
1 
 

Spontaneous Dog osteoarthritis — a One Medicine vision  

Richard L. Meeson1,2,3, Rory Todhunter4,5, Gordon Blunn3,6, George Nuki7 and Andrew A. Pitsillides1* 

 

1Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, University of London, 

London, UK 

2Department Clinical Services and Sciences, Royal Veterinary College, University of London, London, UK 

3Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK 

4Department of Clinical Sciences, Cornell University, Ithaca, NY, USA 

5Cornell Veterinary Biobank, Cornell University, Ithaca, NY, USA  

6School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK  

7Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK 

*e-mail: apitsillides@rvc.ac.uk  

 

Abstract 

Osteoarthritis (OA) is a global disease that, despite extensive research, has limited treatment options. Pet 

dogs share both an environment and lifestyle attributes with their owners, and a growing awareness is 

developing in the public and among researchers that One Medicine, the mutual co-study of animals and 

humans, could be beneficial for both humans and dogs. To that end, this Review highlights research 

opportunities afforded by studying dogs with spontaneous OA, with a view to sharing this active area of 

veterinary research with new audiences. Similarities and differences between dog and human OA are 

examined, and the proposition is made that suitably aligned studies of spontaneous OA in dogs and humans, 

in particular hip and knee OA, could highlight new avenues of discovery. Developing cross-species 

collaborations will provide a wealth of research material and knowledge that is relevant to human OA and 

that cannot currently be obtained from rodent models or experimentally induced dog models of OA. 

Ultimately, this Review aims to raise awareness of spontaneous dog OA and to stimulate discussion regarding 

its exploration under the One Medicine initiative to improve the health and well-being of both species. 

 

[H1] Introduction 

Osteoarthritis (OA) is the end point of synovial joint disease processes that interrupt the articular surface or 

cause instability and mechanical injury. In 2005, 26.9 million adults in the USA were estimated to have OA1, 

and according to a 2016 white paper from the Osteoarthritis Research Society International (OARSI), globally, 

OA accounted for 2.4% of all years lived with disability2. The importance of OA as a global disease and a 

modern major health challenge therefore necessitates new research strategies. 

 

Experimentally-induced models of OA are available in many large and small animal species3. Work in the 

1970s and 1980s established the clinical, biochemical and histopathological changes that are induced by 
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cruciate ligament transection in dog stifle joints [G] (the Pond-Nuki model [G])4,5 or by medial meniscectomy 

in rabbits6. This work heralded the introduction of surgically-induced OA models in small, genetically-

tractable species such as mice and rats Undeniably, because they are small, easy to house and relatively 

inexpensive, such rodent models have contributed to important advances in our understanding of basic 

disease mechanisms3. However, rodent models have proved to be poor predictors of the efficacy or toxicity 

of drugs in trials for human OA7. Rodent models of OA are usually either chemically-induced or surgically-

induced; however, the veracity of the joint changes that occur following administration of intra-articular 

papain or monosodium iodoacetate has been questioned, and many researchers have concluded that 

chemically-induced OA should be limited to studies of joint pain8. Hence, surgical joint destabilization is the 

most frequently employed model. Although the value of these rapidly changing rodent OA models should 

not be underestimated, naturally occurring disease in companion animals more closely reflects the complex 

genetic, physiological and environmental variation that occur in human OA9,10.  

 

Spontaneous, slow-progressing OA occurs in multiple strains of mice, as well as in guinea pigs, Syrian 

hamsters, non-human primates and dogs11; the histopathology and pathogenesis of dog OA most closely 

resemble those of primary human OA. Similar to humans, OA is also a common disease in the dog, with a 

prevalence that varies from 2.5% overall in UK veterinary primary care practices12 to over 20% in dogs over 

1 year old in the USA13. The clinically affected dog shares complex naturally occurring traits and comorbidities, 

such as obesity, that occur in humans, and both humans and companion dogs live into old age, share 

environments and activities and often receive almost identical treatments, such as long-term administration 

of anti-inflammatory drugs or joint replacement surgery. Academic and private practice veterinary medicine 

can provide valuable biomedical research data, as referral centres are often equipped with MRI and CT 

scanners, arthroscopes and state-of-the-art pathology and molecular diagnostic capabilities. Academic 

veterinary centres also pilot advances in the use of anti-inflammatory and pain-modulating OA drug 

therapies10,14,15. In this Review, we summarize research relating to common forms of spontaneous dog OA, 

focusing on the presentation and genetics of analogous diseases of the hip and knee, within a framework of 

human OA phenotypes. We also aim to encourage researchers to take on the principles of One Medicine 

research to benefit both humans and dogs. 

 

The dog as a model animal 

The foreshortened lifespan of the dog, with its equivalent life stages to humans, holds potential for the 

longitudinal evaluation of disease and therapy in spontaneous OA (Figure 1). Dog OA is generally considered 

to bear a close resemblance to human OA, with regards to anatomic similarity, disease heterogeneity and 

progression16. For example, changes in articular cartilage proteoglycans that occur in slowly progressive 

spontaneous dog OA (regardless of the age of the dog), closely match changes that occur in human OA but 

differ from those seen in rapidly advancing experimental dog OA induced by cruciate ligament transection17. 
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Although clear anatomical similarities exist, extrapolating data from the quadrupedal dog to bipedal humans 

requires some caution. Indeed, the dog has comparatively reduced total joint forces that are split 60:40 

between the forelimbs and hindlimbs, in addition to a 20-degree flexion of the femur during the stance phase 

of gait, which together may have an unknown effect on OA development18. 

 

Intriguingly, distinct OA type-specific epidemiological patterns exist in dogs, notably between breeds, and OA 

is clearly influenced by body size, obesity, sex, neuter status and age12. Obesity, for instance, is a known risk 

factor for human19 and dog OA20, but evaluating its role as an independent risk factor in humans is difficult. 

However, work with inbred experimental dog colonies has revealed that dietary restriction reduces OA. Six 

week-old sex-matched and body weight-matched pairs of Labrador Retriever litter mates from closed 

colonies were either control fed (ad libitum) or diet restricted (75% of control fed); radiographic hip OA was 

found in 25% of control-fed dogs and only 4% of diet-restricted dogs by 2 years, which increased to 39% 

versus 13% by 5 years and 83% versus 50% at 15 years21. Interestingly, diet restriction also extended 

longevity, and weight correlated only moderately with disease severity21, suggesting that other factors 

related to increased food intake might affect OA22. In other studies, diet restriction also reduced the severity 

and prevalence of shoulder23 and elbow OA24. Although the aetiology of obesity-related OA remains unclear, 

biomechanical effects from the overloading of weight-bearing joints have been proposed as a mechanism 

despite the fact that the risk of hand OA is also increased in obese humans25, which suggests a systemic role 

for obesity as a risk factor. An alternative mechanism in which adipose tissue promotes systemic low-grade 

inflammation via increased concentrations of adipokines has also been put forward26, and dog adipocytes 

are known to express important adipokines, suggesting that metabolic factors associated with being 

overweight or obese exert an independent risk of developing OA27. 

