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Mahmoud M, Evans IM, Mehta V, Pellet-Many C, Paliashvili
K, Zachary I. Smooth muscle cell-specific knockout of neuropilin-1
impairs postnatal lung development and pathological vascular smooth
muscle cell accumulation. Am J Physiol Cell Physiol 316: C424–
C433, 2019. First published January 16, 2019; doi:10.1152/ajpcell.
00405.2018.—Neuropilin 1 (NRP1) is important for neuronal and
cardiovascular development due to its role in conveying class 3
semaphorin and vascular endothelial growth factor signaling, respec-
tively. NRP1 is expressed in smooth muscle cells (SMCs) and medi-
ates their migration and proliferation in cell culture and is implicated
in pathological SMC remodeling in vivo. To address the importance
of Nrp1 for SMC function during development, we generated condi-
tional inducible Nrp1 SMC-specific knockout mice. Induction of early
postnatal SMC-specific Nrp1 knockout led to pulmonary hemorrhage
associated with defects in alveogenesis and revealed a specific re-
quirement for Nrp1 in myofibroblast recruitment to the alveolar septae
and PDGF-AA-induced migration in vitro. Furthermore, SMC-spe-
cific Nrp1 knockout inhibited PDGF-BB-stimulated SMC outgrowth
ex vivo in aortic ring assays and reduced pathological arterial neoin-
tima formation in vivo. In contrast, we observed little significant
effect of SMC-specific Nrp1 knockout on neonatal retinal vascular-
ization. Our results point to a requirement of Nrp1 in vascular smooth
muscle and myofibroblast function in vivo, which may have relevance
for postnatal lung development and for pathologies characterized by
excessive SMC and/or myofibroblast proliferation.
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INTRODUCTION

Neuropilin-1 (NRP1) is a transmembrane glycoprotein re-
ceptor essential for both vascular and neuronal development
due to its role in mediating vascular endothelial growth factor
(VEGF) and class 3 semaphorin signaling, respectively (14, 16,
25, 36). Nrp1-null mice are embryonic lethal between embry-
onic day (E) 10.5 and E14.5, dependent on genetic background,
and display a spectrum of cardiovascular and neuronal defects
(21, 23).

Several studies have reported NRP1 expression in smooth
muscle cells (SMCs) and revealed an important role for NRP1
in vascular SMC migration (13, 27, 30, 35). NRP1 expression
has also been reported in SMCs in vivo in large vessels (20)
and targeted knockdown of NRP1 in vivo using small hairpin

inhibitory RNA-inhibited neointima formation induced by rat
carotid artery endovascular injury (32). Mice with constitutive
SMC-specific loss of Nrp1 were viable, displaying no overt
early postnatal phenotype but exhibiting a late-onset defect in
gastrointestinal motility due to loss of visceral SMC contrac-
tility (46). The lack of an overt phenotype in constitutively
SMC-specific Nrp1-null mice could be indicative of genetic
redundancy, as reported for other constitutive knockout mice
(5, 17, 42). NRP1 shares a similar domain structure and 44%
amino acid sequence homology with neuropilin-2 (NRP2),
which is also expressed in vascular smooth muscle cells (10,
30–32). Mice lacking Nrp1 and Nrp2 die earlier in embryo-
genesis (E8.5) and display more severe defects in angiogen-
esis compared with single knockouts (39). Moreover, Nrp2
compensates for loss of semaphorin binding to NRP1 in
Nrp1Sema/Sema mice (15). These data suggest a partial genetic
redundancy between Nrp1 and Nrp2, which could explain the
lack of an overt phenotype in constitutive SMC-specific Nrp1-
null mice.

