RVC OPEN ACCESS REPOSITORY – COPYRIGHT NOTICE

This is the author's accepted manuscript of an article published in *The Veterinary Journal*. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

The full details of the published version of the article are as follows:

TITLE: Gait analysis in French bulldogs with and without vertebral kyphosis AUTHORS: S.E. Wyatt; P. Lafuente; G. Ter Haar; R.M.A. Packer; H.Smith; S. De Decker JOURNAL: The Veterinary Journal PUBLISHER: Elsevier PUBLICATION DATE: February 2019 DOI: https://doi.org/10.1016/j.tvjl.2018.12.008

1 Original Article 2

Gait analysis in French bulldogs with and without vertebral kyphosis

S.E. Wyatt ^a*, P. Lafuente ^a, G. Ter Haar ^a, R.M.A. Packer ^a, H. Smith ^a, S. De Decker ^a

^aDepartment of Veterinary Clinical Science and Services, Royal Veterinary College, University of London, Hawkshead lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, England

- * Corresponding author. Tel.: +44 1707666366.
- *E-mail address:* <u>swyatt@rvc.ac.uk</u> (S.E. Wyatt).

13 Abstract

- 14 The study objective was to compare temporal-spatial and kinetic gait variables in neurologically
- 15 normal French bulldogs with and without vertebral kyphosis. French bulldogs presented to a
- 16 dedicated brachycephalic clinic were prospectively enrolled. All dogs underwent general physical,
- 17 orthopaedic, and neurological examination prior to study inclusion. The presence of vertebral
- 18 kyphosis was evaluated by computed tomography and kyphosis was defined as a Cobb angle
- 19 exceeding 10°. Gait variables were collected using a pressure-sensitive GAITRite walkway with
- 20 GAITFour software and included measurement of total pressure index (TPI) defined as the sum of
- 21 peak pressure values recorded from each activated sensor by a paw during mat contact.
- 22 Fifteen French bulldogs with (n = 8) and without kyphosis (n = 7) were included. Cobb angle in
- 23 kyphotic dogs ranged from 14.9° to 39.5°. Univariate analyses were initially performed to examine
- the association between kyphosis and 16 gait variables. When those variables found to be associated
- 25 (P < 0.2) were taken forward into multivariate generalised linear mixed models (accounting for dog,
- velocity and side), kyphosis had a significant effect upon TPI of the forelimbs and TPI symmetry ratio
- 27 (P < 0.05); however, the size of these effects was small. Although vertebral kyphosis is rarely
- associated with neurological deficits, it was associated with subtle alterations in kinetic gait variables
- 29 (TPI forelimbs and TPI symmetry ratio). Further studies are needed to evaluate the clinical
- 30 importance of altered gait variables in French bulldogs with kyphosis.
- 31
- 32 Keywords: Biomechanics; Brachycephalic; Hemivertebra; Spinal

33 Introduction

- 34 Kyphosis is defined as an abnormal dorsal curvature of the vertebral column which is a common
- 35 sequela to congenital vertebral malformations such as hemivertebra (Guevar et al., 2014, Dewey et al.,
- 36 2016). Hemivertebra are a common finding in French bulldogs with a reported prevalence of 78% to
- 37 93.5% in neurologically unaffected animals (Moissonnier et al., 2011, Schlensker and Distl,
- 38 2013, Ryan et al., 2017). Although vertebral kyphosis can result in neurological abnormalities and
- 39 spinal cord dysfunction, in most dogs it is not associated with clinical signs and is generally
- 40 considered an incidental finding on imaging studies of the vertebral column (Moissonnier et al.,
- 41 2011, Dewey et al., 2016).
- 42
- 43 In a small number of dogs however, vertebral kyphosis is directly linked to repetitive and
- 44 progressive spinal cord injury (Aikawa et al., 2014, Charalambous et al., 2014). This is often
- 45 multifactorial in nature with dynamic and static factors involved including vertebral instability,
- 46 vertebral subluxation, and vertebral canal stenosis (Lorenz et al., 2011, Dewey et al., 2016).
- 47 In addition to neurological dysfunction, kyphosis may also be linked to secondary biomechanical
- 48 changes of the vertebral column (Faller et al., 2014). This can be manifested as altered gait variables,
- 49 which are challenging to detect and accurately quantify on visual assessment alone (Carr and Dycus,
- 50 2016). Pressure-sensitive gait analysis systems provide objective means for assessing gait variables
- and are a useful tool to improve the ability of clinicians to detect and diagnose subtle gait changes (De
- 52 Camp, 1997, LeQuang et al., 2009, Carr and Dycus, 2016). Their use for assessment of temporal-
- 53 spatial gait variables in both human and canine neurological patients has been previously validated
- 54 (Givon et al., 2009, Gordon-Evans et al., 2009, Lima et al., 2015).
- 55
- 56 French bulldogs are predisposed to several spinal conditions including intervertebral disc extrusions (Aikawa et al., 2014, Mayousse et al., 2017). This has been linked to a high prevalence of vertebral 57 malformations in the breed, although the exact pathophysiological mechanisms are currently unknown 58 (Inglez de Souza et al., 2018). Identification and documentation of altered temporal-spatial and kinetic 59 gait variables in French bulldogs with kyphosis may be important to evaluate the full spectrum of 60 potentially important clinical consequences associated with this malformation. Therefore, the study 61 62 objective was to collect and compare gait variables in French bulldogs with and without vertebral kyphosis by use of a portable pressure-sensitive walkway system. It was hypothesised that vertebral 63 kyphosis in clinically normal French bulldogs would have a significant effect on gait variables 64 65 compared with French bulldogs without vertebral kyphosis. 66

