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Abstract  16 

In bacteria, RNase III cleaves the initial long primary ribosomal RNA transcripts/precursors 17 

(pre-rRNAs), thereby releasing the pre-16S and pre-23S rRNAs for maturation. This cleavage 18 

is specified by the double-stranded secondary structures flanking the mature rRNAs, and not 19 

necessarily by the nucleotide sequences. Inhibition of this cleavage would lead to a build-up 20 

of pre-rRNA molecules. Doxycycline has earlier been shown to bind synthetic double-21 

stranded RNAs and inhibit their cleavage by RNase III. Since bacterial rRNA processing is 22 

primarily dependent on RNase III cleavage (which is inhibited by doxycycline), doxycycline 23 

could therefore inhibit the normal processing of bacterial rRNA. In this study, the effect of 24 

doxycycline on bacterial rRNA processing was investigated by analyzing the amounts of 25 

various rRNAs in growing E. coli cells treated with doxycycline. The results showed a 26 

doxycycline dose-dependent decrease in mature 16S and 23S rRNAs, concurrent with an 27 

accumulation of the initial rRNA transcripts and long precursors. Morphologically, treated 28 

cells were elongated at low drug concentrations, while nucleoid degeneration indicative of 29 

cell death occurred at higher drug concentrations. These observations suggest that 30 
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doxycycline inhibits the cleavage and processing of bacterial rRNA transcripts/precursors, 31 

leading to impaired formation of mature rRNAs, and the consequent inhibition of protein 32 

synthesis for which the tetracycline group of antibiotics are renowned. Since rRNA structure 33 

and processing pathway is conserved among bacterial species, this mechanism may account 34 

for the broad spectrum of antibiotic activity and selective microbial protein synthesis 35 

inhibition of doxycycline and the tetracyclines. 36 

Keywords: doxycycline/pre-rRNA/ribosomal RNA processing/RNase III 37 

cleavage/tetracycline antibiotics. 38 

Introduction 39 

Doxycycline is a member of the broad spectrum group of antibiotics known as the 40 

tetracyclines. The tetracyclines are known to inhibit bacterial protein synthesis by binding to 41 

the 16S ribosomal RNA (rRNA) and inhibiting the binding of aminoacyl-tRNA to the 42 

mRNA-ribosome complex [1-4]. However, their activity against other microbes which do not 43 

possess the 16S rRNA such as viruses, protozoa, and helminths has raised further questions 44 

as to the exact mechanism of action. In addition, despite conservation of ribosome structure 45 

and function between bacteria and host cells, the tetracyclines are sufficiently selective that 46 

the protein synthesis machinery of the host organism remains relatively unaffected. Despite 47 

their long history of usage as therapeutic agents, the mechanism(s) by which the tetracyclines 48 

achieve their wide range of effects and selectively inhibit microbial protein synthesis is not 49 

yet fully understood. 50 

Even though binding interactions with both the 16S and 23S rRNAs had earlier been 51 

indicated for the tetracyclines [5], an in vitro study to correlate ribosomal subunit activity 52 

with drug binding suggested that inhibition of tRNA binding to the A-site is solely due to 53 

tetracycline crosslinked to the strong binding site on the 30S ribosomal subunit [6]. Hence, 54 
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subsequent investigations on the mechanism of action of the tetracyclines and their 55 

interaction with ribosomal RNA concentrated on the 16S rRNA of the 30S ribosomal subunit 56 

[7]. Nevertheless, a recent study has shown that the tetracyclines (doxycycline and 57 

minocycline) bind to various synthetic double-stranded RNAs of random base sequence and 58 

inhibit their cleavage by RNase III in vitro [8]. This could imply that the double stranded 59 

secondary structures that frequently occur in cellular RNAs may be more crucial for the 60 

binding of the tetracyclines to RNA than the specific base pairs; and that the mechanism of 61 

action of the tetracyclines may be linked to the effect of the drugs on the processing of such 62 

cellular RNAs. If this is correlated in vivo, it could offer insights into the mechanism that 63 

underlie the activity of the tetracyclines against a wide range of pathogens, as well as in other 64 

non-infectious therapeutic indications of the drugs.  65 

Ribosomal RNAs constitute about 95% of total cellular RNA in E. coli [9]. They form the 66 

active sites of the ribosomes for decoding the message of the mRNA, as well as perform 67 

enzymatic functions in the translation process [10]. The rRNAs of prokaryotes are co-68 

transcribed from an operon (Fig 1), and E. coli has 7 copies of rRNA operons in the 69 

chromosome [11]. RNase III then cleaves the nascent rRNA transcripts at the double-70 

stranded stem regions that flank the mature 16S and 23S ribosomal RNA sequences to release 71 

the pre-16S and pre-23S rRNAs for further maturation [11-13]. In wild type cells, RNase III 72 

cleavage is very rapid, and occurs concurrently with transcription. Hence, only a very small 73 

amount of the long primary transcript (1-2% of total rRNA) is reported to be detectable in E. 74 

coli [14]. However, in RNase III-deficient strains, the 30S pre-rRNA accumulates [15]. In 75 

this study, the effects of doxycycline on the processing of bacterial ribosomal RNAs were 76 

investigated and correlated with their antibiotic activity in  growing E. coli cells, with a view 77 

to elucidate the molecular mechanism of their antimicrobial activity. 78 
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 79 

Materials and methods 80 

Probes and primers used in this study are listed in Table 1, and obtained from Sigma® 81 

Aldrich. Doxycycline was also purchased from Sigma® Aldrich. Nylon membranes were 82 

purchased from Roche (Roche # 11209299001). Hybridization probe labelling and detection 83 

was done using AlkPhos Direct™ labelling and detection System with ECF™ from GE 84 

healthcare life sciences (RPN3692). 85 

All procedures (sample collection, RNA extraction, gel electrophoresis, transfer to nylon 86 

membranes and northern blot hybridization) were performed at least in replicates of three 87 

independent experiments. 88 

 89 

Total RNA extraction 90 

An overnight culture of E. coli strain K-12 grown in LB broth was diluted 20 fold with fresh 91 

medium and incubated at 37
o
C in a Stuart orbital incubator S1500 with shaking for 1hr to 92 

ensure growth is activated. The culture was divided into aliquots to which were added 0-200 93 