To circumvent genetic redundancy effects due to possible
compensatory upregulation of Nrp2 expression, we generated a
conditional and inducible smMHC-CreERT2 transgenic line to
allow controlled Nrp1 knockout in SMCs when crossed to
Nrp1 floxed mice, by administration of tamoxifen during devel-
opment. Our results revealed a specific requirement for Nrp1 in
myogenic cell lineages during pulmonary microvascular expan-
sion and alveogenesis. Nrp1 was also necessary for pathological
neointima formation in vivo, for PDGF-BB-induced SMC out-
growth ex vivo in aortic rings, and for PDGF-AA-induced pul-
monary myofibroblast migration in cultured cells.

MATERIALS AND METHODS

Generation and characterization of mice. All procedures involving
mice were conducted under a UK Home Office license and the
approval of the University College London local ethics committee in
accordance with the Animal Care and Ethics Guidelines and the 1986
United Kingdom Home Office Animals (Scientific Procedures) Act.

Inducible SMC-specific Nrp1 knockout mice were generated by
crossing Nrp1floxed; R26R mice to smMHC-CreERT2 transgenic mice,
on a C57BL/6 background. Genotypes of progeny were identified by
PCR using the primers listed in Table 1. To induce knockout in
neonates, mice were given two subcutaneous 0.5 mg tamoxifen
injections at P1–2 and P3–4. For adults (�8 wk), 5 consecutive 1-mg
tamoxifen injections were administered intraperitoneally over 5 days.

Histology. Tissue was fixed in HistoChoice tissue fixative (Sigma)
or zinc fixative (BD PharMingen) overnight and then processed to
paraffin and cut into 10-�m sections, except for the retinas, which
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were fixed in 4% paraformaldehyde and stained as whole-mounts.
Samples were subjected to hematoxylin-eosin histological staining,
immunohistochemistry, or immunofluorescence using the antibodies
and conditions listed in Table 2. X-Gal staining was performed using
the LacZ Detection Kit by InvivoGen (no. rep-lz-t), according to the
manufacturer’s instructions. Alveolar hemorrhaging was identified by
the incidence of hemosiderin-laden macrophages, as previously doc-
umented (1).

Transwell migration assay. Mouse pulmonary fibroblasts (no.
M3300-57, ScienCell) were cultured in poly-l-lysine-coated dishes
and treated with 10 ng/ml transforming growth factor-�1 (TGF-�1;
no. AF-100-21C, Peprotech) for 48 h to induce differentiation to
myofibroblasts. Cells were transfected with either scrambled siRNA
or two different siRNAs targeting Nrp1 (siRNA cat. nos. 70800 and
s70802, respectively; Thermo Fisher Scientific) using RNAiMAX
transfection reagent ( no. 13778075, Thermo Fisher Scientific). Trans-
fected cells were seeded at a count of ~2.5 � 104 cells/Transwell
insert (8.0-�m pore size, no. 353097, Falcon) and left to migrate for
20–24 h in response to either serum-free media or serum-free media
with 50 ng/ml PDGF-AA (100-13A, Peprotech). Nonmigrated cells
were removed, and Transwell inserts were stained using the
REASTAIN Quick-Diff Kit, according to manufacturer’s instruc-
tions (no. 102164, Gentaur), and migrated cells were counted
under a Leica stereo microscope.

Western blotting. Western blot analysis was performed on trans-
fected myofibroblast cell lysates as described previously (11), using
the following primary antibodies: neuropilin-1 (no. ab81321, Abcam),
�-smooth muscle actin (�-SMA; no. ab7817, Abcam), and �-actin
(no. A2228, Sigma).

Aortic ring assay. Aortas from 8- to 10-wk-old male mice that had
been treated with tamoxifen the week before harvest were dissected
and cultured as described previously (3, 9) in the presence of 1 �M
4-hydroxytamoxifen overnight, after which rings were incubated in
fresh medium-containing cytokines. Cell growth and sprout formation
were monitored using the IncuCyte Live Cell Analysis System (Essen

BioScience). Assays were stopped 6 days postembedding and sub-
jected to double immunofluorescence staining for endothelial-specific
isolectin B4 (no. DL-1207, Vector Laboratories) and �-SMA (no.
F3777, Sigma) to visualize vascular sprouts.