67 Materials and methods

68 Animals

69 French bulldogs which presented to a dedicated brachycephalic clinic at the study institution were

70 prospectively enrolled. All dogs underwent general physical, orthopaedic and neurological

71 examination before study enrollment; only those dogs with an unremarkable neurological and

72 orthopaedic examination were included in the study. Radiographic evaluation to further exclude

73 orthopaedic disease was not performed. Clinical information retrieved from the medical records

74 included: signalment, clinical history, physical examination findings, and results of diagnostic

75 investigations including diagnostic imaging findings. The study was granted ethical approval by the

76 Royal Veterinary College Clinical Research Ethical Review Board (Protocol number 20151393;

77 Approval date 21 October 2015). Owners of all dogs were required to sign an informed consent form

78 prior to inclusion (see Appendix: Supplementary File 1).

79 *Gait analysis*

80 Gait variables were collected using a 4.88×0.61 m portable walkway (GAITRite, platinum version,

81 CIR Systems) with 16,128 embedded pressure-sensitive sensors. The walkway was connected to a

82 laptop computer with dedicated software (GAITFour software, version 40f, CIR Systems). A camera

83 (Logitech mega pixel web camera, Logitech) was positioned immediately adjacent to the mat at a

84 height of 0.5 m to create digital video files of each pass along the walkway; this was automatically

85 linked to gait data generated from each walkway trial to allow verification of walks and footfall when

86 processing data. Prior to data analysis, paw prints were identified using the software program which

87 replicated gait patterns previously identified by the user.

88

89 The study protocol was based on previously validated gait analysis protocols (Light et al., 2010). Each 90 dog was allowed a habituation period of 10 min, during which they were walked freely around the 91 study area. Dogs were then walked along the mat until three valid trials were obtained within a 30-92 min period, and only the first three valid trials were selected for study inclusion. A trial was 93 considered valid when the dog walked straight ahead, at a consistent walk, with the head centered 94 straight forward. Three gait cycles per trial were needed as a minimum. The velocity of individual gait 95 cycles was compared to ensure variation within each pass along the walkway did not exceed 10%. 96 Walk velocity was restricted between 0.6 to 1.0 m/s. Those walks which did not meet these criteria were excluded. All dogs were walked by one of two study authors who were experienced animal 97 98 handlers and trained in the study protocol (SW, HS). Dogs were walked along the mat in both 99 directions equally, and the side which the leash was held alternated between left and right depending 100 on the direction of walk. All walks were completed prior to induction of general anaesthesia and 101 completion of imaging studies.

103 Imaging Studies

- 104 The presence of vertebral kyphosis was evaluated based on computed tomography(CT) imaging under
- **105** general anesthesia, and vertebral kyphosis was defined as a Cobb angle exceeding 10°. CT images
- 106 were acquired using a 16 multi-detector row unit (Mx8000 IDT, Philips). All imaging studies were
- assessed using a PACS workstation DICOM viewer (Osirix Imaging Software, version 3.9.2). The
- 108 degree of vertebral kyphosis was evaluated through measurement of the Cobb angle by one study
- author (SDD), using the automated method described by Guevar et al. (2014). Study dogs were then
- 110 divided into kyphotic and non-kyphotic groups.