µM doxycycline (0-96 µg/ml) and incubated at 37
o
C with shaking (180 rpm). Optical density 94 

(OD) of cultures was measured at 550nm using Biotek Powerwave XS universal spectrometer. 95 

2 ml of culture samples were taken from each treatment group at the indicated time points (0-96 

240 min). Nucleic acid decay was stopped in collected samples by immediate transfer of the 97 

samples to a cold microcentrifuge tube (on ice) containing 200 µl ethanol and 20 µl phenol 98 

[16]. The bacterial cells were harvested by centrifuging at 8000 rpm for 1 min, and lysed by 99 

re-suspending the pellet in 400 µl of Sigma B cell lysis reagent (Sigma® Aldrich). Total 100 

RNA was harvested by the phenol-chloroform extraction method with ethanol precipitation 101 
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[17]. 400 µl phenol (Sigma) was added to the samples and the tube vortexed vigorously for at 102 

least 2 min total. 400 µl RNase-free water and 400 µl chloroform (Sigma) was then added 103 

and vortexed vigorously for another 2 min. The tube was then centrifuged at 12000 rpm for 104 

15 min and 600 µl of the aqueous phase transferred to a fresh 2 mL tube. 60 µl of 3 M 105 

sodium acetate and 1.4 ml ethanol was added, mixed and held on ice for 10 min, and 106 

centrifuged at 10000 rpm in a microcentrifuge for 15 min. The supernatant was removed, and 107 

the pellet rinsed with 70% ethanol and dried. The resultant nucleic acid pellets were 108 

resuspended in 1x TE buffer (10 mM Tris, pH 8.0, 1 mM EDTA) and stored at -20
o
C until 109 

further use. The nucleic acid concentration of the extracts was quantified using NanoDrop 110 

ND-1000 spectrophotometer, and scored as an average of at least three readings. 111 

Northern blot analysis of mature rRNA from E. coli total RNA extract 112 

Ribosomal RNA was separated from the total RNA extracts by agarose gel electrophoresis. 5 113 

µl total RNA extracts from each sample was loaded in 1% agarose gels containing 1X MOPS 114 

buffer. For denaturing gel electrophoresis, the RNA samples were incubated with 3X volume 115 

of formaldehyde loading dye (Ambion) at 65
o
C for 10 min before loading. Electrophoresis 116 

was carried out at 90 V for 40 min in 1X MOPS buffer and gels were stained with 1X EtBr or 117 

SYBR® Gold (Invitrogen™). Images were taken with SynGene G:Box camera using 118 

GeneSnap software. The rRNA was subsequently transferred unto positively charged nylon 119 

membranes by gravity and capillary action. The gel was soaked in 20X saline-sodium citrate 120 

(SSC) buffer for 30 min, placed right side up on the nylon membrane without trapping air 121 

bubbles in-between and covered on both sides with Whatman filter paper that had been cut to 122 

size and soaked in 20X SSC buffer. The gel was wrapped around the edges with parafilm to 123 

prevent drying and ensure that transfer proceeds only through the gel. About 2 cm of paper 124 

towel was also cut to size, soaked in 10X SSC buffer and placed on top of the filter paper. A 125 
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small flat weight was then placed on top of the stack which was allowed to stand overnight.  126 

After overnight transfer, the membrane was rinsed with 2X SSC buffer and air-dried. RNA 127 

was cross-linked to the membrane by UV illumination for 1-1.5 min using SynGene G:Box 128 

transilluminator. Membranes were then stained with 2% methylene blue and de-stained in 2% 129 

SSC buffer to check for mature rRNA bands (visible to the naked eye). Images were taken 130 

using SynGene G:Box image camera. Membranes were subsequently stored dry at 4
o
C until 131 

used for hybridization. 132 

Probe design 133 

CCPR1 was designed to target a sequence 21 base pairs from the 3’ end of E. coli K-12 16S 134 

rRNA, and purchased from Sigma. CCPR2 was designed to target the sequence between 10 135 

bp downstream of K-12 16S rRNA and 10 bp upstream of 23S rRNA, including the 136 

intergenic sequences (Fig 1B). BLAST search (Basic Local Alignment Search Tool, NCBI) 137 

indicated no similarity to any other E. coli gene segment apart from the ribosomal RNA. 138 

CCPR2 was synthesized by PCR amplification using the primers shown on Table 1. The 139 

amplicon size was verified by matching the band of the PCR product on agarose gel 140 

electrophoresis with the band of DNA ladder of the expected size. 141 

Nucleic acid hybridization for detection of pre-rRNAs 142 

The probe was labelled with alkaline phosphatase using AlkPhos Direct™ labelling and 143 

detection System with ECF™ (GE healthcare life sciences) following the manufacturer’s 144 

instructions. For this experiment, a ten-fold dilution of overnight culture of E. coli K12 cells 145 

was grown to exponential phase for about 1.5 hrs in LB broth (to ensure a high cell 146 

harvest/rRNA yield) before adding doxycycline at the specified concentrations. The cultures 147 

were then incubated for only 20 min to minimize the differential inhibitory effects of the 148 

antibiotic concentrations on culture growth (OD) and concentration of the RNA extracted. 149 
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Hence, samples were collected at 20 min incubation time. The total RNA was extracted and 150 

separated by gel electrophoresis, then transferred onto nylon membranes. Membrane blots of 151 

the total RNA extracts were equilibrated in hybridization buffer for 15 min before overnight 152 

hybridization with the labelled probe in a hybridization oven at 42
o
C. Membranes were 153 

washed at 42
o
C with the primary wash buffer, and at room temperature with the secondary 154 

wash buffer. Detection reagent was applied to the membranes, which were then wrapped with 155 

cling film and incubated overnight in the dark to enhance development of the fluorescence 156 

signal. Blots were scanned and images were taken using SynGene G:Box camera.  157 

Fluorescence microscopy 158 

E. coli strain K-12 was grown in LB broth containing 0-200 µM doxycycline at 37
o
C for 20 159 

min. Cells were harvested by centrifuging and washed twice with 2x volume of 1x PBS. They 160 

were stained using DAPI (to examine the nucleoid morphology) by adding 1x volume of 1 161 