Perivascular cuff model. Surgeries were performed as described
(29). Briefly, under general anesthesia (using inhaled isoflurane), the
femoral artery is exposed, and a polyethylene cuff (with a sagittal
opening to allow placement of the artery) is loosely placed around the
artery and secured in place with sutures. Sham surgical controls were
handled in the same manner, except no cuff placement was performed.
All mice were treated with tamoxifen the week before the surgery.
Twenty-one days following the surgery, the mice were euthanized by
overdose of CO2, followed by cervical dislocation, and the cuffed
femoral arteries and sham controls were harvested for analysis.

Measurements and statistical analyses. Pulmonary hemorrhaging
was quantified by blinded measurements of the percentage of hemor-
rhaging per field of view from at least three different sections per
sample. Statistical significance was calculated using the Kruskal-
Wallis H test with post hoc Dunn’s multiple comparison test. Quan-
tification of �-SMA expression and numbers of presumptive septal
tips with �-SMA-expressing myofibroblasts was determined using the
ImageJ Color Threshold function or the ImageJ Cell Counter plugin,
respectively. Data were collected and analyzed blindly from at least
three different sections/fields of view per sample.

Outgrowth areas in aortic ring assays were quantified as described
(8), using the ImageJ Color Threshold function (with background
subtraction).

Unless specified otherwise, all data are presented as means �
SE, and statistical significance was calculated using the two-tailed
unpaired Student’s t-test, except for the perivascular cuff intima/
media ratio data, which were analyzed using the one-tailed un-
paired t-test, and the myofibroblast Transwell migration data,
which were analyzed using two-way ANOVA with Bonferroni post
test.

Table 1. Details of genotyping primers

Gene Targeted Genotyping Primer Sequence (5=–3=)

Floxed Nrp1 allele flNrp1_F1 CAA TGA CAC TGA CCA GGC TTA TCA TC
flNrp1_R1 GAT TTT TAT GGT CCC GCC ACA TTT GTC

Recombined Nrp1 allele rNrp1_F2 AGG CCA ATC AAA GTC CTG AAA GAC AGT CCC
rNrp1_R2 TCT GCA GAT CAT GTA TAC TGG TGA CCC ACA

smMHC-CreERT2 transgene SMWT1 TGA CCC CAT CTC TTC ACT CC
SMWT2 AAC TCC ACG ACC ACC TCA TC
PhCREAS1 AGT CCC TCA CAT CCT CAG GTT

LacZ allele LacZ1 AAA GTC GCT CTG AGT TGT TAT
LacZ2 GGA GCG GGA GAA ATG GAT ATG
LacZ3 GCG AAG AGT TTG TCC TCA ACC

Nrp1, neuropilin 1.

Table 2. Antibodies used for histology

Protein Antibody Details Working Dilution Antigen Retrieval/Special Kit Used

�-SMA Monoclonal anti-actin, �-smooth muscle,
clone 1A4. Sigma no. A2547.

1/100 M.O.M. Kit (Vector Labs no. BMK-2202)

NG2 Anti-NG2 chondroitin sulfate proteoglycan
antibody. Millipore no. AB5320.

1/200 Citrate buffer (pH 6.0)

Isolectin B4 DyLight 594 Labeled Griffonia Simplicifolia
Lectin I (GSL I) isolectin B4. Vector Labs no. DL-1207.

1/100

�-SMA Monoclonal anti-actin, �-smooth muscle-FITC
antibody, clone 1A4. Sigma no. F3777.

