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Summary 
 

Background:   Several   pasture   management   strategies   have   been   proposed   to   avoid 
 

hypoglycin A (HGA) intoxication in horses, but their efficacy has never been investigated. 
 

Objectives: To evaluate the effect of mowing and herbicidal spraying on HGA content of 
 

Sycamore  seedlings  and  the  presence  of  HGA  in  seeds  and  seedlings  processed  within 
 

haylage and silage. 
 

Study design: Experimental study. 
 

Methods: Groups of seedlings were mowed (n = 6), sprayed with a dimethylamine-based (n 
 

= 2) or a picolinic acid-based herbicide (n = 1). Seedlings were collected before intervention, 
 

and at 48 hours and after 1 and 2 weeks. Cut grass in the vicinity of mowed seedlings was 
 

collected  pre-cutting  and  after  one week.  Seeds  and seedling  (n  = 6)  samples  processed 
 

within haylage and silage were collected. HGA concentration in samples was measured using 
 

a validated LC-MS-based method. 
 

Results:  There  was no significant  decline  in HGA content  in either mowed  and sprayed 

seedlings; indeed, mowing induced a temporary significant rise in HGA content of seedlings. 

HGA  concentration  increased  significantly  (albeit  to  low  levels)  in  grass  cut  with  the 
 

seedlings by one week. HGA was still present in Sycamore material after 6-8 months storage 
 

within either hay or silage. 
 

Main limitations: Restricted number of herbicide compounds tested. 
 

Conclusions:   Neither  mowing  nor  herbicidal  spraying  reduces  HGA  concentration   in 
 

Sycamore  seedlings  up  to  2  weeks  after  intervention.  Cross  contamination  is  possible 
 

between  grass  and  Sycamore  seedlings  when  mowed  together.  Mowing  followed  by 
 

collection  of Sycamore seedlings  seems the current best option to avoid HGA toxicity in 
 

horses grazing contaminated pasture. Pastures contaminated with Sycamore material should 



 

not be used to produce processed hay or silage as both seedlings and seeds present in the 
 

bales still pose a risk of intoxication. 
 
 
 
 

Introduction 

 
Equine atypical myopathy (AM) is a toxic rhabdomyolysis caused by the disruption of 

mitochondrial  metabolism,  particularly  in  skeletal  and  cardiac  muscle  cells,  following 

ingestion of hypoglycin A (HGA) contained in plant material derived from some Acer tree 

species [1-4]. Outbreaks of AM are highly variable and seasonal, with most cases occurring 

in the autumn (when seeds are present on pasture) or in the spring (when seedlings germinate 

and grow) [5,6]. In Europe, the main source of HGA are the seeds and seedlings of Acer 

pseudoplatanus (Sycamore tree) [1-3,7,8]. Although spring outbreaks are less common than 

those in autumn (they account for between 4-12% of all cases seen annually [6,9]), Sycamore 

seedlings have the highest HGA content when compared with seeds and leaves [7,8]. 

Consequently, horse owners have legitimate concerns about the risk that Sycamore seedlings 

pose to their grazing horses, particularly given that seedlings often grow in profusion [10]. 

The  removal  of  toxic  material  from  affected  pastures  is  the  optimal  preventative 

measure when trying to minimise risk of intoxication [11], but this is not always practical, 

particularly in spring pastures. In low-contaminated areas, fencing a particular section of the 

pasture  can  reduce  exposure  to  toxic  material.  In  contrast,  highly-contaminated  pastures 

require a more wide-ranging approach to decontaminate pastures, to avoid both intoxication 

of grazing animals and potentially, contamination of processed grass. This remains a huge 

concern among horse owners who cannot identify the best strategy to reduce AM risk, and 

equine practitioners struggle to provide evidence-based advice due to the lack of relevant 

research. Despite this, several strategies are commonly discussed within online blogs and lay 

equine publications:   for seeds, removal with a paddock cleaner/vacuum  can be a realistic 



 

option  in  the  autumn  but  picking  seedlings,  one  by  one,  in  the  spring  is  much  more 

challenging and time consuming. As a result, mowing of affected pastures and/or herbicidal 

spraying is a common practice among horse owners. However, no data regarding the efficacy 
 

of these strategies exists. The aim of this study was to evaluate the effect of mowing and 
 

herbicide treatment in Sycamore seedlings and to examine the possible persistence of HGA in 
 

seeds and seedlings processed with hay or silage. 
 