111 *Gait variables*

- 112 The following temporal-spatial data were extracted for each dog: (1) Stride length (the distance
- between two strikes of a single paw on the ground); (2) Stance time (the length of time a paw is in
- 114 contact with the ground during a gait cycle); (3) Hind reach (calculated from the heel center of the
- hind paw to the heel center of the fore paw on the same side); (4) Number of activated sensors per
- paw per gait cycle; (5) Number of gait cycles per trial; and (6) Mean gait velocity. Furthermore, the
- 117 kinetic variables 'total pressure index' (TPI), and TPI % were also determined. TPI was defined as
- 118 'the sum of peak pressure values recorded from each activated sensor by a paw during mat contact,
- 119 represented by switching levels and reported as a scaled pressure from zero to seven for each sensor'
- 120 (Light et al., 2010). TPI % represents the TPI as a percentage of all four limbs and illustrates weight
- 121 distribution across all four paws.

122 *Statistical methods*

- Data was exported from the gait software into a commercially available data analysis programme
 (Microsoft Excel 15.26, 2016) for descriptive statistics. Symmetry ratios (SR) of gait variables were
- 125 calculated for each dog by dividing the forelimb value of each parameter by the hind limb value
- 126 (SR = $X_{\text{fore}}/X_{\text{hind}}$). The SR metric was chosen over other measures of symmetry as it has the advantage
- 127 of being easily interpreted (Patterson et al., 2010).
- 128
- 129 Further statistical analysis was performed using SPSS Statistics Desktop (V22.0, IBM) to evaluate the
- 130 effect of vertebral kyphosis on individual gait variables. Generalised linear mixed models (GLMM)
- 131 were constructed with individual gait variables included in models as the outcome measures, with
- 132 presence of kyphosis as a binary predictor variable. Three trials were included for each dog in all
- analyses, with non-independence of this data accounted for by including dog ID as a random effect in
- all models. In initial univariate GLMM analyses, the effect of kyphosis upon all individual gait
- 135 variables was investigated, with only dog ID included as an additional (random) effect. For those gait
- 136 variables associated with kyphosis at the univariate level (P < 0.2), multivariate models were
- 137 constructed where velocity and side of the dog were included as fixed effects to account for their

138potential impact upon other gait variables. Correlation between gait variables was checked to reduce139the number of variables tested and thus the type I error. P < 0.05 was considered statistically

significant in all tests.

141

To estimate the magnitude of the effect of kyphosis upon gait variables, the omega-squared (ω^2) effect size statistic was calculated for models in which kyphosis was a significant predictor of gait. Omegasquared is an estimate of how much variance in the outcome variables (gait) are accounted for by the explanatory variables (in this case, kyphosis). Magnitude of ω^2 was interpreted in line with Murphy and Myors (2004), where 0 indicates no effect, a small effect = 0.01, a medium effect = 0.06 and a large effect = 0.14.

148

149 **Results**

Twenty French bulldogs were initially enrolled in the study. Five dogs were excluded as they failed to
produce three valid gait trials within the 30-min period. Hence, 15 French bulldogs were included in
the final study. These dogs had a mean age of 21 months (range: 6–48 months) and a mean body mass
of 11.2 kg (range: 7.8–15.4 kg). Twelve dogs were male (four neutered) and three were female (one
neutered).

155

All dogs underwent CT imaging of the cervical and thoracic vertebral column for further investigation 156 of brachycephalic obstructive airway syndrome (BOAS); seven dogs had no vertebral kyphosis while 157 eight dogs had evidence of kyphosis (Fig. 1). Cobb angle in kyphotic dogs ranged from 14.9° to 39.5° 158 (mean: 26.2°). Cobb angle in non-kyphotic dogs ranged from 0.5° to 6.2° (mean: 4.1°). Twelve study 159 dogs had evidence of thoracic vertebral body malformations while only three study dogs had no 160 obvious vertebral malformations. Of those dogs with thoracic vertebral body malformations, one dog 161 had a single malformed vertebral body while the remaining eleven dogs had between 2 and 9 162 malformed vertebrae. The most commonly affected vertebra was the sixth thoracal vertebra (T6), 163 164 which was abnormal in nine dogs, but affected vertebrae ranged from the second to the thirteenth thoracal vertebra (T2–T13). In those dogs with kyphosis, all vertebral malformations were associated 165 166 with the kyphotic curve apex.