µM DAPI (Sigma) and incubating in the dark for about 5 min. Samples were then mounted 162 

on glass slides with cover slips. Cell morphology was examined with Leica DM4000B 163 

fluorescence microscope using DAPI filter. Images were captured with DC500 camera using 164 

Leica IM500 software programme. 165 

Data Analysis 166 

All RNA band intensities were quantified using the image analysis software, GeneTools from 167 

SynGene (Cambridge, UK). Statistical analysis was done using GraphPad Prisms 7.02. 168 

Means were compared using repeated measure ANOVA or paired t-test (as appropriate), 169 

while dose-response effects were analysed using non-linear regression fitted for direct (non-170 

normalized) response. Statistical significance was considered at 95% confidence interval (P 171 

≤0.05 significance level).  172 
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Results 173 

 174 

Doxycycline reduces the amounts of mature ribosomal RNA in vivo 175 

In view of earlier reports that doxycycline inhibits RNase III degradation/cleavage of double-176 

stranded RNA  in vitro [8], the effect of doxycycline on RNase III-dependent dsRNA 177 

cleavage/processing pathways in vivo was investigated. The most important and generalized 178 

RNase III-dependent processing pathway in bacteria cells with respect to protein synthesis is 179 

the processing of ribosomal RNA. RNase III cleavage is the rate limiting step for the 180 

formation of mature rRNAs which is necessary for protein synthesis in growing bacteria cells. 181 

To assess the effect of doxycycline on this processing pathway in vivo, total RNA was 182 

harvested from doxycycline-treated and untreated E. coli K-12 cells and analysed by native 183 

agarose gel electrophoresis. The intensities of the mature ribosomal RNA bands in the cells 184 

growing in the presence of 100µM doxycycline over a given time was compared with those 185 

of cells growing in the absence of the drug. The results show a significant (P= 0.0046 for 23S 186 

and 0.0091 for 16S rRNA) and progressive reduction (r = -0.7365 for 23S and -0.8126 for 187 

16S rRNA) in the band intensities of mature ribosomal RNAs over time in the cells growing 188 

with doxycycline, in contrast to those growing without the drug, which showed a progressive 189 

increase in rRNA band intensities that peaked at about 210 min (Fig 2). In the sample 190 

containing doxycycline, there was a sharp drop in the band intensities of the 16S and 23S 191 

ribosomal RNAs at 20 min, which subsequently increased slightly between 40-90 min before 192 

ultimately fading away. When gels of samples containing other concentrations of doxycycline 193 

(2-200µM) over time were analysed, it was observed that this sharp drop in the band 194 

intensities of the 16S and 23S rRNAs at 20 min only occurred at higher doxycycline 195 

concentrations (100-200µM); but at lower doxycycline concentrations (0-50µM), the 196 
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decrease is gradual and steady. These results suggest that doxycycline inhibits the formation 197 

of mature rRNAs, although the inhibition of bacterial growth in the presence of the drug may 198 

contribute to this effect. 199 

 200 

To determine whether the observed depletion of 16S and 23S rRNAs in doxycycline-treated 201 

samples was caused by inhibited rRNA formation due to processing rather than inhibited 202 

synthesis due to growth inhibition or death of bacteria cells, the RNA samples were also 203 

analysed by northern blot hybridization to detect the pre-16S rRNA (using CCPR1 probe). If 204 

the reduction in mature rRNA band intensities seen in Fig 2A was simply due to reduced cell 205 

numbers by the growth inhibitory activity of the drug, one would expect a commensurate and 206 

concurrent reduction in the amounts of pre-rRNA detected by northern blotting. However, 207 

northern blot hybridization assay of the samples showed the presence of long pre-rRNAs in 208 

both treated and untreated samples, with no significant difference (P= 0.7157) between the 209 

treated and untreated groups (Fig 2B). There was no reduction in pre-rRNA band intensity in 210 

doxycycline-treated cells. Instead, there was smearing of the pre-rRNA bands in doxycycline-211 

treated cells from earlier incubation time points (20-60 min), indicating the presence of 212 

variable sizes of pre-16S rRNA in all doxycycline-treated samples. This smearing only 213 

occurred at longer incubation times (120-240 min) in untreated samples. These results 214 

suggest that rRNA was still being transcribed in doxycycline-treated cells at all time points 215 

studied, but the rRNA transcripts and pre-rRNA were not adequately processed to form the 216 

mature 16S and 23S rRNAs. 217 

Interestingly, in the course of these experiments, some samples were analysed by denaturing 218 

gel electrophoresis that was run much longer (2-4hr) to allow a better separation of the RNA 219 

bands. In these experimental conditions, we observed a difference in the profile of the long 220 
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pre-rRNA bands between the samples that contain doxycycline and those without the drug.  221 

Whereas only one band was seen in the samples without the drug from about 60 min, the 222 

samples containing the drug showed an additional second band from about 210 min 223 

incubation time which represents different species/sizes of the long pre-rRNA. Since the pre-224 

rRNA are cleavage products of the initial transcripts, the observation of different pre-rRNA 225 

sizes between doxycycline-treated and untreated cells is suggestive of impaired/abnormal 226 

cleavage or processing of the rRNA transcripts in the presence of doxycycline. 227 

 228 

Doxycycline induces a dose-dependent inhibition of mature ribosomal RNA in growing 229 

bacteria cells 230 

In order to further investigate the involvement of doxycycline in the observed reduction in the 231 

amounts of mature ribosomal RNA in E. coli K-12 cells, total RNA from cells grown in the 232 

presence of various concentrations of doxycycline was assessed. Samples collected at both 20 233 

and 120 min of incubation time showed a dose-dependent decrease in the amounts of mature 234 

16S and 23S rRNA with increasing amounts of doxycycline (Fig 3). Statistical analysis 235 

showed that the concentration of doxycycline that gave a response half-way between baseline 236 

and maximal (IC50) at 20 min incubation time was 8.327µM (+/-SE 2.465, R
2
= 0.9554), and 237 

within the range of 4.295-17.95 µM at 95% confidence interval (CI). This increased at 120 238 

min incubation time to 76.51 µM (+/-SE 49.6, R
2
= 0.8947), and within 24.05-392.6 µM at 239 