1/100

NRP1 Neuropilin 1 antibody. GeneTex no. GTX127947. 1/100 Citrate buffer (pH 6.0)
Ki67 Ki-67 (D3B5) rabbit mAb. Cell Signaling

Technology no. 12202.
1/200 Citrate buffer (pH 6.0)

NG2, neural/glial antigen 2; NRP1, neuropilin 1; SMA, smooth muscle actin.
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RESULTS AND DISCUSSION

SMC-specific knockout of Nrp1 in early postnatal develop-
ment causes pulmonary hemorrhaging and impaired alveolar
development. SmMHC-CreERT2 mice (44) were bred with
Nrp1floxed mice (14), previously crossed to the R26R-LacZ
reporter strain (37), to generate Nrp1SMCiKO mice, allowing for
inducible ablation of Nrp1 in SMCs (Fig. 1A). Induction of Cre
recombinase activity, monitored by expression of �-galactosi-
dase, following administration of tamoxifen in adult and neo-
natal Nrp1SMCiKO mice, was restricted to SMCs in multiple
tissues, including the heart and lungs (Fig. 1B). Nrp1 allele
recombination and protein knockdown in SMC were confirmed
by genotyping PCR (Fig. 1C) and immunostaining (Fig. 1D).

To determine the role of SMC-specific Nrp1 in early post-
natal development, we conditionally ablated Nrp1 expression
using tamoxifen from postnatal day (P)1–2 and monitored the
effect of Nrp1 loss. The Nrp1SMCiKO neonates appeared viable
and healthy compared with their littermate controls; however,
internal examination revealed hemorrhaging in the lungs of the
Nrp1SMCiKO neonatal pups from P8 (Fig. 2A). Hemorrhaging

was generally localized to the lung periphery and characterized
by the presence of hemosiderin-laden macrophages, which are
an indication of long-term alveolar hemorrhaging (�48 h), and
evidence of necrosis of the alveolar walls (Fig. 2B). Hemor-
rhaging was most marked and statistically significant compared
with control littermates at P14 (Fig. 2C) but had partially
resolved by P22. This phenotype was not fully penetrant, with
75% and 66.7% of Nrp1SMCiKO mutants displaying pulmonary
hemorrhaging at P8 and P14, respectively (Fig. 2D). Timing of
the knockout was critical, as a later induction with tamoxifen at
P3–4 led to a much milder hemorrhaging phenotype (red data
points in Fig. 2C).

To determine the underlying cause of the pulmonary hem-
orrhaging, we examined SMC and myofibroblast coverage of
the lung by immunohistochemical staining for �-SMA expres-
sion. Whereas SMCs are present in larger blood vessels and
muscularized airways, myofibroblasts are specialized cells
present on the alveolar septa in the developing postnatal lung
and are identified by their expression of �-SMA and their
location at septal tips (7, 45). This revealed a loss of
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Fig. 1. Characterization of Nrp1 smooth muscle cell (SMC)-specific inducible knockout mice. A: floxed Nrp1 mice have exon-2 flanked by two loxP sites, which
undergo Cre-mediated recombination exclusively in SMCs when crossed to the smMHC-CreERT2 transgenic mice and given tamoxifen. Location of the floxed
Nrp1 and recombined Nrp1 PCR primers is depicted by F1 and R1 and F2 and R2, respectively. B: X-gal staining showing Cre recombinase activity in Cre�
and Cre	 mice. C: genotyping PCR used to identify transgenic mice. The recombined Nrp1 allele is only detected following treatment of the mice with
tamoxifen. D: immunostaining for NRP1 in the aortae of Nrp1SMCiKO and Nrp1�/� mice. NRP1, neuropilin 1; SEA, PDZ-binding domain motif; EC, extracellular
domain; MAM, meprin, A5 antigen, and receptor protein phosphatase-� domain; CUB, complement binding factors C1s/C1r, Uegf, BMP-1 domain; TM,
transmembrane domain; Cyt, cytoplasmic domain.
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alveolar myofibroblasts in the secondary alveolar septae in
the Nrp1SMCiKO mutants (Fig. 2E, red arrows), suggesting a
defect in the recruitment of alveolar myofibroblasts to the
secondary alveolar septae of neonatal mice following Nrp1
depletion. Quantification of alveolar myofibroblast recruit-
ment, based on their expression of �-SMA and their location
at septal tips (22, 45), showed a significant reduction in
myofibroblasts associated with septae in Nrp1SMCiKO mice
(Fig. 2F). In addition, a significant reduction in overall
coverage of �-SMA-positive cells occurred in the alveoli of
the Nrp1SMCiKO mutants (Fig. 2, G and H). The number of
alveolar septae was not significantly different between the
Nrp1SMCiKO mutants and controls when normalized to total
tissue area, although a trend towards a reduction was ob-
served (Fig. 2I). The expression of Cre recombinase in areas
corresponding to the location of alveolar myofibroblasts was

