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ABSTRACT 

Horse locomotion is remarkably economical. Here we measure external mechanical 

work of the galloping horse and relate it to published measurements of metabolic cost. 

Seven Thoroughbred horses were galloped (ridden) over force plates, under a racing 

surface. Twenty-six full strides of force data were recorded and used to calculate 

external mechanical work of galloping. The mean sum of decrements of mechanical 

energy was -876J (± 280J) per stride and increments were 2163J (± 538J) per stride 

as horses were accelerating. Combination with published values for internal work and 

metabolic costs for galloping yield an apparent muscular efficiency of 37-46% for 

galloping which would be reduced by energy storage in leg tendons. Knowledge about 

external work of galloping provides further insight into the mechanics of galloping from 

both an evolutionary and performance standpoint.  

INTRODUCTION 

Like many cursors, the horse (Equus Caballus) has evolved to locomote economically 

over long distances. The horse has a very low metabolic cost of transport (1, 2) (the 

amount of energy consumed to cover a given distance, COT) and since domestication 

has been selectively bred for increased speed and endurance. Adaptive 

specialisations for running in the horse include a distal limb that is slim and light, with 



an extended, single digit and no musculature below the carpus and tarsus. The 

reduced weight of the distal fore and hindlimbs reduces the energy required to swing 

the limbs between stances (3). Further, long, elastic distal tendons allow for elastic 

energy storage and return (4, 5) contributing to economical locomotion (6, 7). 

Conversely, the proximal portions of the limbs are made up of large, bulky muscles 

which allow for rapid limb swinging and propulsion with the further aid of a large tendon 

within the biceps muscle of the forelimb which acts as a catapult to give rapid limb 

protraction (8). 

External work in the galloping horse has been modelled (9) and measured, through 

kinematics (1) and inertial sensors (10) and the published values are high, 10500J 

(515kg at 12ms-1) (1) and 8000J (480kg at 12ms-1) (10) per stride, and exceed the 

metabolic cost of galloping. This mismatch has been attributed to energy storing 

springs, along with effects of skin movement, movement of the COM within the 

reference frame of the subject, digitising errors and sensor placement. Here we set 

out to make a more direct measure of external mechanical work using force plates as 

ergometers, as outlined elsewhere (11, 12).  

MATERIALS AND METHODS 

Data were collected from seven Thoroughbred racehorses at the British Racing 

School (BRS), Newmarket, England. All subjects were weighed on the in-house scales 

(477 ± 25kg) (though weights for calculations were taken as the integral of the vertical 

force across a stride) and limb lengths were taken to the top of the scapula (1.63 ± 

0.04m) using a standard tape measure. The same professional jockey (jockey + 

equipment = 70.1kg) rode all horses for all trials. 

Ten 0.6m x 0.9m Hall-effect force plates (AMTI custom build, Watertown, MA, USA) 

were placed in a custom steel frame in the racing track at the BRS on a base layer of 



chalk to yield a 6m x 0.9m array. Plates were covered with a membrane and protective 

metal/resin top-plates. Approximately 0.1m depth of oiled sand was then layered over 

the plates to obscure them and provide a surface over which the horses could gallop 

safely. The sand was smoothed between runs. The sand compacts at low force and 

is then relatively firm so whilst a small amount of work would be performed at foot-on, 

this was mostly vertical – the footprints showed no evidence of horizontal foot 

displacement (slipping) through stance. On the left-hand side of the track were two 

AOS high-speed cameras (X-Pri, AOS Technologies AG, Switzerland) set to 1280 x 

560 pixels, filming at 500Hz.  

Each horse was acclimatised to the setup. 3D limb force data was collected at 500Hz 

from the 10 plates. Each horse performed 4-6 galloping trials.  