95% CI. IC95 was observed at 100 µM doxycycline concentration, which had the lowest 240 

rRNA band intensity observed at both 20 and 120 min incubation times. The lower 241 

concentrations of doxycycline (2-20 µM) showed a slight increase in the intensity of mature 242 

rRNA bands at the longer incubation time (Fig 3A, 120 min). Further analysis of samples at 243 

increasing incubation time of different doses showed that this increase in mature rRNA band 244 
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intensity at lower concentrations of doxycycline was sustained over the duration of the 245 

experiments (240 min), and was highest at the lowest concentration of doxycycline used (2 246 

µM). This suggests that sub-inhibitory concentrations of doxycycline may induce rRNA 247 

formation/synthesis with time. In addition, there was also a general increase in the total RNA 248 

concentration of doxycycline treated samples at 120 min compared to the untreated samples 249 

(which was highest at 5 µM drug concentration; Fig 3F), despite decreased culture 250 

growth/OD at that incubation time (Fig 3E). However, in spite of the fact that the higher drug 251 

concentrations (50-200 µM) had higher total RNA concentration than the untreated cells at 252 

120 min incubation time (Fig 3E), they still showed decreased 16S and 23S rRNA band 253 

intensities in the gel (Fig 3A). This suggests that much of the RNAs at these drug 254 

concentrations are not mature rRNA. The growth curves also showed that all drug 255 

concentrations produced similar growth inhibitory effects at 20 min incubation time, but had 256 

variable effects at longer incubation times. At 120 min incubation time, the maximum growth 257 

inhibition was achieved with 10-20 µM (Fig 3E). These results therefore indicate that the 258 

effect of doxycycline on the formation of rRNAs in growing bacteria cells is affected by both 259 

drug dosage and incubation/treatment time, and that very low doses of doxycycline may 260 

induce rRNA transcription/formation over time. 261 

When the samples were analysed by northern blot hybridization to detect pre-16S rRNA 262 

using CCPR1 probe (Fig 3B), the intensity of the long rRNA precursors (initial transcript and 263 

pre-rRNA) increased with increasing drug concentration at 20 min incubation time, with 264 

smearing at the lower drug concentrations (2-20 µM). This indicates that more pre-16S rRNA 265 

is being retained in the long precursors with increasing drug concentration.  At 120 min, all 266 

the rRNA bands (except the rRNA transcript band) were smeared. Besides smearing, the pre-267 

rRNA bands became faint whereas the mature rRNA bands became more prominent at 120 268 
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min, especially at lower drug concentrations (2-20 µM) when compared to the 20 min 269 

samples. This indicates that the pre-rRNA was being cleaved (albeit inadequately) into 270 

smaller particles about the size of the mature 16S and 23S rRNAs with time, especially at low 271 

drug concentrations.  This is consistent with the observed increase in band intensities of the 272 

16S and 23S rRNAs at these low drug concentrations and longer incubation time in the gel 273 

image (Fig 3A).  Altogether, these results suggest that the inhibition of mature rRNA 274 

formation by doxycycline could be due to inadequate cleavage/processing of the long rRNA 275 

transcripts and pre-rRNAs. 276 

 277 

Doxycycline induces accumulation of pre-rRNAs in growing bacteria cells 278 

The observation that doxycycline inhibits RNase III cleavage of total RNA extracts in vitro 279 

and the formation of mature rRNAs in vivo could imply that the drug inhibits the cleavage 280 

and processing of the primary rRNA transcripts and pre-rRNA. If this is true, then 281 

doxycycline would induce accumulation of the unprocessed pre-rRNAs. This would 282 

substantiate the decrease in 16S and 23S rRNA bands as resulting from the effect of the drug 283 

on ribosomal RNA processing, rather than just a reflection of the rate of culture growth. 284 

Hence, the effect of doxycycline on the cleavage/processing of the primary ribosomal RNA 285 

transcript was further investigated in vivo by northern blot hybridization assay to assess the 286 

amounts of long primary rRNA transcripts and pre-rRNAs in growing bacteria cells treated 287 

with various concentrations of doxycycline. To minimize the growth inhibitory effect of the 288 

antibiotic and ensure good RNA yield in this experiment, bacterial cultures were initially 289 

grown to exponential phase before treatment, and thereafter, samples were harvested at 20 290 

min incubation time to minimize differential growth in the antibiotic media (culture OD and 291 

total RNA extract concentrations were also assessed for confirmation). A probe (CCPR2) that 292 
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is complementary to the spacer region between the mature 16S and 23S rRNAs (including 293 

about 10 nucleotides upstream and downstream as shown in Fig 1) was used to detect 294 

uncleaved rRNA transcripts and long pre-rRNAs in the total RNA extracts. If rRNA 295 

processing occurs normally, this region is cleaved off by RNase III, and further processing 296 

yields mature 16S and 23S rRNAs. If RNase III cleavage is inhibited, this region is retained 297 

and would accumulate in the initial transcripts and long pre-rRNA. 298 

Northern blot hybridization assay of the total RNA extracts from cells grown in the presence 299 

of various concentrations of doxycycline for 20 min (using the probe CCPR2) showed a dose-300 

dependent accumulation of the initial transcripts and long pre-rRNA species, concomitant 301 

with a dose-dependent decrease in the 16S and 23S rRNA species (Fig 4). There were two 302 

distinct bands representing two uncleaved long rRNA precursors detected by the probe: a 303 

long initial rRNA transcript (positioned just below the wells), and a long pre-rRNA 304 

(estimated to be about 9KB in size). Linear regression analysis of culture OD showed no 305 

significant change in the culture OD (P= 0.7745). For total RNA concentration, 50% of the 306 

observed reduction was induced at about 192µM doxycycline concentration (IC50 at 307 

R
2
=0.8534). Despite the culture OD being stable at all drug concentrations, and decreasing 308 

total RNA concentrations from 50-200µM drug concentrations (Fig 4C), both the initial 309 

rRNA transcript and the pre-rRNA band intensities increased with increasing doxycycline 310 

concentration (Fig 4D). It is interesting to note that the highest pre-rRNA band intensity 311 

occurred at doxycycline concentrations at which total RNA concentrations decreased. These 312 

observations strongly indicate that the effects of doxycycline on rRNA band intensities may 313 

be due to inhibition of rRNA transcript processing, and not essentially a reflection of culture 314 

growth inhibition by the antibiotic. 315 
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When the RNA band intensities were quantified by densitometry, statistical analysis of the 316 

results showed that 27.21 (+/- 19) µM doxycycline concentration (or 8.832-104.2 µM at 95% 317 