 

Overall, although dog OA is likely to be more variable and takes longer to develop than rodent models of OA, 

and also requires larger numbers of animals to achieve appropriately powered study design than rodent 

studies, the study of naturally occurring dog OA could lead to a reduction in the number of animals used for 

experimental research and to a greater understanding of spontaneous OA. In the following sections we 

outline some common forms of naturally occurring dog OA and review their suitability as models for 

analogous human disease (Figure 2).  

  

Analogous dog and human OA disease  

Hip dysplasia 

Presentation  

Hip dysplasia is a common risk factor for both human and dog OA28-31. An estimated 20-40% of idiopathic 

human hip OA is caused by developmental dysplasia of the hip (DDH)32, with many patients requiring joint 

replacement later in life1,33,34. Canine hip dysplasia (CHD) shares pathoanatomical, biochemical and clinical 
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features with DDH and has been proposed as the best spontaneous large animal model for DDH17,35 (Figure 

3). Both DDH and CHD have delayed femoral capital ossification and an underpinning instability continuum 

(as detected by the Ortolani test [G]), and severe forms are characterized by complete subluxation, focal 

cartilage overload and hip OA in untreated or undertreated children and dogs34,36-38 (Figure 3b-c). DDH and 

CHD are morphologically similar; for example, collagenous fibrils in the articular cartilage of patients with 

DDH are sparse and disordered and closely resemble changes to the cartilage ultrastructure seen in CHD39,40. 

Many older dogs that had no indication of joint laxity or osteoarthritic change at 2 years (around the start of 

adulthood) develop OA as they age, which resembles human acetabular dysplasia and secondary OA41,42 

(Figure 3d-e).  

 

Although other forms of hip OA are potentially more common, these forms might not be analogous in dogs 

and humans. For example, femoroacetabular impingement (FAI), in which a thickened, aspherical femoral 

head-neck junction results in abutment against the acetabular labrum joint38, is thought to be a common 

cause of human hip OA. By contrast, the existence of FAI in the dog is uncertain, although whether FAI has 

simply not been looked for, or is not specifically recognized in the dog, remains somewhat unclear.  

 

Genetics.  

DDH occurs in between 1 and 20 live births per 1,000 worldwide44, and predisposing factors include family 

history, being a first born, female sex and breech birth45,46. Familial segregation studies47,48 suggest that DDH 

has a multifactorial genetic basis, but statistical support for this theory varies across populations and 

countries49. For example, in a Chinese population, the recurrent risk of DDH in the siblings of affected 

individuals was approximately tenfold greater than in controls and had a heritability of ~85%47. By contrast, 

the frequency of CHD varies between different dog breeds, reaching a peak of ~75% in Golden Retrievers and 

Rottweilers50, and shows no sex predilection in most breeds; the exception is Polish Tatra Sheepdogs, in 

which the risk of CHD in females is greater than threefold the risk in males41. This intra-breed and inter-breed 

variation is proving valuable in identifying the genetic basis of CHD. CHD demographics most closely mirror 

DDH in late-onset acetabular dysplasia41. CHD heritability ranges from 20% to 60%51, and evidence from 

multipoint linkage studies and genome-wide association studies (GWAS)52,53,54,55,56,57,58,59 suggest that 5–10 

quantitative trait nucleotides of modest effect control CHD60. 

 

Approximately 15 genes with known functions in embryonic patterning and extracellular matrix (ECM) 

structure and remodelling have been associated with DDH and hip OA, predominantly via screening for 

candidate genetic polymorphisms61. Many genetic associations lack replication, with the exception of CX3CR1 

(encoding the G protein-coupled receptor CX3-chemokine receptor 1 (CX3CR1); also known as fractalkine), 

which was first identified by linkage mapping and exome sequencing62,63, with a single nucleotide 

polymorphism (SNP) being subsequently linked independently with DDH64. CX3CR1 is involved in 



5 
 

mesenchymal stem cell recruitment to the joint62,65, and Cx3cr1-knockout mice develop acetabular 

dysplasia66. The association between DDH and GDF5 has also been replicated in a GWAS using data from the 

UK Biobank67. 

 

Whereas a genetic basis for DDH is likely, but not certain67,68, it is undisputed in CHD69. An intronic deletion 

in FBN2 was associated with CHD in a linkage analysis of a direct hip laxity trait (the hip distraction index), 

and FBN2 mRNA was upregulated in tissue samples from dysplastic dog hip joints70. CHD-associated loci 

identified by a GWAS of Labrador Retrievers in the UK (>1,000 dogs) include those on canine chromosome 

01 (CFA01) and CFA21 (55). Another GWAS that used several breeds of dog identified an SNP in CTBP2 on 

CFA28 that was linked to CHD, specifically the Norberg angle52. This SNP and SNPs at two more loci near 

TRIM2 and DPP4 were subsequently associated with CHD in a post hoc analysis of the same data53. However, 

similar to genetic studies of DDH, GWAS of CHD have also been difficult to replicate across different breeds 

and laboratories55. Large-scale association studies indicate that the vast majority of significantly associated 

variants reside outside of protein-coding exons, which make up only 1.2% of the human genome71, a situation 

that is likely to be similar in the dog genome. Because not all structural variants, including deletions, 

duplications, inversions and translocations, in non-coding regions of the genome might be tagged by an SNP, 

genetic causes of complex trait variation will often be missed in GWAS. For example, in a study of 4,200 

genotyped dogs, most variants were poorly tagged by markers in a high-density mapping array of >180,000 

markers52; other previous canine GWAS are also likely to have causal variant mutations. Whole genome 

sequencing and genotype imputation are probably needed to capture all causal mutations in canine GWAS. 

 

Intriguingly, in a 2014 study, three human patients with sporadic DDH shared an identical frameshift 

mutation in ZRANB163, which is notable, as ZRANB1 is in the same canine linkage disequilibrium interval as 

the CTBP2 SNP on CFA2852. A locus on CFA37 in Bernese Mountain dogs has also been associated with CHD 

and lies near to FN1, which is associated with human DDH59. These genetic similarities indicate that studying 

CHD in selected breeds of dogs such as Labrador and Golden Retrievers or Rottweilers could yield novel 

mechanistic insights into the aetiopathology of hip dysplasia in dogs and humans (Figure 2). As strong 

evidence exists for similarities in the phenotype and progression of secondary OA in dysplastic hip joints in 

humans and dogs, parallel genomic, transcriptomic and methylomic biomarker analyses in both species are 

likely to be highly informative. Fresh samples can be retrieved readily from dogs undergoing joint salvage 

procedures, which could facilitate transcriptional screening to overcome the replication barrier, as genetic 

associations are likely to have been previously missed.  

 

Using CHD as a means to understand DDH. 