Footfall timings were taken from the high-speed video using VirtualDub (version 

1.9.11), initial velocity conditions were taken from the video using custom digitisation 

software (13). Raw force data were analysed in a custom script written in MATLAB 

(The Mathworks, Natick, MA, USA.). Forces, for strides in which four complete footfalls 

were captured, were summed across plates with respect to time in the vertical and 

cranio-caudal directions. Single stride data were cut using a custom-script written in 

MATLAB, using stride time from the high-speed video. Integration was stopped at foot 

off to prevent force plate resonance giving spurious work calculations. In the majority 

of trials, there were simultaneous hoof contacts occurring during the stride of interest 

which were not on the plates and would therefore confound external work calculations. 

As such, the force traces for the four limb contacts were phase shifted, using stride 

time from the high-speed video, and over-lapped to account for these hoof contacts, 

under the assumption that horses were in consistent gallop and all strides were 



equivalent. This procedure is illustrated in the top panel of Figure 1 and in the 

supplementary information. 

External work was calculated by summing, separately decrements (negative 

increments) and (positive) increments of potential and kinetic energy of the centre of 

mass using the series of equations as outlined in the literature (11, 12). Initial velocity 

conditions were taken as the average velocity across the stride from the high-speed 

video data and the mass of the individual was taken as the average vertical force 

across the stride. 

Horses accelerated in every recorded stride with a submaximal mean acceleration of 

approximately 0.45ms-2, (maximum capacity is around 3ms-2 (14)). This corresponds 

to an average net velocity increase over the stride of 0.18ms-1, and a resultant 

increase in horizontal kinetic energy of 0.016 Jkg-1. During galloping, centre of mass 

kinetic energy should reduce early in the stance phase of each limb (due to forward 

limb configuration) and such fluctuations would be ameliorated during the period of 

hindlimb stance by the hip torques used for acceleration. We approach the effect of 

the net acceleration on work calculations in two ways. One, we de-trend the 

acceleration by calculating the mean horizontal acceleration through the stride and 

subtracting that mean from the data before re-running the analysis and then 

calculating positive increments in external work. Two, we also sum the decrements in 

mechanical work in the non-detrended data. In steady state galloping, summing 

positive increments and summing decrements would yield the same work values, but 

with acceleration, the calculated work will be higher for summed increments and may 

be underestimated when summing decrements, because fluctuations will be reduced 

by the underlying upward trend. Further notes on methods can be found in the 

supplementary information. 



RESULTS 

Twenty-six complete strides were used in the analysis with speeds between 10.2ms-1 

– 13.1ms-1. In 12 of the 26 trials, the non-lead forelimb contacted the plates first.  

The mean vertical displacement of the COM was 0.06m (± 0.02m) and the mean 

fluctuation in horizontal velocity was 0.18ms-1 (± 0.07ms-1). The mean fluctuation 

(amplitude) in mechanical work was 1510J (± 479J), equivalent to 2.7Jkg-1, which was 

reduced to 1007J in the de-trended data. The mean sum of positive increments of 

work was 2163J (± 538J), equivalent to 3.9Jkg-1 (1537J in the de-trended data), and 

the mean sum of decrements was -876J (± 280J), equivalent to -1.6 Jkg-1 (-1544J in 

the de-trended data). A typical plot of COM energies during one trial (one stride) is 

displayed in Figure 1. Data for further trials are displayed in the supplementary 

information. 

DISCUSSION 

Until now, the available data for external mechanical work in the galloping horse has 

been limited to calculations from kinematic data (1, 10), resulting in values for 

mechanical work similar to the total metabolic energy expenditure (1, 15) but much of 

the energy is recycled rather than dissipated and performed de-novo each stride. 

Muscle inital efficiency of doing mechanical work is around 20-63% (16) but this is 

from breakdown of existing ATP. The actual (apparent) efficiency of mechanical work 

determined from oxygen consumption will be considerably lower (17) but the 

difference has not been measured for horses.  Cursorial mammals are adapted for 

fast and efficient locomotion (3) and explanations for this, such as energy storage in 

tendons (4, 6, 18) and minimising energy losses (9, 19) have been described.  

Internal work was not calculated in this study but published values of 2000J per stride 

at 12ms-1 exist (1). These are approximately double the external work seen in this 



study when considering the decrements and close to the de-trended values. This is 

consistent with humans where internal work exceeds external work at higher speeds 

(20). The high proportion of total work being internal work reinforces the evolutionary 

selection pressure for light distal limbs and adaptive mechanisms for efficient 

locomotion. 