CI, R
2
=0.7949) induced 50% of the observed accumulation of pre-rRNAs (EC50). On the 318 

other hand, 4.149 (+/- 1.535) µM doxycycline concentration induced 50% of the observed 319 

reduction in 16S and 23S rRNAs (2.028-8.553 µM at 95% CI, R
2
=0.9596). It should be noted 320 

that the 16S and 23S rRNAs detected in this experiment are not yet fully mature (as they still 321 

contain some base sequences that are excised at maturation, which is detectable by the probe), 322 

and may differ slightly from the fully matured ones described in the previous sections. The 323 

concurrent increase in precursor rRNA species and decrease in 16S and 23S rRNAs indicates 324 

that much of the rRNAs are increasingly present as long precursor rRNAs with increasing 325 

doxycycline concentration. This reaches a peak at the higher drug concentrations (50-200µM) 326 

when only about 10% of the rRNA detected by the probe is in the 16S and 23S rRNA bands 327 

(Fig 4D inset). Taken together, these results indicate that doxycycline induces accumulation 328 

of uncleaved/long rRNA precursors, while inhibiting the formation of 16S and 23S rRNAs. 329 

This implies that doxycycline inhibits the cleavage of the rRNA transcripts and pre-rRNA 330 

into the smaller 16S and 23S fragments. 331 

 332 

Doxycycline induces bacterial cell elongation 333 

In order to correlate the molecular observations of the effects of doxycycline on ribosomal 334 

RNAs with the effect of the drug on the whole bacteria cell in vivo, the nucleoid morphology 335 

of cells treated with increasing concentrations of doxycycline for 20 min was examined. The 336 

results show that doxycycline induces elongation of bacteria cells at low doses (≤50µM), 337 

which is indicative of cell division inhibition. At higher drug concentrations, nucleoid 338 

degeneration was observed, which is indicative of early stages of cell death (Fig 5). This is 339 
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consistent with the observed decrease in total RNA concentration at 50-200µM doxycycline 340 

concentration, suggesting that bacterial cell death occurs at high drug concentrations. 341 

 342 

Discussion 343 

The currently held 16S rRNA binding mechanism of action of the tetracyclines so far have 344 

not been sufficiently correlated with in vivo effects of the drug and their wide range of 345 

antimicrobial (not just antibacterial) activities [18]. The recently reported double-stranded 346 

RNA binding may therefore be a mechanism worth investigating to help elucidate the 347 

molecular basis of their wide range of activities [8]. If the tetracyclines bind to dsRNA and 348 

inhibit their cleavage/degradation by RNase III as previously reported [8], it could induce the 349 

accumulation of rRNA transcripts/precursors in growing bacteria cells. 350 

The results presented here show a dose-dependent reduction of 16S and 23S rRNAs, 351 

concurrent with the accumulation of long rRNA precursors by doxycycline. Although any 352 

antibiotic that causes a reduction in bacterial growth would result in fewer cells growing in a 353 

culture medium, the observations in this study cannot be merely attributed to the growth 354 

inhibitory effects of an antibiotic. Several factors point towards a specific effect of 355 

doxycycline on mature rRNA formation rather than a reflection of the amount of cells in the 356 

culture. For instance, these effects were mostly observed at 20 min incubation time, when the 357 

effect of the drug on culture growth (OD) and total RNA concentration was minimal. 358 

Particularly, the greatest increase in pre-rRNA band intensity (Fig 4) occurred at drug 359 

concentrations at which there was a decrease in total RNA concentration (50-200µM). Even 360 

the cell morphology changes, which are consistent with the molecular observations and 361 

earlier reports for tetracycline [19], were also observed at 20 min incubation time. Moreover, 362 
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the increase in mature rRNA band intensities of low drug concentrations at longer incubation 363 

periods (120mins) when the growth inhibitory effects of the drug should have been more 364 

pronounced (Fig 3 A, D) indicate an effect on rRNA processing rather than culture growth. 365 

This is in agreement with earlier reports that Chlortetracycline induces initial stimulation of 366 

RNA synthesis especially at low concentrations, and subsequent accumulation of RNA while 367 

inhibiting protein synthesis [20, 21]. These reports suggested that the accumulated RNA 368 

species differ from both 23S and 16S rRNAs in their sedimentation properties (attributed to 369 

“incomplete precursors”), but could synthesize ribosomes during recovery from the antibiotic 370 

effects. In this study, the concurrent decrease in mature rRNAs and increase in precursor 371 

rRNAs as detected by northern blot hybridization (Fig 4D) indicate effects on rRNA 372 

processing by doxycycline. Furthermore, the observations of smeared pre-rRNA bands at 373 

longer incubation periods which decrease in intensity as the mature rRNAs increase in 374 

intensity (Fig 3B) also indicate effects on rRNA cleavage/processing. In view of the ability of 375 

doxycycline to inhibit RNase III degradation/cleavage of dsRNA [8], these results indicate 376 

that doxycycline inhibits the cleavage of long rRNA transcripts/precursors by RNase III; 377 

leading to the accumulation of the pre-rRNAs [15]. This initial inhibition of cleavage of the 378 

long rRNA precursors by doxycycline is subsequently relieved with time (Fig 3), as has also 379 

been demonstrated in vitro with synthetic dsRNA [8]. A combination of this subsequent 380 

recovery from the inhibitory effects of doxycycline with time and possible alternate 381 

processing pathway which is less efficient than the RNase III cleavage pathway [15, 22], 382 

would lead to improved processing of the rRNA precursors at longer incubation periods. This 383 

could explain the observation of increased mature rRNA band intensities at longer incubation 384 

time with lower drug concentrations (Fig 3A). The dose-dependent increase in the long rRNA 385 

precursors (Fig 4B) seems to suggest that doxycycline also stimulates rRNA transcription. 386 

