

348 also have a relatively high wingbeat frequency of 27-30 Hz during forward flight 

349 (Tobalske et al., 2005; Donovan et al., 2013). In contrast, pigeons have a much lower 

350 average wingbeat frequency (6-7 Hz) during forward flight (Berg and Biewener, 2010). A 

351 possible explanation for the differences observed between projections to the oculomotor 

352 cerebellum in zebra finches and hummingbirds versus pigeons is this disparity between 

353 wingbeat frequencies and associated visuomotor processing demands. Other distinctions 

354 between these two groups include their size, habitat and flight behavior. Hummingbirds 

355 and zebra finches are substantially smaller than pigeons; Anna’s hummingbirds have a 

356 mass of ~3-4 g, zebra finches weigh ~12-15 g, and pigeons typically weigh ~350-400 g. 

357 Hummingbirds exhibit dynamic flight modes including hovering and high-speed displays 

358 (Altshuler and Dudley, 2002), and zebra finches use a unique flap-bounding flight at all 
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359 speeds. When combined with our anatomical results, these kinematic studies suggest a 

360 relationship between bird size, the processing demands of unique flight behaviors, and 

361 increased lamination within the pretectum. Testing this hypothesis will require 

362 investigation of the morphology and function of these pretectal regions.
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521 Figure Legends:

522 Figure 1:
523 Nissl-stained coronal brain sections through the midbrain, presented anterior to posterior. 
524 a-d: pigeon midbrain sections, scale bar = 1 mm. e-h: zebra finch midbrain sections, 
525 scale bar = 500 μm. i-l: hummingbird midbrain sections, scale bar = 500 μm. Line 
526 drawings illustrate the borders of relevant nuclei. Nissl staining was used to confirm the 
527 borders of midbrain nuclei.

528 Glv = ventral lateral geniculate nucleus, GTc = caudal tectal gray, GTr = rostral tectal 
529 gray, IOT = tractus isthmo-opticus, LMl lentiformis pars lateralis, LMm = lentiformis 
530 mesencephali pars medialis, LPC = nucleus laminaris precommisuralis, nRt = nucleus 
531 rotundus, PPC = nucleus principalis precommisuralis, PT = pretectal nucleus, SP = 
532 nucleus subpretectalis, SpL = lateral spiriform nucleus, SpM = medial spririform 
533 nucleus, TeO = optic tectum

534 Figure 2: 
535 Photomicrographs showing injection sites in the oculomotor cerebellum (folia VI/VII) or 
536 the vestibulocerebellum (folium IXcd). The neuronal tracer cholera toxin B (CTB)-Alexa 
537 Fluor 488 (green injection sites) or 594 (red injection sites) was injected using 
538 iontophoresis. Sections were counter-stained with calretinin to better visualize the 
539 injection site. a-b: Injections in the hummingbird vestibulocerebellum (folium IXcd) (a) 
540 and the oculomotor cerebellum (folium VI) (b). c-d: Injections in the zebra finch 
541 oculomotor cerebellum (folium VI) (c) and vestibulocerebellum (folium IXcd) (d). e: 
542 Injection into the pigeon oculomotor cerebellum (folium VI). f-g: Retrograde labeling in 
543 the inferior olive is confirmation that the tracer transported successfully. Cells in the 
544 lateral inferior olive project to the oculomotor cerebellum (folia VI-VIII). (f) 
545 Photomicrograph showing retrograde labeling in the dorsal lamella and/or the ventral 
546 lamella of the inferior olive of a hummingbird after injection in folium VI. Cells in the 
547 medial column of the inferior olive (mcIO) project to the vestibulocerebellum (folium 
548 IXcd). (g) Photomicrograph showing retrograde labeling in the mcIO of a zebra finch 
549 after injection in folium IXcd. 