Does CHD occur with sufficient predictability to provide a feasible model for DDH? CHD occurs with 75% 

prevalence in Golden Retrievers and Rottweilers50. As in humans, this high prevalence has heralded early-



6 
 

stage hip laxity screening in these breeds72 and health improvement programmes that include novel laxity 

measures (the PennHIP distraction view to calculate the distraction index), which enable the identification 

of dogs at the age of 4 months that are highly unlikely to develop OA by the age of 3 years73. CHD resembles 

DDH clinically and pathologically but progresses over a compressed time frame, adding to its utility as a 

model. Many dog screening programmes and registries employ traditional hip extended pelvic radiography 

(Figure 3a), and some have DNA banks (such as the Canine Health Foundation of the American Kennel Club), 

which presents an opportunity to identify genetic, epigenetic or environmental factors common to DDH and 

CDH. The phenotypic characteristics of these two diseases are similar enough to warrant simultaneous 

clinical and basic research to augment progress in treatment and prevention of dog and human hip OA 

secondary to dysplasia. Current treatment strategies for hip dysplasia in dogs and humans are highlighted in 

Box 2. Researchers have also explored the role of fetal movement in the development of bone shape in 

patients with DDH using MRI74. Although the cost of such MRI studies is currently prohibitive in dogs, the 

possibility of a One Medicine approach to advance research in this field by careful fetal tracking of the 

developmental emergence of joint incongruity in DDH and CDH is worth considering.  

 

Knee cruciate ligament rupture 

Presentation.  

Dog knees have human-like anatomy75 including an anterior cruciate ligament (ACL) that is termed the cranial 

cruciate ligament (CCL) in dogs owing to their quadrupedal arrangement (Figure 4). Experimentally, dogs 

have been used for several surgical models of OA, including CCL transection4, partial transection76, synovial 

debridement76, transarticular impact77, tibial osteotomy78, meniscal sectioning11 and articular cartilage 

scarification79. In humans, ACL rupture  can lead to OA80, and the same is true in dogs81. Spontaneous CCL 

rupture (Figure 4b, d and h) is common in dogs, and certain breeds such as West Highland White Terriers, 

Staffordshire Bull Terriers, Retrievers and Rottweilers are particularly predisposed82,83. Analogous CCL 

transection is well documented to cause inflammation and reparative responses in the cartilage and 

synovium, yet ongoing instability prompts cartilage erosion and subchondral bone changes, thereby 

mirroring spontaneous knee OA84. Spontaneous knee OA has a prevalence of ~20% in some breeds of dog85, 

and ~50% of commonly affected breeds, such as Labrador Retrievers, develop contralateral knee CCL rupture 

within 1 year of diagnosis86. Despite its ubiquity, the underlying cause of breed predilection remains elusive; 

biological and biomechanical explanations have been suggested, including the slope of the tibial plateau, 

intercondylar fossa impingement, underlying immune-mediated pathology, hormonal influences and 

genetics82,87. Notably, the spontaneous rupture of a dog CCL often occurs during normal activities, such as 

walking or running. By contrast, human ACL rupture occurs most commonly during sporting activity88. 

Although the underlying mechanisms of CCL pathology are undefined, predisposed dogs have thinner 

collagen fibrils in weaker CCLs that have increased expression of matrix metalloproteinase 2 than those of 

cruciate disease-resistant breeds such as Greyhounds82. Importantly, although ACL rupture in young humans 
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is generally considered to be traumatic in cause, ~70% of macroscopically normal human ACLs also have 

histological evidence of pathology consistent with early degeneration89. 

 

Genetics.  

Non-contact rupture of human ACL (such as occurs during pivoting and landing maneuvers when playing 

sport), as distinct from a direct high energy impact to the knee, has a complex etiology. As in the dog, 

variation in outcome is influenced by age, sex, genetics, obesity, muscle strength, activity and re-injury90. 

Young female athletes have a 3-6-fold higher risk of ACL injury compared with male counterparts91. The risk 

of ACL injury is doubled in individuals with similarly-affected relatives92 and is also raised in white individuals93, 

suggesting the presence of sex-linked and genetically-linked human determinants. Polymorphisms in FBN2, 

VEGFA, KDR, COL1A1, DCN, ACN, BGN, LUM, COL5A1 (many of which encode ECM proteins and growth 

factors) and interactions between COL5A1 and COL12A1 gene variants94 are linked to human ACL 

rupture95,96,97,98,99. Genetic associations with human ACL rupture found a COL1A1 SNP that was replicated in 

several studies98,100,101,102,103,104. A systematic review100 was followed by a GWAS that failed to reveal any ACL 

rupture-associated variants, highlighting the fact that replication and cross-species overlap will be mutually 

supportive in the investigation of complex traits. 

 

Five-year-old dogs consistently have degenerative changes in their CCLs at both the macroscopic and 

microscopic levels (Fig. 4b). Susceptibility to CCL rupture is increased in Labrador Retrievers and Golden 

Retrievers, and the CCLs of these breeds have higher collagen turnover, less stiffness and less mature collagen 

crosslinks than the CCLs of Greyhounds, which are relatively rupture resistant82. The genetics of dog CCL 

rupture are complex; a 0.15–0.27 heritability exists in Newfoundlands, which have four putative quantitative 

trait loci (QTLs) by linkage analysis105 and non-overlapping associations on CFA01, CFA03 and CFA33 by 

GWAS106. A case–control comparison across four breeds revealed SNPs in genes involved in ligament ECM 

composition and strength that were associated with susceptibility to CCL rupture107. Subsequent studies 

reported significant associations on CFA7-9 in several dog breeds53 and genome-wide significance for CFA24 

in ACL ruptures in Labrador Retrievers108. This lack of replication is probably caused by limitations similar to 

those for CHD. Functional studies that utilize relevant temporal tissue samples from dog OA at various stages 

to identify expression QTLs that overlap with genomic QTLs will be necessary to establish causation (Figure 

2). 

 

Dog CCL rupture as a model for human ACL rupture.  

Spontaneous CCL rupture might be analogous to experimental transection in dogs, as osteophytes and 

sclerosis develop at an early stage81 and end-stage OA develops over several years109,110 (Figure 4d). However, 

the aetiology is likely to differ, as the dog CCL ruptures at its mid-substance during normal activity, and is 

often linked with prior degeneration and moderate to severe OA82,87. Although CCL transection induces 
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synovitis, lymphocytic-plasmacytic synovitis also occurs in spontaneous CCL rupture111,112. The propensity for 

bilateral disease to develop following CCL rupture has enabled investigation into early stage and incipient 

disease, which has intriguingly revealed increased numbers of CD4+, CD8+ and CD3+CD4-CD8- T cells in dogs 

with CCL ruptures compared with healthy controls, with the number of CD3+CD4-CD8- T cells correlating 

inversely with radiographic severity113. Similar to the M1 macrophage polarization that occurs in human knee 

OA114, dog joints with CCL rupture also exhibit an M1 macrophage polarization, whereas M2 macrophages 

predominate in healthy joints115. The predictability of contralateral disease development in dogs with 

ruptured CCLs has also offered unique opportunities for biomarker studies, which have revealed an increase 

in IL-8 concentrations in synovial fluid prior to CCL failure116. Changes identifiable on MRIs of partially 

ruptured dog CCLs might also improve our understanding of OA progression100. However, owing to the 

differing pathogenesis of rupture, it remains to be seen whether changes predicted by incipient contralateral 

disease in dogs are recapitulated in human OA. 