This may occur via a positive feedback mechanism, as the transcribed rRNA is not being 387 
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processed to yield functional mature rRNA. Such feedback mechanisms involved in 388 

transcriptional regulation have been described in bacteria [23-25], and have recently been 389 

associated with the regulation of rRNA transcription [26]. On the other hand, it is unlikely 390 

that the inhibition of mature rRNA formation was due to inhibition of transcription. If that 391 

was so, one would expect a decrease in the initial rRNA transcript amounts. However, the 392 

reverse was the case in this study (Fig 3B, 4B&D), indicating the possibility of a positive 393 

feedback mechanism instead. The general picture appears to be like this: As doxycycline is 394 

added, the mature rRNA decreases and the cells react to the shortage of mature rRNas by 395 

increasing rRNA transcription. At higher doxycycline concentrations, more 396 

uncleaved/unprocessed pre-rRNA accumulate, and the cells activate/enhance alternative 397 

cleavage/processing pathways (such as by other nucleases) in an attempt to clear the 398 

accumulating pre-rRNAs. 399 

It has been reported that although RNase III cleavage is necessary for the maturation of 400 

23S rRNA, it is not essential for its function [27]. On the other hand, maturation of 16S 401 

rRNA could proceed in the absence of RNase III cleavage, as has been demonstrated in 402 

RNase III-deficient strain, even though such strains are known to grow slowly [28]. This is 403 

believed to be due to an alternative processing pathway in the absence of RNase III by other 404 

nucleases acting independently of RNase III [29, 30]. However, unlike the immature 23S 405 

rRNA which is functional in protein synthesis, the immature 16S rRNA is not functional in 406 

protein synthesis [28]. In this study, doxycycline was found to inhibit the amounts of both the 407 

16S and 23S rRNAs. It is therefore possible that the non-functionality of the immature 16S 408 

rRNA, in contrast to the functionally active immature 23S rRNA, led to the previous belief 409 

that the tetracyclines exert their antibacterial action solely by binding to the 16S rRNA [6].  410 
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It is interesting to note that the inhibitory effects of doxycycline on rRNA processing were 411 

observed at the effective antibacterial concentrations of the drug. MIC of doxycycline for E. 412 

coli K-12 and the range of plasma concentrations following clinical therapeutic usage is ≈4-413 

8µg/ml (≈10-20µM). However, drug concentrations in organs may reach 10-25 times that of 414 

serum [31]. Also, time-kill studies have shown that doxycycline exhibits time-dependent 415 

antibacterial effect on E. coli at low concentrations (2-4 times the MIC), but optimal dose-416 

dependent killing is achieved at higher drug concentrations of about 8-16 times the MIC [32]. 417 

This complex interplay of dose and time was also observed in this study on the effect of 418 

doxycycline on mature rRNA formation (Fig 3), and could have clinical implications for the 419 

effective use of doxycycline and other tetracycline antibiotics. Also, mutations in the 16S 420 

rRNA sequence that have been shown to confer resistance to tetracycline often occur at the 421 

double-stranded stem regions, and disrupt base pairing and formation of the secondary 422 

structures necessary for RNase III recognition and cleavage [33].  423 

The broad spectrum of antibacterial activity of the tetracyclines can be attributed to the 424 

highly conserved nature of rRNA processing via RNase III cleavage pathway among 425 

prokaryotes. In eukaryotes however, the processing of the ribosomal RNA involves a much 426 

more complex pathway that is not dependent on RNase III [34]. In addition, eukaryotic rRNA 427 

processing, occurs in a protected environment (nucleolus) where ionic conditions (especially 428 

Mg
2+

/divalent metal ion concentrations) are not ideal for doxycycline binding [8]. These 429 

differences in the processing pathway of prokaryotic and eukaryotic ribosomal RNAs could 430 

account for the selective inhibition of microbial protein synthesis, with minimal effects on 431 

eukaryotic protein synthesis [18]. The recovery from the inhibitory effects of the drug on the 432 

formation of mature ribosomal RNA with time supports the bacteriostatic mode of action of 433 

the tetracyclines. 434 



20 

 

Although the results presented here for doxycycline slightly digress from the 16S rRNA 435 

binding mechanism of action currently held for the tetracycline antibiotics, many of the 436 

underlying principles have been indicated long ago for various tetracyclines [5, 13, 19-21, 35-437 

37]. However, those leads seem to have been largely ignored in favour of certain postulations 438 

from in vitro studies [6, 18]. Nevertheless, this work would serve as a basis for further studies 439 

with other tetracycline antibiotics in this perspective. When correlated with their effects on 440 

non-bacterial and eukaryotic rRNA processing and non-infectious disease conditions, the 441 

molecular mechanism of action of the tetracyclines would be more definitively elucidated. 442 

Acknowledgments 443 

This work was supported by the Commonwealth Scholarship Commission in the UK. 444 

References 445 

1 Goldman RA, Hasan T, Hall CC, Strycharz WA, Cooperman BS. Photoincorporation of 446 
Tetracycline into Escherichia-Coli Ribosomes - Identification of the Major Proteins 447 
Photolabeled by Native Tetracycline and Tetracycline Photoproducts and Implications for the 448 
Inhibitory-Action of Tetracycline on Protein-Synthesis. Biochemistry 1983; 22: 359-368. 449 

 450 
2 Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular 451 

biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology 452 
Reviews 2001; 65: 232-260. 453 

 454 
3 Schnappinger D, Hillen W. Tetracyclines: Antibiotic action, uptake, and resistance 455 

mechanisms. Archives of Microbiology 1996; 165: 359-369. 456 

 457 
4 Chopra I, Hawkey PM, Hinton M. Tetracyclines, Molecular and Clinical Aspects. Journal of 458 

Antimicrobial Chemotherapy 1992; 29: 245-277. 459 

 460 
5 Day LE. Tetracycline inhibition of cell-free protein syntesis I. Binding of tetracycline to 461 

components of the system. Journal of Bacteriology 1966; 91: 1917-1923. 462 

 463 
6 Oehler R, Polacek N, Steiner G, Barta A. Interaction of tetracycline with RNA: 464 

photoincorporation into ribosomal RNA of Escherichia coli. Nucleic Acids Res 1997; 25: 1219-465 
1224. 466 