550 Figure 3:
551 Cells within the different pretectal layers were identified using a process in which 
552 retrogradely labeled cells and calretinin-positive cells were first visualized using 
553 fluorescence microscopy. Next, sections were Nissl stained to aid identification of brain 
554 nuclei. a-c: Images of Nissl stained sections in the pretectum of pigeon (a) were 
555 combined with fluorescence imaging of calretinin-positive cells (b) to identify the 
556 borders of pretectal nuclei (c). Borders defined using Nissl stained sections are overlaid 
557 on photomicrographs showing calretinin expression; shown in panel c. c is the inset in b. 
558 d-f: Similarly, in zebra finches, Nissl stained sections (d) were used in conjunction with 
559 calretinin expression (e) to identify borders of pretectal layers (illustrated in panel f). g-k: 
560 In hummingbirds, images of Nissl stained sections (g) were combined with 
561 photomicrographs showing calretinin expression in the same sections (h). 
562 Photomicrographs of retrogradely labeled cells (i) were merged with border illustrations 
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563 created using merged calretinin expression and Nissl staining. Subsequently, the number 
564 of cells in each region was tabulated (i-k). k = inset in h-j. Arrows in k indicate 
565 retrogradely-labeled, calretinin-positive cells. Scale bars: e, f = 100 μm, k = 50 μm, all 
566 others = 200 μm.

567 Glv = ventral lateral geniculate nucleus, GTr = rostral tectal gray, LMl lentiformis pars 
568 lateralis, LMm = lentiformis mesencephali pars medialis, LPC = nucleus laminaris 
569 precommisuralis, nRt = nucleus rotundus, PPC = nucleus principalis precommisuralis, 
570 TeO = optic tectum

571 Figure 4:
572 Representative photomicrographs of calretinin (CR) expression and retrogradely labeled 
573 cells in the pretectum and nBOR. a-h: CR expression (a, e) and retrogradely labeled cells 
574 (b, f) in the LM of pigeon after neural tracer injections in folium VII. c: Merged image of 
575 (a) and (b). d = inset in c. g: Merged image of (e) and (f). h = inset in g. Scale bars = 100 
576 μm for a-c, e-g. Scale bars in d and h are 50 μm. i-k: CR expression (i) and retrogradely 
577 labeled cells (j) in the zebra finch nBOR after injection in folium IXcd. k: Merged image 
578 of (i) and (j). Scale bar =100 μm. l-n: CR expression (i) and retrogradely labeled cells 
579 (m) in the hummingbird nBOR after injection in folium VI. n: Merged image of (l) and 
580 (m). Scale bars = 100 μm. o-q: CR expression (o) and retrogradely labeled cells (p) in the 
581 hummingbird LM after injection in folium VI. q: Merged image of (o) and (p). Scale bars 
582 = 100 μm. 

583 Glv = ventral lateral geniculate nucleus, LMl lentiformis pars lateralis, LMm = 
584 lentiformis mesencephali pars medialis, LPC = nucleus laminaris precommisuralis, 
585 nBOR = nucleus of the basal optic root, nRt = nucleus rotundus, PPC = nucleus 
586 principalis precommisuralis

587 Figure 5:
588 Illustrations of retrogradely labeled cells after neural tracer microinjection in the 
589 vestibulocerebellum (folium IXcd). Drawings of coronal brain sections, ordered anterior 
590 to posterior, through the midbrain and nBOR. Red points indicate retrogradely labeled 
591 cell bodies. “Ipsi” and “Contra” indicate the panels that are ipsilateral or contralateral to 
592 the injection site, respectively. Pigeon: scale bars = 1 mm. Zebra finch: scale bars = 500 
593 μm. Hummingbird: scale bars = 500 μm. 

594 Glv = ventral lateral geniculate nucleus, GT = tectal gray, GTc = caudal tectal gray, GTr 
595 = rostral tectal gray, Imc = nucleus isthmi, pars magnocellularis, IOT = tractus isthmo-
596 opticus, Ipc = nucleus isthmi, pars parvocellularis, LMl lentiformis pars lateralis, LMm 
597 = lentiformis mesencephali pars medialis, LPC = nucleus laminaris precommisuralis, 
598 nBOR = nucleus of the basal optic root, nRt = nucleus rotundus, OT = tractus opticus, 
599 OV = nucleus ovoidalis, PPC = nucleus principalis precommisuralis, PT = pretectal 
600 nucleus, SP = nucleus subpretectalis, SpL = lateral spiriform nucleus, SpM = medial 
601 spririform nucleus, TeO = optic tectum