To calculate apparent efficiency, we took the metabolic (oxygen) cost of galloping to 

be 2.5Jkg-1m-1 (1,21), equating to a metabolic cost of transport (for a 550kg horse) of 

1375Jm-1. This would result in a cost per stride (stride frequency 2.13s-1, so stride 

length 5.63m (22)) of 7740J (at 12ms-1). Taking the external work (decrements) from 

this study of 876J and adding internal work of 2000J per stride at 12ms-1(1), gives a 

apparent muscular efficiency of 37%. This would require net efficiency higher than 

most published results for muscle (of smaller animals) which is around 25% (23). 

When we consider the de-trended data, this gives an apparent efficiency value of 46%. 

The true muscle work will be lower since energy is stored and returned by limb tendons 

during stance (4) and during swing (8) hence reducing muscle contributions to internal 

and external work. Using the example trial shown in Figure 1, we can approximate 

elastic strain energy from the force data, using resultant force as axial limb force and 

a leg stiffness value of 55kNm-1 (6, 7). Figure 2 shows this strain energy and the effect 

on total energy throughout the stride. This reduces the total positive and negative 

increments of work for much of the trial and shows a net positive work produced by 

the hindlimbs at the end of the stride. 

Factoring in aerodynamic drag, at speeds of 12ms-1, the contribution of drag to COT 

is 0.15Jkg-1m-1 (1/2 CD ρ A v2/ bodyweight: CD = 0.9, ρ = 1.29kgm-3, A = 1m2, 550kg 

mass) equivalent to around 464J per stride, which is a considerable proportion of the 

mechanical work being performed and will increase the cost of galloping and yield a 



muscle efficiency of 43% (52% for de-trended data). While often considered to be 

negligible, this is a larger proportion of total mechanical work than previously 

considered, and likely explains the importance of aerodynamic drafting in winning 

horse races (24) especially as it is proportional to v2 and will be much higher at racing 

speeds (17-20ms-1). 

With regard to this study being performed on ridden horses, 13% of the total mass is 

the rider who, in racing posture, will add weight but limited inertia. As the rider can 

move horizontally somewhat out of phase with the horses COM (25), the horse can 

reduce the horizontal work on the rider whilst still supporting their weight. Calculating 

mechanical works for horse mass alone would result in an 11% increase in mass 

specific work. 

Knowledge of the mechanics of galloping can give insight into the increase in total 

work as a result of perturbations which may impose a power limit to maximum speed. 

For example, moving up a 10% incline at 12ms-1 (ie. 1.2ms-1 vertical velocity) equates 

to 706Jkg-1min-1 (12Wkg-1) potential energy power, equivalent to approximately 3000J 

per stride (26). Given external work values from this study, galloping on a 10% incline 

would increase total mechanical work by over 100%, which is concomitant with the 

increase in metabolic cost (21, 27). Energy supply may eventually become limiting 

which may become apparent from measurements of maximum speed on different 

gradients. 

Between-trial variability is somewhat high in this dataset which can be attributed to the 

nature of the set-up and excitability of racehorses. While every effort was made to 

ensure steady-state locomotion, horizontal kinetic energy increased in most strides, 

eg. in the stride shown in Figure 1, however, this only represents an increase in 



absolute velocity of 0.2ms-1 which may be as close to steady state as possible for 

overground locomotion outside of the laboratory.  

CONCLUSION 

Large animals are known to be uniquely economical with a low COT. Understanding 

of the costs and efficiency of high-speed locomotion in large cursorial animals gives 

insight into how they have evolved anatomically and physiologically to meet the 

evolutionary selective pressures that result from ranging to find resources in open 

grasslands and the need for high speed predator evasion. These adaptations underpin 

the metabolic and mechanical factors affecting and limiting athletic performance in 

racehorses.  