21 

 

 467 
7 Noah JW, Dolan MA, Babin P, Wollenzien P. Effects of Tetracycline and Spectinomycin on the 468 

Tertiary Structure of Ribosomal RNA in the Escherichia coli 30 S Ribosomal Subunit. J Biol 469 
Chem 1999; 274: 16576-16581. 470 

 471 
8 Chukwudi CU, Good L. Interaction of the tetracyclines with double-stranded RNAs of random 472 

base sequence: new perspectives on the target and mechanism of action. J Antibiot (Tokyo) 473 
2016; 69: 622-630. 474 

 475 
9 Yi H, Cho Y-J, Won S, Lee J-E, Jin Yu H, Kim S et al. Duplex-specific nuclease efficiently 476 

removes rRNA for prokaryotic RNA-seq. Nucleic Acids Research 2011; 39: e140-e140. 477 

 478 
10 Simons rw, Grunberg-Manago m. RNA structure and function. Cold Spring Harbor Laboratory 479 

Press, 1998. 480 

 481 
11 Srivastava AK, Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA 482 

processing. Annu Rev Microbiol 1990; 44: 105-129. 483 

 484 
12 Dunn JJ, Studier FW. T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large 485 

precursor RNAs in vivo by ribonuclease 3. Proc Natl Acad Sci U S A 1973; 70: 3296-3300. 486 

 487 
13 Nikolaev N, Schlessinger D, Wellauer PK. 30 S pre-ribosomal RNA of Escherichia coli and 488 

products of cleavage by ribonuclease III: length and molecular weight. J Mol Biol 1974; 86: 489 
741-747. 490 

 491 
14 King TC, Schlessinger D. S1 nuclease mapping analysis of ribosomal RNA processing in wild 492 

type and processing deficient Escherichia coli. Journal of Biological Chemistry 1983; 258: 493 
12034-12042. 494 

 495 
15 Gegenheimer P, Apirion D. Processing of procaryotic ribonucleic acid. Microbiol Rev 1981; 45: 496 

502-541. 497 

 498 
16 Nakashima N, Tamura T, Good L. Paired termini stabilize antisense RNAs and enhance 499 

conditional gene silencing in Escherichia coli. Nucleic Acids Res 2006; 34: e138. 500 

 501 
17 Mironov KS, Los DA. RNA Isolation from Synechocystis. Bio-protocol 2015; 5: e1428. 502 

 503 
18 Chukwudi CU. Ribosomal RNA binding sites and the molecular mechanism of action of the 504 

tetracyclines. Antimicrobial Agents and Chemotherapy 2016; 60: 4433-4441. 505 

 506 



22 

 

19 Rye RM, Wiseman D. Cell size changes during the growth of Escherichia coli partially 507 
inhibited by some antibacterial agents. J Pharm Pharmacol 1968; 20  Suppl: 8S-13S. 508 

 509 
20 Holmes IA, Wild DG. The synthesis of ribonucleic acid during inhibition of Escherichia coli by 510 

chlortetracycline. Biochem J 1965; 97: 277-283. 511 

 512 
21 Holmes IA, Wild DG. Inhibition of the growth of Escherichia coli by chlortetracycline. 513 

Biochem J 1967; 104: 679-685. 514 

 515 
22 Apirion D, Gegenheimer P. Processing of bacterial RNA. FEBS Lett 1981; 125: 1-9. 516 

 517 
23 Guespin-Michel J, Kaufman M. Positive Feedback Circuits and Adaptive Regulations in 518 

Bacteria. Acta Biotheoretica 2001; 49: 207-218. 519 

 520 
24 Ray JCJ, Igoshin OA. Adaptable Functionality of Transcriptional Feedback in Bacterial Two-521 

Component Systems. PLoS Comput Biol 2010; 6: e1000676. 522 

 523 
25 Todar K. Regulation and Control of Metabolism in Bacteria. Online Textbook of Bacteriology 524 

www.textbookofbacteriology.net, 2008. 525 

 526 
26 Nikolay R, Schmidt S, Schlömer R, Deuerling E, Nierhaus KH. Ribosome Assembly as 527 

Antimicrobial Target. Antibiotics (Basel) 2016; 5. 528 

 529 
27 King TC, Sirdeshmukh R, Schlessinger D. RNase III cleavage is obligate for maturation but not 530 

for function of Escherichia coli pre-23S rRNA. Proceedings of the National Academy of 531 
Sciences of the United States of America 1984; 81: 185-188. 532 

 533 
28 Srivastava AK, Schlessinger D. Processing pathway of Escherichia coli 16S precursor rRNA. 534 

Nucleic Acids Res 1989; 17: 1649-1663. 535 

 536 
29 Gegenheimer P, Watson N, Apirion D. Multiple pathways for primary processing of 537 

ribosomal RNA in Escherichia coli. Journal of Biological Chemistry 1977; 252: 3064-3073. 538 

 539 
30 Babitzke P, Granger L, Olszewski J, Kushner SR. Analysis of mRNA decay and rRNA processing 540 

in Escherichia coli multiple mutants carrying a deletion in RNase III. J Bacteriol 1993; 175: 541 
229-239. 542 

 543 
31 Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines 544 

including glycylcyclines. J Antimicrob Chemother 2006; 58: 256-265. 545 

 546 

http://www.textbookofbacteriology.net/


23 

 

32 Cunha BA, Domenico P, Cunha CB. Pharmacodynamics of doxycycline. Clin Microbiol Infect 547 
2000; 6: 270-273. 548 

 549 
33 De Stasio EA, Moazed D, Noller HF, Dahlberg AE. Mutations in 16S ribosomal RNA disrupt 550 

antibiotic--RNA interactions. EMBO J 1989; 8: 1213-1216. 551 

 552 
34 Eichler DC, Craig N. Processing of eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol 553 

1994; 49: 197-239. 554 

 555 
35 Wei Y, Bechhofer DH. Tetracycline induces stabilization of mRNA in Bacillus subtilis. Journal 556 

of Bacteriology 2002; 184: 889-894. 557 

 558 
36 Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN et al. A novel mechanism of 559 

action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci U S A 1996; 93: 560 
14014-14019. 561 