167

168 Three valid gait trials were collected for each dog at a walk (Table 1). The average number of gait

169 cycles per valid trial was five. Gait velocity was 0.742 m/s (standard deviation (SD) ± 0.122) for non-

170 kyphotic dogs and 0.793 m/s (SD \pm 0.158) for kyphotic dogs. There was no statistically significant

- difference in gait velocity between the two groups (P = 0.241). In non-kyphotic dogs, the number of
- activated sensors in the thoracic limbs was 9.83 (SD \pm 1.24) and in kyphotic dogs, it was 9.75
- 173 (SD \pm 1.48). In non-kyphotic dogs, the number of activated sensors in the pelvic limbs was 5.35

174 (SD \pm 0.71) and in kyphotic dogs was 4.83 (SD \pm 1.47). Overall, there was no significant difference in 175 the number of activated sensors in the thoracic limbs (*P* = 0.847) or pelvic limbs (*P* = 0.129) between 176 kyphotic and non-kyphotic groups.

177

In univariate analyses (with dog ID accounted for as a repeated measure), seven gait variables were 178 found to be associated with the presence of kyphosis (P < 0.20): Hind reach, TPI forelimbs, TPI % 179 forelimbs, TPI hind limbs, TPI % hind limbs, TPI symmetry ratio, and TPI % symmetry ratio (see 180 Appendix: Supplementary File 2). For non-kyphotic dogs, TPI fore limbs was 66.5 (95% CI: 64.7– 181 68.3) and TPI hind limbs was 33.4 (95% confidence interval (CI): 31.6-35.2). For kyphotic dogs, TPI 182 fore limbs was 69.4 (95% CI: 67.6-71.2) and TPI hind limbs was 30.8 (95% CI: 28.9-32.6). As TPI 183 was strongly correlated with TPI % for fore and hind limbs in kyphotic and non-kyphotic dogs 184 (r > 0.7 and P < 0.001), only TPI variables were explored in multivariate analyses, to reduce the 185

- 186 likelihood of type I errors from multiple testing.
- 187

In multivariate analyses, kyphosis significantly affected two gait variables: TPI forelimbs and TPI
symmetry ratio (Fig. 2; see Appendix: Supplementary File 3). Although significant, the effect size of

190 kyphosis upon these two kinetic gait variables was small (TPI fore $\omega^2 = 0.004$; TPI symmetry ratio

191 $\omega^2 = 0.003$). Velocity had a significant effect on TPI forelimbs, TPI hind limbs and TPI symmetry

192 ratio. No effect of side was found in any model (P > 0.05).

193

194 Discussion

195 Although vertebral kyphosis is rarely associated with neurological deficits, the findings of the current 196 study suggest an association with subtle alterations in kinetic gait variables. Dogs with kyphosis had a greater TPI in their thoracic limbs and an altered TPI symmetry ratio when compared to dogs without 197 kyphosis. This means that dogs with vertebral kyphosis shifted weight from the pelvic limbs onto the 198 199 thoracic limbs. While the effect of kyphosis was statistically significant, the numerical difference in 200 gait variables between the study groups was relatively minor, and calculated effect sizes were small. 201 The results should therefore be interpreted with the small magnitude of effect in mind. However, the 202 study hypothesis was largely unsupported, as the majority of gait variables tested were not

203 significantly different between kyphotic and non-kyphotic dogs.

204

Although the dogs in this study were clinically normal, altered kinetic gait variables which were not

206 evident on visual gait assessment and only detectable using the walkway, suggest that dogs with

207 kyphosis may undergo a compensatory adaption secondary to a structural abnormality. It is unclear if

208 the pathophysiological basis for this compensatory adaption is due to compromise of neurological

209 pathways involving sensory or motor tracts, or if it is simply a biomechanical adaptation. The inability 210 to definitively differentiate between ataxia and paresis using the pressure walkway is an intrinsic 211 limitation of the system. In the human literature, previous studies utilizing the GAITrite system 212 attempted to correlate alterations in temporal-spatial gait variables with functional impairments using a graded scoring system, although all those patients were neurologically abnormal (Givon et al., 213 2009). Interestingly, in a study by Gordon-Evans et al. (2009), dogs with thoracolumbar spinal cord 214 215 disease also distributed more weight on neurologically normal thoracic limbs as a result of pelvic limb ataxia compared with clinically normal dogs. In the same study, neurologically affected dogs also 216 exhibited decreased stance time, stride time, and stride length in the thoracic limbs, and increased 217 swing time in the pelvic limbs (Gordon-Evans et al., 2009). In contrast, kyphotic dogs in the current 218 study distributed more weight on thoracic limbs but temporal-spatial gait variables remained 219 220 unchanged; this suggests the pathophysiology of altered kinetic gait variables in kyphotic dogs may have a non-neurological mechanism and may simply represent a biomechanical adaptation rather than 221