confirmed by X-Gal staining (Fig. 3A), which demonstrated
expression of smMHC-CreERT2 and recombination of the Nrp1
allele in these cells. Recruitment of myofibroblasts to septal
tips is important for terminal airway branching and future
alveolarization (6, 7), and concomitant with loss of alveolar
myofibroblasts in the septae of the Nrp1SMCiKO mutants (Figs.
2, E and F and 3C), we observed evidence of impaired alveolar
development at P14, as indicated by fewer and larger alveoli
in the Nrp1SMCiKO mutants versus littermate controls (Fig. 2,
A and G). No significant changes in expression of the
pericyte-specific marker neural/glial antigen 2 (NG2) were
observed in the lungs of P14 Nrp1SMCiKO neonates (Fig. 3B),
suggesting that inducible Nrp1 knockout did not impact
pericyte recruitment to the vasculature, consistent with the
reported lack of expression of smMHC in pericytes (41, 43).
The reduction in �-SMA expression was also limited to the
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Fig. 2. Pulmonary phenotype in Nrp1SMCiKO mice. A: hematoxylin-eosin staining of Nrp1�/� and Nrp1SMCiKO lung sections. Arrows indicate pulmonary hemorrhaging,
which is detected from P8, increases to P14, and is reduced by P22. B: high-magnification image indicating hemorrhaging and alveolar wall necrosis in Nrp1SMCiKO lung.
C: quantification of hemorrhaging at P14. *P 
 0.02 vs. Nrp1�/�. Red symbols indicate mice treated with tamoxifen at P3; all other mice were treated at P1. D: incidence
of pulmonary hemorrhaging in the Nrp1SMCiKO neonates. E: immunostaining of lung sections for �-SMA. Black arrows indicate �-SMA-positive septal tips in Nrp1�/�

alveoli, and red arrows indicate �-SMA-negative septal tips in Nrp1SMCiKO alveoli. F: analyses of the percentage of �-SMA-positive secondary alveolar septal tips at
P14; *P 
 0.01 vs. Nrp1�/�. G: �-SMA staining was quantified using the ImageJ Color Threshold function; representative images showing detection of �-SMA staining
(highlighted in red) by ImageJ are shown. Boxed images are higher-power views showing �-SMA expression in the alveoli. H: quantification of �-SMA staining at P14;
*P 
 0.05 vs. Nrp1�/�. I: quantification of total numbers of septae at P14; P � ns vs. Nrp1�/�. n � 4 Nrp1�/� and n � 6 Nrp1SMCiKO. Experiments were performed
on male and female mice. NRP1, neuropilin 1; ns, not significant; P, postnatal day; SMA, smooth muscle actin.
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alveolar septae and capillaries, whereas �-SMA staining of
larger arteries and arterioles did not appear to be affected (Fig.
3, B and C). Given the important role of myofibroblasts in
alveolarization during the rapid early postnatal growth and
remodeling of the lung, we hypothesize that the observed
hemorrhaging resulting from SMC-specific Nrp1 knockout
may be due to defective alveolarization consequent upon im-
paired myofibroblast recruitment, which in turn results in
capillary loss and a reduced capacity of the developing lung to
accommodate increased blood flow. Additionally, an impair-
ment of capillary stability due to reduced smooth muscle cell
recruitment to capillaries and small vessels may also contribute
to the hemorrhaging phenotype in Nrp1SMCiKO neonates. Fur-
ther work is required to establish more precisely the causal
links between defective myofibroblast recruitment and hemor-
rhaging in the lungs of Nrp1SMCiKO mice.