 562 
37 Atherly AG. Specific inhibition of ribosomal RNA synthesis in escherichia coli by tetracycline. 563 

Cell 1974; 3: 145-151. 564 

 565 
38 Cangelosi GA, Brabant WH. Depletion of pre-16S rRNA in starved Escherichia coli cells. J 566 

Bacteriol 1997; 179: 4457-4463. 567 

 568 

 569 

570 



24 

 

TABLES 571 

Table 1: Hybridization probes used for pre-rRNA northern blotting 572 

Probe/primer Target description* Length Sequence Reference 

ECR2 Mature 16S rRNA 28 5'-gtccccctctttggtcttgcgacgttat-3' [38] 

ECPR2 3’ pre-16S rRNA tail 

(rrnA, -D, -G, -H) 

30 5'-gtgtgagcactgcaaagtacgcttctttaa-3' [38] 

CCPR1  Pre-16S rRNA (3’ 

rrnA, -H; 5’ –D, -G) 

50 5’-cctgtagaggttttactgctcattttca 

tcagacaatctgtgtgagcact-3’ 

This work 

CCPR2 Pre-rRNA (3’ end of 

16S to 5’ end of 23S) 

457 * This work 

CCPR2 forward 

primer 

3’ end of 16S rRNA 22 5’-cacctccttaccttaaagaagc-3’ This work 

CCPR2 reverse 

primer 

5’ end of 23S rRNA 19 5’-tcgcttaacctcacaaccc-3’ This work 

*See Fig 1B for illustration of region of complementarity with target pre-rRNA. 573 

574 
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FIGURES, TITLES AND LEGENDS TO FIGURES 575 

 576 

Fig 1: Schematic representation of the primary transcript of ribosomal RNA of E. coli. 577 

(A) Mature rRNA sequences are indicated as bold line loops, and dsRNA within the 578 

precursor sequences represented by the stems (not drawn to scale). Arrows indicate proposed 579 

regions of double-stranded primary transcript RNase III cleavage sites, where cleavage 580 

releases the pre-16S and pre-23S rRNAs for further maturation to produce mature rRNAs. 581 

The * and ** symbols indicate the number of tRNA molecules within the operon at the 582 

indicated sites. * = 1 - 2, ** = 0 - 4. In addition, the rrnD in E. coli has two genes encoding 583 

5S rRNA. (B) Target position of the hybridization probes in relation to the mature ribosomal 584 

RNAs in the long primary rRNA transcript of E. coli. 585 

 586 
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 587 

Fig 2: Effect of doxycycline on mature rRNA amounts and rRNA sizes in growing 588 

bacteria cells over time. Northern blot membrane stained with methylene blue (A) of total 589 

RNA extract from E. coli cells growing in the absence and presence of 100µM doxycycline at 590 

various time points during growth showing the 23S and 16S rRNAs, and the hybridized 591 

membrane blot (B) showing rRNA primary transcript and pre-rRNA (that indicate continued 592 

transcription of rRNA) and smearing of the pre-rRNA in the presence of doxycycline. 593 

Graphical analysis of the rRNA band intensities (C,D) show significantly decreasing amounts 594 

of 16S and 23S rRNAs with time (P= 0.0046, r = -0.7365 for 23S, and P= 0.0091, r =  -595 

0.8126  for 16S rRNA) in cells that were grown in medium containing doxycycline, when 596 

compared to the increasing amounts of the rRNAs in cells growing without the drug. RFU= 597 

Relative fluorescence unit.  598 
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 599 

 600 

Fig 3: Effect of increasing concentrations of doxycycline on mature rRNA formation in 601 

growing bacterial cells. EtBr-stained denaturing agarose gel image (A) of total RNA 602 

extracted from E. coli cells grown in increasing concentrations of doxycycline (0-200µM) at 603 

20 min and 120 min incubation periods, showing decreasing amounts of 23S and 16S 604 



28 

 

ribosomal RNAs with increasing concentration of doxycycline as illustrated in the graphs (C, 605 

D), hybridized membrane blot of the gel (B) showing smearing of the RNA bands at 120 min, 606 

growth curve (E) and total RNA concentration of the samples (F).  IC50= 8.327µM (+/-SE 607 

2.465, R
2
= 0.9554) at 20 min incubation time and 76.51 µM (+/-SE 49.6, R

2
= 0.8947) at 608 

120min. RFU= Relative fluorescence unit, T=rRNA transcript. 609 

 610 

 611 

Fig 4: Effect of increasing concentrations of doxycycline on the processing of E. coli 612 

rRNA in vivo. (A) EtBr-stained denaturing agarose gel of total RNA extract from E. coli K-613 

12 cells grown in increasing concentrations of doxycycline. Samples were collected 20 min 614 

after treating with doxycycline, and total RNA extracted from the samples were fractionated 615 

in 1% denaturing agarose gel. S=starting culture sample at 0 min, 0=untreated culture at 616 
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20mins, M=NEB log 2-log DNA ladder (0.1-10.0 kb). (B) Northern blot nylon membrane 617 

hybridized with pre-rRNA probe CCPR2 showing the initial rRNA transcript (T) and long 618 

pre-rRNA. (C)Graphical presentation of the optical density of cultures and the concentration 619 

of total RNA extracted from them, showing no significant change in culture OD (P= 0.7745), 620 

and a slight decrease in RNA conc, from 50 µM doxycycline conc. S=starting culture sample 621 

at 0 min, 0=untreated culture at 20mins. (D) Graph of densitometric analysis of the various 622 

rRNA bands in B. The blot and graph show a dose-dependent increase in the long pre-rRNAs 623 

and concurrent decrease in 16S and 23S rRNAs with increasing doxycycline concentrations. 624 

RFU= Relative fluorescence unit. Inset shows percentage contribution of each rRNA species, 625 

as detected with the probe. 626 

 627 

 628 
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Fig 5: Effect of doxycycline on nucleoid morphology of E. coli. Fluorescent microscopy 629 

images of E. coli K-12 cells treated with 0-200µM doxycycline and incubated for 20 min 630 

before sample collection and processing for microscopy. Cells appear elongated at 20 and 50 631 

µM doxycycline, with nucleoid degeneration at 100-200µM. (x630). 632 

 633 

 634 