The results show that external work is a small fraction of the total mechanical work of 

galloping, less than that of internal work and similar in magnitude to the aerodynamic 

drag costs. Apparent muscle efficiencies are of 37-46% and exceed net efficiencies 

demonstrating the importance of elastic cycling of energy in limb tendons. 
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FIGURE 1. Forces and energy fluctuations during a typical galloping trial (13ms-1). Top 
panel shows raw force data (dashed lines show phase-shifted overlay) while panel 2 
shows summed force data used in the calculations. Below are vertical displacement 
of the COM in m and horizontal velocity throughout the stride. The 5th panel shows 
horizontal kinetic (dashed line shows de-trended data), potential and vertical energy 
fluctuations throughout the stride. Panel 6 shows the total energy fluctuations 
throughout the stride with the dashed line representing the de-trended values. Stance 
times are represented in the bottom panel, corresponding to the images at the top. 
Energy traces in panel 5 have had the offset of their minimum value removed. 
 



 
 
FIGURE 2. Top panel shows calculated elastic strain energy throughout one stride. 
Lower panel shows the effect of elastic strain energy on total energy (elastic strain 
energy is shown again here to scale but absolute values have been offset by 53kJ). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SUPPLEMENTARY INFORMATION 
 
 

 
Figure 1. Diagram to show how force plate traces were phase-shifted, using stride 
time from high speed video, to account for footfalls occurring off the plates which 
would affect external work calculation. This assumes steady-state and that all strides 
are the same. 

 
Figure 2. Overlay of energy fluctuations during a stride for 12 trials (NLF-NLF) across 
7 individuals. Galloping speeds range from 10.2ms-1 to 13.1 ms-1. Line colours 
represent different individuals. Energy traces have had the offset of their minimum 
value removed. This diagram includes the same trial as in Figure 1 of the main paper. 
 
 
 
 
 



Notes on Materials and Methods and calculations 
Video analysis: 

 2 AOS high-speed cameras were set back 5 m from the track, with a view of 
approximately 5 m before the plates and 5 m after the plates with an overlap of 
approximately 1 m in the middle to ensure that full strides were captured. The 
cameras were set to 1280 x 560 pixels and were calibrated using a 31cm calibration 
frame throughout the field of view. The velocity of the COM was estimated by 
tracking a fixed point on the horse, the girth (strap on the saddle), as this was an 
area of decent contrast that remained in a fixed position on the trunk of the horse. 
The equations used require initial velocity conditions, we used the average velocity 
from the video as this allowed the most accurate estimation (the velocity was taken 
as the average velocity across a stride since velocity is displacement over time and 
the shorter the time interval the greater the effect of any errors in measurement of 
displacement.)  
 
Aerodynamic drag: 
Here we considered the horse and jockey to be a bluff body and in comparison with 
a bicyclist with known Cd of  0.9. This is somewhat conservative and, as with the 
other calculations in the discussion, this is an assumption. The aim was to give an 
idea of the proportion of mechanical work that is drag. 
 
Efficiency calculation: 
Efficiency defines the ratio of how much mechanical work is performed for a given 
amount of metabolic work and relates to the efficiency of the locomotor muscles. 
Efficiency = (external mechanical work + internal mechanical work)/metabolic cost 
Here we use our measured value for external work of 876J (we used the decrements 
value here as this is most conservative) and values from the literature for internal 
work and metabolic cost. 
We take the internal work value from Minetti et al. for an equivalent speed of 2000J. 
This value is approximated from Figure 4 of the paper which shows an internal work 
value of approximately 0.7Jkg-1m-1 (the horses in the study were around 500kg, and 
the stride length of a horse at 12ms-1 is around 6m). To give an idea of range and 
sensitivity of this calculation, we present the effect here of varying these values as 
this value is based on a number of assumptions (we are estimating stride length, 
horse mass and reading from a figure). If we consider the internal work value to 
range between 0.7Jkg-1m-1 and 0.8Jkg-1m-1, stride length to range between 5-6m and 
horse mass to range between 500-550kg, this gives us a range of internal work 
values: 1750-2640J. This would give a range of efficiency values of 34-45%.  
These calculations are made as discussion points for the reader to take at whatever 
level they wish. 
 
 
 