 

Comparisons between OA associated with dog CCL rupture and human ACL rupture might also help to explain 

the relationships that exist between hormonal status and OA. Estrogen reduces collagen synthesis in 

fibroblasts from human ACLs in vitro118,119, and the risk of ACL rupture in female human athletes is increased 

on the first days of the menstrual cycle120. Likewise, the commonplace neutering of dogs increases CCL 

rupture risk, as does being female and being overweight83,121. Hence, examination of the at-risk female dog 

might offer insight into the function of hormones or post-neutering weight gain105. A more complete 

understanding of the similarities and differences in OA related to dog CCL rupture and human ACL rupture 

might unveil the hormonal influences that underpin the markedly higher primary human knee OA incidence 

in post-menopausal females than in age-matched men123.  

 

We are not arguing that human and dog cruciate ligament rupture have identical inciting causes, nor identical 

management strategies (Box 3), but instead aim to highlight that both involve mechanical instability and 

intractable progression to knee OA, thereby making simultaneous research in both species potentially 

beneficial.  

 

Other conditions of interest 

Osteochondritis dessicans.  

Dog shoulders develop both age-related primary OA22 and osteochondrosis, which presents as 

osteochondritis dessicans lesions124 (Figure 5) that are characterised by disordered endochondral ossification 

superimposed upon previously normal growth125-127. Osteochondrosis predominates in medium and large 

breeds of dogs, affects males more than females and is often bilateral and site-specific128. Intriguingly, male 

humans are also more frequently affected with osteochondrosis, and bilateral disease is also common129,130. 

Unilateral osteochondrosis in young dogs enables tissue samples to be collected of early contralateral lesions 
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and arthroscopic autologous or biomaterial articular resurfacing to be carried out131,132. Aberrant re-

induction of endochondral ossification processes have been described in articular cartilage in several forms 

of human and mouse OA133,134, and it is therefore intriguing that the dog shoulder is targeted in this particular 

way, much more so than in the human.  

 

Control of endochondral ossification differs markedly in different breeds of dogs, which can have an astounding 

several-fold size variation and differ in growth rate and/or physeal closure at puberty. Earlier physeal closure in 

small breeds is consistent with more rapid growth, and potential predisposition to osteochondritis dessicans. 

Growth plates in large breeds, such as Great Danes, have an expanded hypertrophic region and more active 

bone morphogenetic protein 2 (BMP2)–BMP6 signalling than miniature breeds135, suggesting that studies of 

osteochondritis dessicans could provide unique insights into the function of longitudinal bone growth in these 

disease processes. Another possible connection has emerged from studies that established direct links between 

genetic selection for high growth rates, failure of mechano-adaptive bone changes and predisposition to 

skeletal diseases in other species125,126. Whether similar relationships persist in dogs and humans has yet to be 

explored.  

 

Legg-Calve-Perthes disease.  

Legg-Calve-Perthes disease (LCPD), a form of avascular necrosis of the femoral head, involves slow femoral 

head destruction in children. LCPD has a direct ortholog in small breed dogs (Figure 6), such as Yorkshire 

Terriers, Maltese, Miniature Poodles and Chihuahuas during early life that peaks at skeletal maturity (6-7 

months)124. Bilateral hip OA is common in human LCPD, peaking at 4-8 years of age, and occurs ~4 times more 

frequently in boys than in girls138. By contrast, no sex-bias for LCPD exists in dogs and the trait is often 

unilateral124. Familial and isolated human LCPD occurs with an estimated ~0.84 heritability in relatives of 

probands (first affected family member)139-141 and has links to environmental and demographic factor(s)142. A 

similarly high degree of heritability was found in a pedigree of experimental Manchester Terriers143. Further 

genetic studies have been described in both dogs and humans, with intriguing differences and similarities144-148, 

discussion of which is beyond the scope of this Review.  

 

A One Medicine approach  

The idea that OA is not one disease, but a syndrome encompassing heterogeneous, stratified groups of 

patients with characteristic aetiologies has been gaining acceptance. This shift in thinking has led to an 

increased appreciation that the development of new targeted therapeutic approaches might be accelerated 

by patient stratification on the basis of phenotype (or endotype), which might also improve alignment with 

preclinical animal models. An initial attempt at disease stratification of patients with knee OA proposed five 

OA phenotypes, defined by the severity of joint involvement, muscle strength, obesity and depression149. A 

subsequent systematic review150 identified six phenotypic groups: those with central chronic pain 
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sensitization; inflammation; systemic metabolic changes; bone and/or cartilage remodelling; mechanical 

overload with varus deformity and compartment diseases; and minimally symptomatic OA. OARSI 

recommends five clinically distinct phenotypes that are based on presentation with pain sensitization, 

psychological distress, radiographic severity, body mass index, muscle strength, inflammation and co-

morbidities151. Another systematic review of knee OA identified sex, obesity and other metabolic 

abnormalities, cartilage damage patterns and inflammation as variables upon which distinct structural OA 

phenotypes could be delineated152. We conjecture that the common dog OA types we have highlighted 

herein provide models for ready alignment with human OA on the basis of anatomy, aetiology and 

pathophysiology (Table 1), and propose a system for their use with a view to analogous human OA.  

 

Advantages of studying spontaneous clinical disease in dogs  

Is there any prospect that the study of dog OA might accelerate new developments in human OA? Currently, 

cancer research is the field that has most readily adopted and successfully applied a One Medicine approach. 

Cancers account for >25% of dog mortalities153 and, like OA, the multifactorial and complex aetiology of 

cancer reduces the predictive value of rodent models. The Canine Comparative Oncology Genomics 

Consortium initiated an extensive, naturally-occurring canine cancer tissue bio-repository. Partnerships 

between veterinary and human oncologists and biologists subsequently generated a Comparative Oncology 

Trials Consortium10, which rapidly discovered new facets of carcinogenesis154,155 that could be translated into 

human trials156. From the diseases highlighted in this Review, we outline five clear opportunities provided by 

adopting a similar One Medicine approach in OA research. 

 

A source of tissue for research.  

From the examples provided in the proposed OA sub-categorization (Table 1), researchers could identify a 

clinical dog syndrome and then perform studies to verify the validity of the alignment we propose. For 

example, such an approach could involve an exploration of whether two distinct subgroups of patients with 

symptomatic knee OA exist in dogs on the basis of inflammatory gene expression profiles in peripheral blood 

leukocytes157, or of whether dogs have alternative metabolic or cell senescent ‘mechanistic’ OA 

phenotypes152. In addition, clinical samples such as fragments of osteochondritis dessicans lesions, resected 

ruptured CCL remnants, excised damaged menisci, or plasma, urine or synovial fluid samples could be 

retrieved for biomarker assessment as part of the clinical disease management of a dog. Dogs with unilateral 

CCL disease often have premonitory radiographic and clinical signs of synovial effusion and partial CCL tears 

are often associated with painful lameness in affected dogs, even when instability is minimal. Measuring 

soluble biomarkers in biological fluids might therefore facilitate early diagnosis or evaluation of 

interventions158. Similarly, resected osteoarthritic femoral heads and synovium from hip replacement 

procedures could be used to facilitate a greater understanding of OA mechanisms, and could perhaps be 

used to improve diagnostic and prognostic criteria.  