PDGF stimulation of pulmonary myofibroblast migration is
inhibited following Nrp1 knockout. Platelet-derived growth
factor subunit A (PDGF-A) signaling is required for pulmo-

nary myofibroblast differentiation and migration, as evi-
denced by the absence of myofibroblasts from the primary
alveolar septa in PDGF-A-null mice, resulting in severe
alveolarization defects (7, 22, 26). To determine the effect
of Nrp1 loss on PDGF-induced myofibroblast migration, we
performed in vitro Transwell migration assays. Pulmonary
fibroblasts isolated from isolated from postnatal day 2
C57BL/6 mouse lung were differentiated into myofibro-
blasts in vitro based on cell plating density and treatment
with TGF-�1, as previously described (28), and PDGF-AA-
induced myofibroblast migration was then measured after
transfection with either scrambled siRNA or two different
Nrp1-specific siRNAs. The results showed a significant
reduction in the migration of NRP1-depleted myofibroblasts
in response to PDGF-AA (Fig. 4A). The efficiency of Nrp1
protein knockout by siRNA was confirmed by Western
blotting (Fig. 4B). Nrp1 siRNA knockout in myofibroblasts
caused no observable effects on viability (results not shown)

Fig. 3. Pulmonary phenotype in the Nrp1SMCiKO mice. A: X-gal expression in P8 lungs showing Cre recombinase expression in cells with locations corresponding
to presumptive alveolar myofibroblasts (arrows). B: �-SMA and NG2 staining in the lungs of Nrp1SMCiKO mice and littermate controls. Arrows indicate
�-SMA-positive staining in the alveoli, and the dashed arrow points to a small blood vessel (probably a precapillary arteriole). C: �-SMA staining of arterioles
(arrows) and bronchioles (dashed arrows) in the lungs of Nrp1SMCiKO mice and littermate controls at P14 (top) and �-SMA staining of alveolar capillaries (bottom;
arrows indicate presumptive septal tips in the lungs of Nrp1SMCiKO mice and littermate controls at P14). Experiments were performed on male and female mice.
NG2, neural/glial antigen 2; NRP1, neuropilin 1; P, postnatal day; SMA, smooth muscle actin.
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or �-SMA expression levels compared with control myofi-
broblasts transfected with scrambled siRNA (Fig. 4B).

PDGF stimulation of SMC migration is inhibited following
Nrp1 knockout. NRP1 is implicated in the regulation of PDGF
signaling required for migration and proliferation in mesen-
chymal stem cells (4) and vascular SMCs (30, 32). The effect
of Nrp1 loss on PDGF-induced myogenic cell proliferation,
migration, and recruitment to neovascular sprouts was deter-
mined ex vivo in aortic ring assays. A marked reduction in
SMC outgrowth in response to PDGF-BB was observed in the
Nrp1SMCiKO aortic rings versus wild-type controls following
treatment with tamoxifen (Fig. 4, C and D). Although SMCs
appeared to be recruited normally to the developing vascular
sprouts in this model (Fig. 4E), the sprouts in the Nrp1SMCiKO

aortic rings exhibited reduced branching compared with the
wild-type aortic rings. Since prevention of VEGF binding to
NRP1 blocks endothelial vascular sprouting in aortic rings
(12), we also examined the effect of SMC-specific Nrp1
knockout on the VEGF response. In contrast to the impaired
response to PDGF-BB, VEGF-induced aortic ring vessel

sprouting was not reduced in Nrp1SMCiKO aortic rings, indicat-
ing that the effect of Nrp1 ablation was specific for SMCs and
did not impact indirectly on endothelial outgrowth.