602 Figure 6:
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603 Illustrations of retrogradely labeled cells after neural tracer microinjection in the 
604 oculomotor cerebellum (folia VI-VIII). Drawings of coronal brain sections, ordered 
605 anterior to posterior, through the midbrain and nBOR. Red points indicate retrogradely 
606 labeled cell bodies. “Ipsi” and “Contra” indicate the panels that are ipsilateral or 
607 contralateral to the injection site, respectively. Pigeon: scale bars = 1 mm. Zebra finch: 
608 scale bars = 500 μm. Hummingbird: scale bars = 500 μm. 

609 Glv = ventral lateral geniculate nucleus, GT = tectal gray, GTc = caudal tectal gray, GTr 
610 = rostral tectal gray, Imc = nucleus isthmi, pars magnocellularis, IOT = tractus isthmo-
611 opticus, LMl lentiformis pars lateralis, LMm = lentiformis mesencephali pars medialis, 
612 LPC = nucleus laminaris precommisuralis, nBOR = nucleus of the basal optic root, nRt 
613 = nucleus rotundus, OM = tractus occipitomesencephalicus, PPC = nucleus principalis 
614 precommisuralis, PT = pretectal nucleus, SP = nucleus subpretectalis, SpL = lateral 
615 spiriform nucleus, SpM = medial spririform nucleus, TeO = optic tectum

616 Figure 7:
617 Pie charts illustrating the proportion of retrogradely labeled cells in the nBOR and 
618 pretectum from injections in the vestibulocerebellum (folium IXcd) and oculomotor 
619 cerebellum (folia VI/VII). See Table 3 for cell counts.

620 Figure 8:
621 Pie charts illustrating, within the pretectum, the proportion of retrogradely labeled cells in 
622 the lateral lentiformis mesencephali (LMl), medial lentiformis mesencephali (LMm), 
623 nucleus laminaris precommisuralis (LPC), and nucleus principalis precommisuralis 
624 (PPC) from injections in the vestibulocerebellum (folium IXcd) and oculomotor 
625 cerebellum (folia VI/VII). See Table 3 for cell counts.
626
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Table 1: Summary of antibodies used.

Antibody Host/Isotype Immunogen or target Supplier Catalog number, RRID Concentration

Primary Calretinin Rabbit/polyclonal
Immunogen: 
Recombinant human 
calretinin

Swant Inc., Cat-#7697, RRID: 
AB_2721226

1:2000

Secondary 
Alexa Fluor 488 
donkey anti-rabbit 
IgG (H+L)

Donkey Target: Rabbit IgG
Jackson 
Immunoresearch 
Laboratories

711-545-152, RRID: 
AB_2313584 1:200

Secondary AMCA donkey anti-
rabbit IgG (H+L) Donkey Target: Rabbit IgG

Jackson 
Immunoresearch 
Laboratories

711-155-152, RRID: 
AB_2340602 1:200
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Table 2: Summary of cerebellum injections

Species Folia Injected

Pigeon 1 IXcd

Pigeon 2 VI

Zebra Finch 1 IXcd

Zebra Finch 2 VI

Hummingbird 1 VI

Hummingbird 2 IXcd

Hummingbird 3 VI

Hummingbird 4 IXcd
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Table 3: Summary of retrogradely labeled cell counts.

Species Injection 
site

Total 
cells nBOR Pretectum 

total LMl LMm LPC PPC

Pigeon 1 IXcd 1334 689 645 420 149 61 15
Zebra Finch 1 IXcd 756 274 482 271 80 46 85

Hummingbird 2 IXcd 179 135 44 44 0 0 0
Hummingbird 4 IXcd 282 203 79 75 2 2 0

Pigeon 2 VI 455 114 341 76 238 20 7
Zebra Finch 2 VI 255 10 245 45 19 67 114

Hummingbird 1 VI 474 135 339 130 24 75 110
Hummingbird 3 VI 904 153 751 324 67 124 236
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