- subclinical neurological disease.
- 223

While the clinical relevance of the study findings is currently unclear, vertebral malformations could 224 225 predispose affected dogs to degenerative changes of the vertebral column. Dogs with kyphosis are 226 more likely to have a different anatomical distribution of thoracolumbar intervertebral disc disease 227 and earlier degeneration of adjacent intervertebral discs (Aikawa et al., 2014, Faller et al., 228 2014, Inglez de Souza et al., 2018). French bulldogs are known to be at risk of spinal conditions such 229 as intervertebral disc extrusion and spinal arachnoid diverticula (Aikawa et al., 2014, Mauler et al., 230 2014, Mayousse et al., 2017). The pathophysiology is considered to be multifactorial with genetic, 231 anatomic and biomechanical factors involved (Brisson, 2010, Mauler et al., 2014), but altered gait 232 variables and vertebral loading is one possible cause. The mechanisms responsible are likely related to 233 asymmetrical loading of vertebrae and intervertebral discs adjacent to the kyphotic vertebral segments, and secondary effects on supporting soft tissues with altered stress-loading cycles (Stokes 234 and Iatridis, 2004, Moissonnier et al., 2011, Ortega et al., 2012, Aikawa et al., 2014, Faller et al., 235 236 2014). Therefore, while vertebral kyphosis is rarely a direct cause of clinical signs in affected dogs, it is possible that biomechanical changes associated with kyphosis could contribute to the development 237 of spinal conditions such as intervertebral disc disease. Biomechanical changes and chronic alterations 238 239 in loading of appendicular joints could also have wider implications on the health status of affected 240 individuals, such as increased incidence of orthopaedic disease and degenerative arthropathies of thoracic limbs (Kaplan et al., 2017, Roemhildt et al., 2010, Vos et al., 2009). The study findings 241 242 suggest that although thoracic vertebral malformations and spinal kyphosis are only rarely considered 243 the direct cause of clinical signs, their occurrence should not necessarily be a benign finding. These 244 conclusions may raise welfare issues associated with the breed conformation and could also have 245 implications for other screw-tailed brachycephalic breeds commonly affected with vertebral kyphosis.

246 Temporal-spatial gait variables have been evaluated in several canine breeds to establish breed-

- specific reference ranges (Light et al., 2010, Lima et al., 2015). The results from non-kyphotic study
- 248 dogs provide breed-specific reference values not previously reported for French bulldogs. Gait
- variables vary significantly between dogs of different body mass and size, which may in turn, lead to
- variation in the center of gravity and influence the force distribution between different limbs (Bertram
- et al., 2000, Voss et al., 2010). Although it is difficult to directly compare gait variables between
- different breeds for the reasons outlined above, comparison of symmetry ratios can be useful. In the
- current study, non-kyphotic dogs had a 67:33 percentage weight distribution for thoracic and pelvic
- limbs, respectively. This ratio is noticeably different from the previously reported 60:40 weight
- distribution assumed for the normal canine population at a walk (Nunamaker and Blauner,
- 256 1985; Kano et al., 2016). This suggests that this deviation of 'normal' is likely breed specific and
- 257 related to conformational differences between specific canine breeds, as demonstrated in a previous
- 258 study (Voss et al., 2011).
- 259

260 The prevalence of thoracic vertebral malformations in our study population was similar to earlier studies (Moissonnier et al., 2011, Schlensker and Distl, 2013, Ryan et al., 2017). The fact that the 261 262 majority of neurologically normal French bulldogs are affected with such malformations creates some 263 difficulty to define what is 'normal' in this breed. It would be interesting to collect gait variables in 264 French bulldogs with neither thoracic vertebral malformations nor kyphosis to better investigate the 265 influence of these anomalies on gait variables. Practically however, this is challenging considering up 266 to 93.5% of French bulldogs may be affected with such malformations (Ryan et al., 2017). Future work involving data stratification based on Cobb angle measurement may focus on the correlation 267 268 between gait variables and the degree of kyphosis. A vertebral angulation threshold of 10° was chosen 269 in this study as this has previously been reported as clinically relevant in the human literature 270 (Angevine and Deutsch, 2008). While a Cobb angle measurement of 35° or more is linked to an increased risk of neurological disease (Guevar et al., 2014), it is quite plausible that there could be 271 clinical consequences well before this. Vertebral kyphosis has previously been classified as mild 272 $(<15^{\circ})$, moderate $(15-60^{\circ})$, or severe $(>60^{\circ})$ although no direct correlation with clinical significance 273 274 was reported (Aikawa et al., 2007).