Retinal vascular development is largely unaffected by SMC-
specific loss of Nrp1. The impact of SMC-specific loss of Nrp1
in developmental angiogenesis was further investigated in the
neonatal mouse retina, in which the vasculature develops
radially from the central optic nerve from P0 and matures into
a hierarchical network of arteries, veins, and interconnecting
capillaries (38). Following ablation of Nrp1 expression in
Nrp1SMCiKO neonates from P1, we could not detect any delay
in vascularization, defects in arterial/venous differentiation, or
an effect on SMC/pericyte coverage of the retinal vessels in the
Nrp1SMCiKO neonates versus their littermate controls (Fig. 5A).
However, a small, statistically significant reduction in vascular
density due to smaller capillary diameters was detected in
Nrp1SMCiKO retinas, whereas vascular branching appeared un-
affected (Fig. 5, B–D). Since Nrp1 loss in our model is
restricted to SMCs and myofibroblasts, whereas pericytes are
unaffected, it is possible that the mild retinal phenotype ob-
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PDGF-BB-induced migration and proliferation in the aortic ring assay. Representative aortic rings; dashed lines highlight the boundaries of areas used for
quantitation. D: outgrowth assays in Nrp1�/� and Nrp1SMCiKO aortic rings treated with PDGF-BB (n � 5 Nrp1�/�, and n � 6 Nrp1SMCiKO) or VEGF-A (n �
4 Nrp1�/�, and n � 2 Nrp1SMCiKO). E: immunofluorescent staining of endothelial cells (IB4, red) and vascular smooth muscle cells (�-SMA, green) in aortic
ring outgrowths. Aortic ring assays were performed using male mice. NRP1, neuropilin 1; ns, not significant; SMA, smooth muscle actin; SMC, smooth muscle
cell.
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served results from a restricted role of myofibroblast-mediated
vascular remodeling in retinal vascularization.

Pathological neointima formation is attenuated following
SMC-Nrp1 knockout. To determine the role of SMC-Nrp1 in
pathological SMC accumulation giving rise to neointima for-
mation and vascular remodeling, we utilized the mouse
perivascular cuff model of vessel injury, in which neointima
formation is induced by placement of a nonocclusive cuff
around the femoral artery, without removal of the endothelial
cell layer (29). We detected a significant reduction in neoin-
tima formation in the Nrp1SMCiKO mutants versus controls at 21
days following cuff placement and tamoxifen treatment to
reduce Nrp1 expression in arterial SMC (Fig. 6, A and C–F).
Cell proliferation in the media in Nrp1SMCiKO mice was de-
creased versus controls, as measured by ki67 staining (Fig.
6, G–J), and the reduction in proliferation was statistically
significant (Fig. 6B), indicating that reduced SMC prolifer-
ation at least partly explains reduced neointima formation in
Nrp1SMCiKO mice (24). It is likely that medial proliferation

of the SMCs is followed by the migration of these cells
through the internal elastic lamina into the intima. Studies
have also implicated adventitial myofibroblasts in the de-
velopment of neointima (33, 34). These results are consis-
tent with inhibition of SMC/myofibroblast migration and pro-
liferation following genetic ablation of Nrp1 expression in
these cells in vivo.