11 
 

 

The correlation of arthroscopic, surgical and advanced imaging data with stage-specific changes in tissue 

samples taken from dogs with specific OA phenotypes would also be possible; for example, correlating 

analyses of synovial fluid and serum samples with clinical joint scores in dogs with CCL rupture. Similar 

correlations have previously been performed in experimental models of OA, but could also be evaluated in 

spontaneous dog OA with appropriate staging and radiographic scoring111,159-162. Dog joints enable 

longitudinal study using modern imaging techniques such as CT, MRI, arthroscopy, serial force plate analysis 

and tissue sampling, and have the potential to reveal additional insights into OA at early and late stages 

compared with mouse models of OA, in which such evaluations are not technically feasible. Indeed, tissue 

sampling could be included as part of a clinical trial as soon as clinical, radiographic, CT or MRI evidence of 

abnormal joint architecture is identified. Gaining usable samples of sufficient quantity is a practical possibility 

when working with dogs with spontaneous OA through schemes such as the Cornell Veterinary Biobank or 

Vetmeduni Vienna’s Biobank.  

 

A means to identify the genetic basis of analogous disease.  

The study of purebred dogs lends itself to the genetic analysis of complex diseases such as hip dysplasia, 

osteochondritis dessicans and Legg-Calve-Perthes disease. Residual blood collected for routine haematology 

or biochemistry tests in the clinic could be used for many purposes, including as a source of DNA for genetic 

research; removed tissues could also be utilised for such studies. Making use of the broad linkage 

disequilibrium introduced by selective breeding in breeds with a high predilection for a disease compared 

with breeds with a low predilection for a disease will help to identify common candidate disease-associated 

genes in these polygenetic conditions.  

 

A source of clinically applicable functional outcome measures.  

One clear difference between dogs and humans is the ability to self-report pain. As subjective pain measures 

can be readily quantified in humans, objective data has been used sparingly163. Instead, clinical metrology 

instruments and a patient-centred approach to outcome assessment has become a mainstay in the 

assessment of human OA. A patient-centered approach has also been incorporated into veterinary 

assessments; clinical metrology instruments and validated outcome questionnaires are used to capture pain-

related behaviour over long periods of time in home environments164 and pet owners can provide proxy 

assessments, just as parents or care-givers would for young children or adults with dementia165-166. Although 

objective assessment methods are less readily available than proxy reporting, these instruments have been 

validated, are cheap, are straightforward to use, the data they produce is easy to analyze and they do not 

have the relevancy issues associated with proxy reporting. Instruments such as the Canine Brief Pain 

Inventory167-168, which is analogous to the human Brief Pain Inventory have the potential to expand the ability 

to gain outcome assessment data from veterinary clinical trials. Such inventories (including the Liverpool OA 
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in Dogs index169) have to be valid, reliable and responsive to clinical change; measure what they seek to 

measure; be validated against a gold-standard, such as force plate analysis [G]; and demonstrate reliability 

to generate the same outcome whenever an individual with unchanged disease is re-assessed167,169. The 

power of such inventories has been verified for outcomes such as disturbed sleep in dogs with OA170.  

 

The size of a dog compared with rodents enables different types of functional outcome assessments to be 

used, many of which are clinically applicable to humans. Although many veterinary researchers use visual 

lameness and clinical pain assessments (which report only single outcome measures), force plate analysis 

and radiography are also used171, which has led to objective force plate outcome measurement becoming a 

common gold standard for functional assessment in dogs. Kinematic evaluation, as well as the more 

commonly used kinetic gait analyses using force plates and pressure mats, provide objective snap-shots of 

impairment172,173 and the size and amenable nature of dogs make them suitable for such assessments173-174. 

Additionally, the introduction of miniaturized data recording technology has made telemetric accelerometry 

and activity monitoring practical in the clinical setting175. These objective assessments are cheaper and less 

complicated to use than force plates and offer easy longitudinal assessment for OA interventions and disease 

progression174-177. Many other tests could be useful in OA monitoring, including thermal imaging and 

mechanical nociceptive threshold testing178,179. Functional activity monitoring, force plate analysis and 

advanced MRI are performed on dogs in a manner that mirrors their use in human patients, and brain imaging 

in conscious pet dogs is also reliable and practical, and could potentially be used for comparative 

neuroscience studies180,181.  

 

Quantitative Sensory Testing (QST), a method of quantifying pain, has been used to demonstrate central 

sensitization in human OA182,183, experimental dog OA184 and spontaneous dog OA185.  QST has also been used 

to demonstrate the efficacy of dog total hip replacements for reversing hyperalgesia190, as occurs in 

humans187. Dogs with spontaneous hip OA could therefore be good candidates for testing anti-hyperalgesia 

therapies while simultaneously experiencing the potential benefits. Overall, compelling evidence exists that 

veterinary randomized controlled trials (V-RCTs) in companion dogs with OA and chronic pain might reliably 

predict treatment efficacy in humans168,177,188. Parallel drug intervention studies are thus appropriate to 

accelerate therapeutic trials in dogs of drugs designed to treat pain in humans and might improve access to 

pain treatment not currently licensed in dogs, which could improve their welfare.  

 

An intermediary between preclinical studies and clinical trials. 

Dog OA is ideally suited for V-RCTs because of the rigor of the functional outcome measures used. A study in 

which peak vertical force (PVF) and accelerometer data were compared to continuously track activity at 

home in dogs with spontaneous CCL disease showed excellent between-session reliability that aligned well 

with locomotor activity189. These results indicate that PVF and accelerometry are robust, reliable and 
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reproducible non-invasive tool for monitoring and assessing the effectiveness of new therapies in 

spontaneous knee OA190. Veterinary RCTs, are free from the ethical objections associated with the use of 

experimental dog models, are aligned with the ‘Three Rs’ agenda 190, are cheaper than using experimental 

dog models and increase the possibility of biological tissue sampling without using additional dogs. The 

approach of considering a V-RCT as an alternative intermediary when developing new therapies is highlighted 

by similar clinical benefit when novel treatments have been trialed in dogs and humans, suggesting that good 

clinical responses in dogs with OA undergoing treatment may well be seen in humans as well. Examples 

include treatment with anti-nerve growth factor antibodies in dogs177 and humans191 and the use of novel 

anti-inflammatory agents, such as resiniferatoxin and the combination of licofelone and doxycycline, which 

were similarly effective in dogs with spontaneous OA192-194 and in patients with OA in phase III trials195,196. 

Intra-articular hyaluronan injection in humans with OA197 and in dogs with CHD198 also showed comparable 

short-term symptomatic benefit without structure-modifying efficacy. 

 

One example of how dog OA studies have proved useful in a One Medicine approach is in trials of stem cell 

therapy, which have advanced more rapidly in dogs than in humans. Allogenic adipose tissue-derived 

mesenchymal stem cells harvested from visceral adipose surgical waste from ovariectomy procedures have 

been combined with hyaluronan and injected intra-articularly into osteoarthritic dog elbow joints, leading to 

reduced lameness and the regeneration of hyaline-type cartilage199. In another study, the measurement of 

PVF and vertical impulse using force platforms showed transitory improvement in severe hip OA after intra-

articular administration of adipose tissue-derived mesenchymal stem cells200. 