275

The primary limitation of the current study was the small sample size which was smaller in number
than the number of gait variables examined; this could lead to type II error and restricts the possible
conclusions. Nevertheless, two gait variables were significantly different between the study groups
and these findings provide a basis for further research which would ideally utilize a larger sample
size. The variation in handlers is another limitation; despite both handlers being experienced and
trained in the study protocol, there is potential for introduction of variability (Keebaugh et al., 2015).
Although previous studies by Gordon-Evans et al. (2009) and Lima et al. (2015) may allow some

- 283 predictions regarding the possible effect of kyphosis on specific gait variables, this study is one of the
- first of its kind. Therefore, the study hypothesis was rather exploratory and examined a broad set of
- 285 gait variables. This restricts the impact of the study conclusions, although the findings provide
- grounds on which future research hypotheses with a more specific focus may be based. Another
- 287 limitation was the lack of a 'control' group of dogs. It would indeed have been valuable to recruit a
- population of dogs with neither evidence of vertebral kyphosis or vertebral malformations. Due to the
- high prevalence of vertebral malformations within the breed (Moissonnier et al., 2011, Schlensker and
- 290 Distl, 2013, Ryan et al., 2017), this was not practically possible within the time constraints of the
- study. Finally, another study limitation was the lack of information regarding classification of each
- vertebral malformation in the dogs under study. While this was beyond the scope of the current study,
- it is possible that different vertebral malformations may have a different effect on gait variables.
- 294

295 Conclusions

296 Vertebral kyphosis was associated with subtle alterations in kinetic gait variables (TPI fore limbs and297 TPI symmetry ratio), with kyphotic dogs redistributing weight from pelvic limbs onto thoracic limbs.

298 This could be linked with altered vertebral loading and potentially predispose French bulldogs to

- degenerative changes of the vertebral column. However, 14 of 16 gait variables tested were not
- 300 significantly different between kyphotic and non-kyphotic dogs. Therefore, the study hypothesis was
- 301 largely unsupported. Further studies are necessary to fully evaluate the clinical relevance of altered
- 302 gait variables and its influence on spinal biomechanics.
- 303

304 Conflict of interest statement

This research did not receive any specific grants from funding agencies in the public, commercial, or
 not-for-profit sectors. None of the authors has any financial or personal relationships that could

- 307 inappropriately influence or bias the content of the paper.
- 308

309 Acknowledgements

- 310 Preliminary results were presented as an Abstract at the British Small Animal Veterinary Society
- 311 (BSAVA) Congress, Birmingham, England, 6-9 April 2017. Royal Veterinary College Clinical
- Research Ethical Review Board: protocol number 20151393; Approval date 21 October 2015.
- 313

314 **References**

- Aikawa, T., Kanazono, S., Yoshigae, Y., Sharp, N., Munana, K., 2007. Vertebral stabilization using
- positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal
- 317 canal stenosis and vertebral instability caused by congenital thoracic vertebral abnormalities.
- 318 *Veterinary Surgery* 36, 432-441.
- 319 Aikawa, T., Shibata. M., Asano, M., Hara, Y., Tagawa, M., Orima, H., 2014. A comparison of
- 320 thoracolumbar intervertebral disc extrusion in French Bulldogs and Dachshunds and association with
- 321 congenital vertebral anomalies. *Veterinary Surgery* 43, 301-307.
- Angevine, P.D., Deutsch, H., 2008. Idiopathic scoliosis. Neurosurgery 63, A86–A93. Bertram, J., Lee,
- 323 D., Case, H., Todhunter, R., 2000. Comparison of the trotting gaits of Labrador Retrievers and
- 324 Greyhounds. *American Journal of Veterinary Research* 61, 832-838.
- Brisson, B., 2010. Intervertebral disc disease in dogs. *Veterinary Clinics of North America: Small Animal Practice* 40, 829-858.
- 327 Carr, B., Dycus, D., 2016. Canine gait analysis. Today's Veterinary Practice 7, 93-100.
- 328 Charalambous, M., Jeffery, N.D., Smith, P.M., Goncalves, R., Barker, A., Hayes, G., Ives, E.,
- 329 Vanhaesebrouck, A.E., 2014. Surgical treatment of dorsal hemivertebrae associated with kyphosis by
- spinal segmental stabilisation, with or without decompression. *The Veterinary Journal* 202, 267-273.
- 331 De Camp, C., 1997. Kinetic and kinematic gait analysis and the assessment of lameness in the dog.
- 332 *Veterinary Clinics of North America: Small Animal Practice* 27, 825-840.
- Dewey C.W., Davies E., Bouma J.L., 2016. Kyphosis and kyphoscoliosis associated with congenital
 malformations of the thoracic vertebral bodies in dogs. *Veterinary Clinics of North America: Small Animal Practice* 46, 295-306.
- Faller, K., Penderis, J., Stalin, C., Guevar, J., Yeamans, C., Guiterrez-Quintana, R., 2014. The effect
 of kyphoscoliosis on intervertebral disc degeneration in dogs. *The Veterinary Journal* 200, 449-451.
- 338 Givon, U., Zeilig, G., Achiron, A., 2009. Gait analysis in multiple sclerosis: Characterization of
- temporal-spatial parameters using GAITRite functional ambulation system. *Gait & Posture* 29, 138142.
- 341 Gordon-Evans, W., Evans, R., Knap, K., Hildreth, J., Pinel, C., Imhoff, D., Conzemius, M., 2009.
- Characterization of spatiotemporal gait characteristics in clinically normal dogs and dogs with spinal
 cord disease. *American Journal of Veterinary Research* 70, 1444-1449.
- 344 Guevar, J., Penderis, J., Faller, K., Yeamans, C., Stalin, C., Gutierrez-Quintana, R., 2014. Computer-
- 345 assisted radiographic calculation of spinal curvature in brachycephalic "screw-tailed" dog breeds with