In conclusion, this study identifies a novel requirement for
Nrp1 in SMCs and myofibroblasts during alveolar develop-
ment in vivo. A role for Nrp1 in lung development is also
supported by an earlier finding that constitutive loss of sema-
phorin-NRP1 signaling due to knock-in of mutant Nrp1 unable
to bind Sema3 ligands led to acute respiratory distress and high
neonatal mortality, which was associated with loss of alveolar
myofibroblasts at sites of presumptive septal tips (18), as we
found in Nrp1SMCiKO mice. However, Joza et al. did not
identify the cell types responsible for the phenotypes observed.
Since manifestation of the phenotype waned later in postnatal
life and later induction of knockout resulted in a milder
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Fig. 5. SMC-specific Nrp1 loss results in a mild reduction in retinal vascular density, but retinal vascular development is largely unaffected. A: retinal vascular
development showing arterial/venous differentiation (a and b), vascular outgrowth (c and d), SMC coverage (e and f), and pericyte coverage (g and h) in the
Nrp1SMCiKO mutants (b, d, f and h) vs. controls (a, c, e, and g) at P8. B: representative images from P8 wild-type and Nrp1SMCiKO retinas stained with endothelial
isolectin B4. C: quantification of vascular density at P8. *P � 0.02 vs. Nrp1�/�. D: quantification of vascular branching at P8; P � ns vs. Nrp1�/�. n � 3
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phenotype, our findings indicate a time-specific requirement
for Nrp1-expressing SMCs in the early stages of postnatal lung
development, whereas Nrp1 loss in SMCs at later stages of
postnatal lung development may not be required or could be
compensated by NRP2 and/or other mechanisms. This conclu-
sion is consistent with the report that postnatal deletion of Nrp1
at P5, using the tamoxifen-inducible Esr1-Cre transgene, only
caused a mild, transient alveolar and vascular phenotype,
indicating that expression of Nrp1 after P5 is not essential for
alveolar development or vascular function (19). Given that
PDGF-A is essential for alveolar (septal) myofibroblast devel-
opment and alveogenesis (7), the impairment of Nrp1-deficient
pulmonary myofibroblast migration in response to PDGF-AA
in vitro and the impairment of PDGF-BB-induced SMC out-
growth in Nrp1SMCiKO aortic rings suggest that Nrp1 may be
important for PDGF signaling in both SMCs and myofibroblast
migration and recruitment to septae during alveolar maturation.
Our findings may have relevance for neonatal respiratory
disorders such as bronchopulmonary dysplasia (BPD). Ab-
sence of alveolar myofibroblasts has been implicated in the
pathology of BPD (2), and levels of VEGF and VEGFR1/R2
are decreased in BPD (8), whereas downregulation of Nrp1,
Vegfr1, and Vegfr2 was reported in a baboon model of BPD
(40). Conversely, though alveolar myofibroblasts are abundant

during alveolarization, they are absent in adult lungs except in
fibrotic lung diseases such as interstitial fibrosis where they are
implicated in disease pathogenesis (45). NRP1 may therefore
be a therapeutic target in fibrotic diseases of the lung and other
pathologies in which excessive SMC/myofibroblast prolifera-
tion plays a role.

Our findings demonstrate that SMC expression of Nrp1 is
largely dispensable for early postnatal vascular development in
the retina and, since these mice appear normal and viable, is
therefore seemingly not required for SMC maturation in arte-
riogenesis more generally. The apparent restriction of early
postnatal defects in Nrp1SMCiKO to the lung may be due to the
important role of NRP1 in myofibroblast recruitment during
postnatal alveolar development, as revealed in this study; in
contrast, myofibroblasts may be less essential for postnatal
retinal vascularization or in development and expansion of
other vascular beds.

Our results also demonstrate a requirement for Nrp1 in
pathological SMC/myofibroblast proliferation and neointima
formation in vivo in a mouse perivascular cuff model, in
agreement with our previous findings demonstrating inhibition
of neointima formation due to targeted shRNA-mediated
knockdown of Nrp1 and Nrp2 in the rat balloon carotid artery
injury model (32). Taken together, these data support a role for
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Nrp1 in pathological neointimal SMC remodeling in response
to vascular injury, findings that may be relevant for vascu-
loproliferative diseases such as atherosclerosis and arterial
stenosis following angioplasty and transplantation.
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