 

The ability to pilot new technologies or therapies.  

The use of dogs with spontaneous OA for therapeutic intervention studies has several benefits, including the 

use of human-scale implants and instruments for procedures such as arthroscopic treatment. For example, 

total hip replacements have been in veterinary clinical usage since the 1970s201. Outcomes for this 

intervention are good, with <20% complication rates for cementless hip replacements after four years202. The 

development of similar implants for humans, including resurfacing hip replacements203, porous implants204 

and hydroxyapatite-coated prostheses205, all relied heavily on experimental testing in dogs, and current 

veterinary modular hip replacements include both cemented and uncemented osseointegrative 

replacements. In addition, similar complications are seen in dogs as in humans, such as aseptic loosening, 

bone remodeling and implant infection.  

 

The relatively short lifespan of a dog (~8-12 years) also enables end-of-life retrieval studies. Post-mortem 

retrieval of implant material from veterinary patients is relatively cheap and straightforward, and could 

provide additional insights into common surgical complications. Such samples have been used to examine 

the mechanical, histomorphologic and radiographic features of aseptic loosening, which is a particular 
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concern for total hip replacements in humans under the age of 50208. The results of one such study suggested 

that failure was initiated by poly(methyl methacrylate) de-bonding from the metal implant206. Improved 

implant designs, if appropriately and ethically managed, could therefore be piloted in V-RCTs in dogs as they 

offer a comparatively short time-frame for implant retrieval compared with a human clinical trial.  

 

Remaining challenges of studying dogs  

Accurately modelling pain in animals.  

Pain is a cardinal symptom of OA, and symptomatic management of pain using a limited repertoire of drugs, 

including analgesics and anti-inflammatory agents, is central in both veterinary207 and human clinical 

practice208. FDA guidelines for drugs, devices and biological treatments for OA are available, but preclinical 

research advances are not yet being translated into effective new drugs in clinical practice, leading to 

questions regarding the predictive utility of current animal models of OA7,209-211. 

 

Similarities in neurophysiology across mammals strongly suggest that the pain experienced in humans and 

animals is analogous210. However, pain experiences in OA are complicated and involve peripheral nociceptive 

sensitization, structural changes to joint innervation, central nervous system sensitization, neuropathic 

changes and a host of mediators, as well as simple nociceptive input from damaged joint tissues212. Pain 

severity correlates poorly with radiographic structural changes in humans213 or dogs214 with OA. The 

development of new therapies for pain in OA will therefore require effective models that recapitulate the 

joint changes that occur in OA, as well as the clinical symptoms.  

 

Levels of pain in OA are influenced by synovitis, osteochondral pathology and sensitization, which are not 

accounted for by structural radiographic changes212,215. Good models of OA therefore need to reflect the 

longitudinal natural history of human OA phenotypes216-217. This premise is perhaps most elegantly 

demonstrated in studies of spontaneous dog OA in which advanced non-invasive imaging has revealed 

evidence of disease progression similar to some human OA phenotypes216,217. Indeed, powerful, reliable and 

validated semi-quantitative MRI approaches have already been used in multicentre clinical trials in patients 

with OA218,219. The presence, number and size of bone marrow lesions (identified by characteristic MRI signal 

intensity changes) have been linked to the severity of pain in patients with OA220. Natural animal models for 

bone marrow lesions are clearly required, and indeed, bone marrow lesion-like structures with focal articular 

cartilage changes have been linked with disability in the dog CCL transection model of OA and in dogs with 

spontaneous CCL-rupture-induced OA221,222. In the search for models of human pain, researchers also need 

to carefully consider the evolutionary role of pain responses. As prey, rodents are thought to show less overt 

signs of pain than predators such as humans and dogs. As signs of pain are common end points for measuring 

pain, fellow predator species are likely to more accurately represent human pain physiology than rodents. 
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Considering the important veterinary clinical desire to understand and manage pain in dogs with OA, 

potential exists for beneficial sharing of ideas between clinical researchers and veterinary researchers. 

 

Reliability of veterinary data.  

V-RCTs clearly differ from experimental animal research; they require ethical review and incentivisation, and 

longitudinal follow-up can be problematic. Ideally, data retrieval methods need to be non-invasive, non-

harming and in line with clinical management, such as walking upon a pressure walkway or owner-assessed 

metrics. Non-invasive imaging, such as MRI, CT and arthroscopic imaging, can be highly informative but its 

use is often limited by cost and the need to show a clinical indication. Excellent V-RCTs are possible, but 

require careful planning223.  

 

A further issue is the throughput of veterinary studies; a disease might be common, but unlike many human 

health-care providers such as the National Health Service (NHS) in the UK, the veterinary profession has 

historically been composed of many independent veterinarians, each of whom see a relatively small number 

of animals with a particular condition. However, the growth of multi-practice corporate ownership might 

promote uniformity in veterinary clinical approaches and increase the number of animals available for a study. 

Initiatives such as the UK National Veterinary Canine Hip Replacement Registry224 and the Comparative 

Oncology Trials Consortium10 are also seeking to improve the acquisition of animals with particular diseases, 

and more standardized clinical outcome assessments are slowly being adopted across veterinary groups225. 

As with human trials, loss to follow-up and mid-trial exclusions also make obtaining suitable numbers of 

patients for analysis challenging. The lack of any centralized funding is also an issue, and veterinary medical 

care is essentially privately funded, which complicates the development of new therapies or research 

avenues. Research is currently further hampered by the fact that funding bodies often want results in a 1–2-

year time frame, which is not feasible for OA outcome assessment. 

 

Moreover, skepticism seems to exist concerning the variability in ‘noisy’ veterinary clinical data, compared 

with data from animal models that have controllable genetic backgrounds but poorly defined disease 

processes. Such attitudes ignore the fact that veterinary clinical studies very conveniently mirror the ‘noise’ 

encountered in human trials. Even when conducted well, it can be difficult to get good quality veterinary 

research published in high impact journals (perhaps partly due to lack of aspiration from the authors), which 

can slow the dissemination of research; the inclusion of veterinarians on scientific review boards could be 

advantageous to alter this trend. There is therefore, a great deal of potential and opportunity to develop 

veterinary research which could be highly informative and that will offer different advantages to animal 

model research and human clinical trials.  

 

Conclusions 
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In this Review, we have sought to highlight the potential benefits for dog and human health that could follow 

the adoption of One Medicine approaches to basic and clinical research and practice for OA. Human and dog 

OA are heterogeneous and spontaneous, and we have emphasized some analogous forms of OA in which the 

dog is potentially the best model for the human counterpart and have also highlighted some homologies in 

underpinning OA disease mechanisms, similar co-morbidities and known distinctions. Much can be gained 

from studying a large animal with spontaneous OA, and understanding the reasons behind any differences 

will be just as informative as understanding the similarities.  