- congenital thoracic vertebral malformations: reliability and clinical evaluation. *PLOS ONE* 9,e106957.
- 348 Inglez de Souza, M., Ryan, R., Ter Haar, G., Packer, R., Volk, H., De Decker, S., 2018. Evaluation of
- the influence of kyphosis and scoliosis on intervertebral disc extrusion in French bulldogs. *BMC*
- 350 Veterinary Research 14:5.
- 351 Kaplan, J.T., Neu, C.P., Drissi, H., Emery, N.C., Pierce, D.M., 2017. Cyclic loading of human
- articular cartilage: The transition from compaction to fatigue. *Journal of the Mechanical Behavior of*
- 353 *Biomedical Materials* 65, 734-742.
- Keebaugh, A.E., Redman-Bentley, D., Griffon, D.J., 2015. Influence of leash side and handlers on
- pressure mat analysis of gait characteristics in small-breed dogs. *Journal of the American Veterinary Medical Association* 246, 1215-1221.
- LeQuang, T., Maitre, P., Roger, T., Viguier, E., 2009. Is a pressure walkway system able to highlight a lameness in dog? *Journal of Animal and Veterinary Advances* 8, 1936-1944.
- Light, V., Steiss, J., Montgomery, R., Rumph, P., Wright, J., 2010. Temporal-spatial gait analysis by
- use of a portable walkway system in healthy Labrador Retrievers at a walk. *American Journal of Veterinary Research* 721, 997-1002.
- Lima, C., Da Costa, R., Foss, K., Allen, M., 2015. Temporospatial and kinetic gait variables of
- 363 Doberman Pinschers with and without cervical spondylomyelopathy. *American Journal of Veterinary* 364 *Research* 79, 848-852.
- 365 Lorenz, M.D., Coates, J.R., Kent, M., 2011. Pelvic limb paresis, paralysis, or ataxia. In: Stringer, S.,
- Graham, B. (Eds.). *Handbook of Veterinary Neurology*, 5th Edn. Elsevier Saunders, St. Louis, MO,
 USA, pp. 144-145.
- 368 Mauler, D., De Decker, S., De Risio, L., Volk, H., Dennis, R., Gielen, I., Van Der Vekens, E.,
- 369 Goethals, K., Van Ham, L., 2014. Signalment, clinical presentation, and diagnostic findings in 122
- dogs with spinal arachnoid diverticula. Journal of Veterinary Internal Medicine 28, 175-181.
- 371 Mayousse, V., Desquilbet, L., Jeandel, A., Blot, S., 2017. Prevalence of neurological disorders in
- French bulldog: a retrospective study of 343 cases (2002–2016). *BMC Veterinary Research* 13: 212.
- 373 Moissonnier, P., Gossot, P., Scotti, S., 2011. Thoracic kyphosis associated with hemivertebra.
- 374 *Veterinary Surgery* 40, 1029-1032.
- 375 Murphy, K.R., Myors, B., 2004. A simple and general model for power analysis. In: Murphy, K.R.,
- 376 Myors, B. (Eds.). Statistical Power Analysis: A Simple and General Model for Traditional and
- 377 *Modern Hypothesis Tests* (2nd ed.). Lawrence Erlbaum, Mahwah NJ, pp. 18-43.

- 378 Ortega, M., Goncalves, R., Halley, A., Wessmann, A., Penderis, J., 2012. Spondylosis deformans and
- diffuse idiopathic skeletal hyperosteosis (DISH) resulting in adjacent segment disease. *Veterinary Radiology and Ultrasound* 53, 128-134.
- 381 Patterson, K., Gage, W., Brooks, D., Black S., McIlroy, W., 2010. Evaluation of gait symmetry after
- 382 stroke: A comparison of current methods and recommendations for standardization. *Gait & Posture*
- 383 31, 241-246.
- 384 Roemhildt, M.L., Coughlin, K.M., Peura, G.D., Badger, G.J., Churchill, D., Fleming, B.C., Beynnon,
- B.D., 2010. Effects of increased chronic loading on articular cartilage material properties in the lapine
 tibio-femoral joint. *Journal of Biomechanics* 43, 2301-2308.
- 387 Ryan, R., Gutierrez-Quintana, R., Ter Haar, G., De Decker, S., 2017. Prevalence of thoracic vertebral
- 388 malformations in French bulldogs, Pugs and English bulldogs with and without associated
- neurological deficits. *The Veterinary Journal* 221, 25-29.
- Schlensker, E., Distl, O., 2013. Prevalence, grading and genetics of hemivertebrae in dogs. *European Journal of Companion Animal Practice* 23, 119-123.
- 392
- Stokes, I., Iatridis, J., 2004. Mechanical conditions that accelerate intervertebral disc degeneration:
 overload versus immobilization. *Spine* 29, 2724-2732.
- Vos, P., Intema, F., van El, B., DeGroot, J., Bijlsma, J.W., Lafeber, F., Mastbergen, S., 2009. Does
- loading influence the severity of cartilage degeneration in the canine Groove- model of OA? *Journal of Orthopaedic Research* 27, 1332-1338.
- 398 Voss, K., Galeandro, L., Wiestner, T., Haessig, M., Montavon, P., 2010. Relationships of body
- weight, body size, subject velocity, and vertical ground reaction forces in trotting dogs. *Veterinary Surgery* 39, 863-869.
- 401 Voss, K., Wiestner, T., Galeandro, L., Hässig, M., Montavon, P., 2011. Effect of dog breed and body
- 402 conformation on vertical ground reaction forces, impulses, and stance times. *Veterinary and*
- 403 *Comparative Orthopaedics and Traumatology* 24, 106-112.
- 404

405 **Table 1.** Descriptive statistics of temporal-spatial gait variables in kyphotic versus non-kyphotic dogs.

Variable	No kyphosis	Kyphosis
	0.015 + 0.044	0.042 + 0.044
Hind reach (m)	0.015 ± 0.044	0.042 ± 0.044
TPI fore	33.24 ± 1.99	34.70 ± 2.14
TPI hind	16.70 ± 1.99	15.38 ± 2.18
TPI symmetry ratio	2.12 (1.67–2.32)	2.28 (1.85-3.09)
TPI fore (%)	66.49 ± 3.98	69.40 ± 4.30
TPI hind (%)	33.41 ± 3.98	30.75 ± 4.36
TPI percentage	2.06 (1.76–2.25)	2.34 (1.95–2.65)
symmetry ratio		
Stride length fore (m)	0.427 ± 0.053	0.423 ± 0.049
Stride length hind (m)	0.423 ± 0.052	0.421 ± 0.049
Stride length	1.00 (0.99–1.02)	1.01 (0.99–1.02)
symmetry ratio		
Stance time fore (s)	0.34 ± 0.07	0.31 ± 0.06
Stance time hind (s)	0.28 ± 0.09	0.26 ± 0.06
Stance time hind	1.15 (1.13–1.35)	1.16 (1.08–1.28)
symmetry ratio		
Stance time fore (%)	57.49 ± 4.48	56.55 ± 4.34
Stones time hind (0/)	46.04 + 9.62	46.60 + 6.04
Stance time nind (%)	40.94 ± 8.02	40.00 ± 0.94
Stance time percentage	1.15 (1.12–1.39)	1.17 (1.09–1.29)
symmetry ratio		

406

407 ^aNormally distributed variables are stated as mean \pm standard deviation (SD) and non-normally

408 distributed variables as median (25th–75th percentiles).

409 ^bTotal pressure index (TPI).

- 411 Figure 1. Saggital computed tomography (CT) images of two dogs: (A) is regarded as non-kyphotic
- 412 and has a Cobb angle of 2.4° ; (B) is regarded as kyphotic and has a Cobb angle of 37.5° .

413

414

416 Figure 2. Graphical illustration of data for total pressure index (TPI) of the forelimbs and the TPI
417 symmetry ratio in kyphotic and non-kyphotic dogs.