 

We have consequently also sought to increase awareness of V-RCTs (a database is currently being developed 

by the American Veterinary Medical Association), national repositories of dog OA tissue samples, national 

retrieval banks for implants  and V-RCT guidelines (including standardized outcome assessments to enable 

their amalgamation into an OA One Medicine paradigm). These resources have barely been exploited and 

their integration into research using a One Medicine approach could generate breakthroughs in OA 

treatment in dogs and humans, and in understanding how genetics, epigenetics, biomechanics and lifestyle 

affect OA aetiology and pathogenesis.  
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Key points 

 Dogs have many analogous spontaneous diseases that result in end-stage osteoarthritis (OA).  

 Inbreeding and the predisposition of certain dog breeds for OA enable easier identification of candidate 

genetic associations than in outbred humans.  

 Dog OA subtypes offer a potential stratification rationale for aetiological differences and alignment to 

analogous human OA phenotypes.  

 The relatively compressed time-course of spontaneous dog OA offers longitudinal research opportunities.  

 Collaboration with veterinary researchers can provide tissue samples from early-stage OA and 

opportunities to evaluate new therapeutics in a spontaneous disease model.  

 Awareness of the limitations and benefits of using clinical veterinary patients in research is important.  

 

Box 1. One Health, One Medicine and veterinary medicine.  

The One Health concept, in which human health is recognized as being closely connected to animal health 

and the environment, dates back to Hippocrates and Aristotle. Claude Bourgelat, a founder of 18th century 

veterinary medicine, advocated this intimacy226, which was further emphasized by the 19th century physician 

Rudolf Virchow, who coined the term ‘zoonosis’ upon discovering that Trichinella spiralis from pigs causes 

human neurocysticercosis227. Despite historical recognition of the One Health concept, a culture of marked 

anthropocentricity emerged during the 1970s, shifting research emphasis towards induced, experimental 

animal models of disease. 

 

One Health approaches regained momentum following outbreaks of the highly pathogenic H5N1 avian 

influenza in 1996 and of corona virus-associated severe acute respiratory syndrome (SARS) in 2003. Distinct 

from One Health, One Medicine is now emerging as a holistic paradigm wherein veterinary and human 

medical researchers and clinical practitioners collaborate to increase their understanding of shared diseases 

and to develop new therapies228. Companion animals are a large population, with ~70 million pet dogs living 

in the USA alone226. Dogs typically live into old age, come in a variety of shapes and sizes (from highly athletic 

to sedentary and overweight) and live in close proximity to humans. As dogs develop many age-related 

chronic diseases and comorbidities on a foreshortened timescale (breed-influenced life expectancy is ~8–12 

years) that are analogous to those in humans, there is a growing view that developing our understanding and 

treatment of dog osteoarthritis (OA) could lead to breakthroughs in human OA153. 

 

Box 2. Clinical treatment of dysplastic hips.  

Treatment options for canine hip dysplasia (CHD) and developmental dysplasia of the hip (DDH) consist of 

similar symptom management, hip reconstructions and replacement methods. Radiographic images show a 

human total hip replacement using an uncemented stem and cup (see the figure, part a) and a dog total hip 
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replacement using a cemented stem and uncemented cup (see the figure, part b). Trait similarities and a 

relatively truncated dog lifespan will probably make the discovery of common early features of hip 

osteoarthritis (OA) more rapid in dogs with CHD than in humans with DDH. The dog is also an excellent model 

for human total hip replacement202,229. Both dogs and humans have similar bone remodelling characteristics 

and respond well to hip replacement for non-responsive and debilitating end-stage OA201,224,230. The 

treatments for CHD and DDH use similar clinical and functional measures, including gait analysis and 

accelerometer measurements, validated clinical questionnaires and imaging techniques168,229,231,232. 

 

Box 3. Clinical treatment of knee cruciate ligament rupture.  

Surgical repair for cranial cruciate ligament (CCL) rupture was initially based on a modification of the Hey-

Groves human repair process. A strip of autograft lateral fascia was tunnelled within the joint to mimic the 

defective CCL (the so-called Paatsama procedure) and was advocated for use in dogs in the 1950s233. Such 

intra-capsular repairs or extra-capsular prosthetic ligament placement techniques and their modifications 

over the years improved outcomes over non-surgical management and remained in use for the next three 

decades233. A shift in approach was proposed in 1993 by Slocum and Devine-Slocum, in which the angle of 

the tibial plateau would be changed by proximal osteotomy to reduce the anterior vector force that was 

causing subluxation234. This technique remains a preferred approach and contrasts markedly with the current 

management of human anterior cruciate ligament (ACL) rupture, for which grafting reconstruction 

techniques still dominate235. This divergence in surgical approaches might be a result of the smaller size of 

canine joints, the suitability of autografts, suboptimal materials or, perhaps, surgical expertise. However, 

fundamental biomechanical disparities between dog CCLs and human ACLs might also be important. Dogs 

have a more sloped tibial plateau82 and flexed standing angle than humans, which creates greater continuous 

biomechanical cruciate ligament strain than the upright bipedal human stance with its flatter tibial plateau. 

The synovitis associated with dog CCL degeneration could potentially also affect graft survival. Irrespective 

of the route by which a cruciate ligament is ruptured, the resultant mechanical instability and trauma in both 

dogs and humans promote the progression of osteoarthritis (OA) and any linked meniscal pathology90. 

Importantly, no current treatment prevents or reduces the development of OA for either species90,110. 

 

Figure 1. Osteoarthritis in dogs and humans  

The most common locations for osteoarthritis in dogs include the knee, hip, shoulder and elbow, which are 

shown with their homologous equivalent in humans. The average lifespan of a large breed dog is around 12 

years, with a proportionately longer time spent in old age compared with a typical human lifespan.  

 

Figure 2. Analogous disease in dogs and humans  

Similarities in the aetiopathology of dog (yellow) and human (blue) forms of osteoarthritis (OA) are shown 

for developmental vascular OA of the hip (Legg Calve Perthes disease (LCPD) in dogs and LCPD and avascular 
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necrosis of the femoral head in humans, developmental joint instability OA (canine hip dysplasia (CHD) in 

dogs and developmental dysplasia of the hip (DDH) in humans) and acquired adult joint instability OA (knee 

anterior cruciate ligament (ACL) rupture in humans and cranial cruciate ligament (CCL) rupture in dogs). IGF1, 

insulin-like growth factor 1; SNP, single nucleotide polymorphism.  

 

Figure 3. Hip dysplasia and hip osteoarthritis in dogs and humans   

Hip dysplasia commonly occurs in juvenile large breed dogs, such as Golden Retrievers, and can result in 

osteoarthritis (OA) in later years. a| Radiograph of an adult dog with severe hip dysplasia and luxoid hips. 

Image acquired as a ventrodorsal extended limb radiograph. b| Radiograph of a human infant with a 

dysplastic luxated left hip (with permission R. Loder). c| Radiograph of a 3-month-old dog with bilateral 

dysplastic and subluxated hips. Image acquired in a dorsolateral extended-hip screening position. d and e| 

Radiographs of the hip joints from a middle-aged male human with primary OA (d) and a middle-aged female 

large breed dog with secondary OA subsequent to hip dysplasia (e). Both the human and dog osteoarthritic 

hips show evidence of advanced new bone formation and sclerosis of the acetabulae and the femoral head 

and neck region.  

 

Figure 4. Cruciate ligament rupture and knee osteoarthritis in dogs and humans  

Cranial cruciate ligament (CCL; analogous to human anterior cruciate ligament (ACL)) rupture occurs in most 

breeds of dog, but is particularly common in young large breed dogs, such as Labrador Retrievers, and older 

small breed dogs. a| Post-mortem dog knee with a healthy CCL (arrow). b| Post-mortem dog knee with a 

spontaneously degenerated, partially ruptured CCL (arrow shows degeneration of the anteriomedial band). 

c| Mediolateral radiograph of a healthy dog knee that shows no signs of effusion, sclerosis, soft tissue 

thickening or osteophytosis. d| Mediolateral radiograph of a dog knee with a ruptured CCL and osteoarthritic 

changes. Radiographic joint effusion and new bone formation associated with the distal pole of the patella, 

the tibial plateau, trochlear ridges and the insertion of the CCL is evident. e| Proton density turbo spin echo 

sequence sagittal MRI of a healthy human knee (with permission K. Chappell). f| T1-weighted sagittal MRI of 

a healthy dog knee showing the CCL in part and the caudal cruciate ligament in full. g| MRI of an adolescent 

human knee with a ruptured ACL (arrows indicate the space without an intact ligament). h| MRI of a dog 

stifle joint with a ruptured CCL (arrow indicates space without an CCL).  

 

Figure 5. Shoulder osteochondritis dessicans in dogs  

Shoulder osteochondritis dessicans lesions predominantly occur in adolescent large breed dogs. a and b| 

Lateral radiograph (a) showing a classical mineralized flap over the caudal region of the humeral head, which 

can also be seen in a transverse CT (b) of the same shoulder with associated subchondral sclerosis (arrows 

mark the lesion). c| Osteochondritis dessicans flap being removed arthroscopically.  
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Figure 6. Avascular necrosis of the femoral head (Legg-Calve-Perthes disease) in dogs.  

Legg-Calve-Perthes disease (LCPD) occurs predominantly in the hip joints of small breed dogs. a| Excised 

femoral head with an abnormal articular surface morphology and a central dark line indicating an articular 

surface defect. b| Ventrodorsal radiograph of a dog hip joint showing typical LCPD focal lucencies and new 

bone formation, as seen in advanced lesions.  

 

Table 1. Proposed stratification of dog osteoarthritis and alignment with human disease.   

OA subtype Disease in dogs Epidemiology in dogs Analogous disease in 

humans 

Epidemiology in 

humans 

Acquired 

juvenile 

instability 

CHD  Occurs in dogs from large and/or 

giant breeds (prevalent in Golden 

and Labrador Retrievers, 

Rottweilers and German 

Shepherds; extremely rare in 

Greyhounds and Borzois) that are 

3-12 months old* 

Progression to OA in 1 year 

DDH  

 

 

Occurs in infants 

Prevalent in females 

Progression to OA in 30 

years 

Acquired adult 

instability  

Cranial cruciate 

ligament rupture 

and meniscal 

injuries  

Occurs in young adult dogs from 

medium or large breeds 

(Rottweilers, Golden and 

Labrador Retrievers, Staffordshire 

Bull Terriers) that are commonly 

>2 years old or in dogs from small 

breeds (Yorkshire Terriers, West 

Highland Terriers) that are >6 

years old 

~50% of dogs develop 

contralateral disease within 2 

years 

<50% of dogs have meniscal 

(mostly medial) pathology 

Increased risk in neutered 

females 

Anterior cruciate 

ligament rupture and 

meniscal injuries 

 

 

Occurs in active adults, 

commonly during 

sporting activities 

Influenced by the 

menstrual cycle 

Developmental 

vascular  

Legg-Calve-

Perthes disease 

Occurs in dogs from small breeds 

(Toy dogs and Terriers) that are 4-

11 months old, no sex 

predilection 

Autosomal recessive trait in 

Miniature Poodles and West 

Highland Terriers 

Legg-Calge-Perthes  

Adolescent avascular 

necrosis of the femoral 

head 

Low circulating IGF1, 

poor caliber arteries 

Children (LCP) 4-8 years 

old, boyv>girls 

Adolescents near 

skeletal maturity 

(ANFH)  

Low circulating IGF1, 

poor caliber arteries 
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Developmental 

endochondral  

Osteochondritis 

dessicans of the 

shoulder or knee  

Occurs in dogs from large or giant 

breeds (Great Danes, Labrador 

Retrievers, Border Collie ) that are 

5-18 months old 

More prevalent in males and 

often bilateral 

Osteochondritis 

dessicans 

Occurs in children, 

adolescents and young 

adults 

Family history  

More prevalent in 

males and often 

bilateral 

Environmental: 

obesity-related  

OA of the elbow, 

hip or shoulder  

Can occur in any breed, often 4-8 

years old  

Obesity related OA in 

the knee, small joints 

of the hands 

 

Occurs in middle aged 

and older adults 

Multiple joints are 

often affected 

Environmental: 

trauma-related 

OA of the hip, 

elbow, hock 

(ankle), carpus 

or digits  

Occurs in racing Greyhounds that 

are 4-8 years old as digital OA and 

carpal sprains that lead to OA  

Physical occupation 

associated OA 

 

Occurs in athletic 

individuals, often in 

middle-age 

*The potential exists to classify an adult form of CHD (with acetabular dysplasia) in which late onset hip OA 

occurs in aged dogs that are otherwise normal upon screening at 2 years of age. CHD, canine hip dysplasia; 

DDH, developmental dysplasia of the hip; OA, osteoarthritis. 

 

Glossary terms  

Stifle joint 

An analogous term for the knee joint in quadrupedal animals. 

Pond-Nuki model 

An experimental model of knee instability-driven osteoarthritis in dogs involving surgical cranial cruciate 

ligament transection.  

Ortolani test  

Physical examination test performed in dogs and infants to assess for excessive laxity in the hip joint 

allowing dislocation  

Norberg angle 

An angle based upon a radiographic measure of a line that connects the centres of both femoral heads and 

the craniodorsal rim of the acetabulum on the same side, as a surrogate measure of hip laxity and femoral 

head coverage by the acetabulum. 

 

Force plate analysis 

Measuring instruments which determine ground reaction forces as a human or animal walks over them to 

provide parameters of gait and limb function.  

Telemetric accelerometry 

A device that measures and records proper acceleration for determination of activity and gait parameters.   

Quantitative Sensory Testing 
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A non-invasive test of nerve function and/or pain that uses temperature or skin vibration.  

Peak vertical force 

A biomechanics term that identifies a component of locomotor ground reaction force.  

‘Three Rs’ agenda 

An initiative from the National Centre for the replacement, refinement and reduction of Animals in 

research, to improve the use of or reduce the numbers of animals used in scientific research, through three 

key initiatives;  the 3Rs (Replacement, Reduction and Refinement). 

Vertical impulse 

A commonly used index of limb function generated from force plate analysis, which is derived from the 

vertical vector force applied and the duration that is imparted for.  
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