 
 
 

Materials and methods 

 
Experimental interventions in seedling-contaminated pastures 

 

Seedlings from 9 locations were assigned to 2 groups: mowing (n = 6) and herbicidal 
 

treatment (dimethylamine
a  

n = 2; picolinic acid
b  

n = 1). Dimethylamine herbicide contained 
 

500 g/L 2/4-dimethylamine  salt, and the picolinic  acid herbicide  contained  both 240 g/L 
 

triclopyr and 60 g/L clopyralid. Mowed seedlings were cut with scissors at mid-stem length 
 

(60 seedlings/location) with surrounding grass and left to wither (Fig 1). Thereafter, 15 of the 
 

60 seedlings/location  were collected  in random  fashion  and analysed  at each time  point. 
 

Seedlings were visually assessed for the presence of cotyledon leaves and/or true leaves as 
 

well as stem and leaf turgor in order to estimate their age. For the herbicide treatment, areas 
 

of 3 m by 3 m (9 m
2
) containing at least 200 seedlings were sprayed with a portable hand 

 

pressure pump spray device according to the manufacturer’s instructions (Fig 2). 
 

At each site, 15 seedlings were collected before intervention and at 48 hours, 1 and 2 
 

weeks later and grass cuttings cut alongside the seedlings were sampled pre-intervention and 
 

one  week  later.  Seedlings  in  the  treatment  areas  were  always  collected  from  at  least  5 
 

equally-dispersed regions, pooled and cryogenically milled (one sample/location/time point). 
 

Then,  one  gram  of  the  obtained  homogenate  was  extracted  with  methanol  and  HGA 
 

concentrations  were  measured  in each  sample  by  a  validated  LC-MS  based  method  [8]. 



 

Sample pellets after extraction were dried in an oven at 80°C for 3 days, then weighed. HGA 
 

results were normalised to dry matter obtained from each sample to account for water loss 
 

during the course of the experiment. Experiments were performed in 2 consecutive years: in 
 

2017, the experiment was performed during the first 2 weeks of June with a mowing group (n 
 

= 4 locations) and dimethylamine treatment group (n = 2 locations). Average temperature in 
 

the area where the experiment was performed was 18°C (14-21°C [range]), humidity 85% 
 

and average daily rainfall of 6 mm. In 2018, the experiment was performed during the last 2 
 

weeks of May with a mowing group (n = 2 locations) and picolinic acid herbicide treatment 
 

group (n = 1 location). Average temperature in the area where the experiment was performed 
 

in 2018 was 15°C (10-18°C [range]), humidity 83% and average daily rainfall of 4 mm. 
 

 
 
 

Presence  of HGA  in A.  pseudoplatanus  seeds  and  seedlings  preserved  with  hay  and 

silage 

Samples  were  analysed  in  this  experiment  in  which  seedlings  and  seeds  were 

maintained for 6 months in processed grass forage (hay and silage). Seedlings were collected 

from a pasture and sent to lab to be analysed (time zero), then bales of hay and silage were 

produced from that pasture and some further seedlings from the same source introduced in marked 

sections of the hay and silage bales (15 seedlings/bale: 2 hay and 2 silage bales) to aid later 

recovery of the samples. Seedlings from each bale were pooled, cryogenically milled and 1 g of 

the homogenate was extracted and analysed as described previously. Separately, 2 independent 

samples, each containing at least 25 seeds, were analysed as homogenates after being identified 

in hay, 8 months after baling. 



 

Data analysis 

 
In  the  experimental  setting,  HGA  concentration  among  the  different  time  points 

within  the  same  intervention  group  was  assessed  using  a  Friedman’s  test,  followed  by 

Dunnett’s multiple comparison test to compare pre-intervention values to those in subsequent 

measurements. For the grass data set, HGA concentration was compared between pre- 

intervention values and those at 7 days by Mann-Whitney test. Differences were considered 

statistically significantly different when p≤0.05 for all the analyses. 

 

 
 

Results 
 

There was no significant reduction in HGA concentrations  from seedlings sampled 
 

before (272.2 µ g/g; 49.7- 422.4 [median and range]) and at 15 days (181.8 µ g/g; 92.9-25 1) 
 

in the mowing group (p>0.9), and before (243 µ g/g; 119.4-294.2) and at 15 days (206 µ g/g; 
 

139-221.7) in the herbicide treatment groups (p = 0.4) (Fig 3A and Fig 4). Indeed, HGA was 
 

significantly higher in seedling cuttings after 48 h (801.9 µ g/g; 193-1995; p = 0.04) in the 
 

mowing group compared to before mowing. Seedlings that were younger (locations 2, 3 and 
 

4; cotyledon leaves still prominent, soft stem) had greater increases in HGA concentration at 
 

48 h (6.9 fold ± 3.04; mean ± s.d.) than those that were older (locations 1, 5 and 6; cotyledon 
 

leaves decaying, more fibrous stem; 1.04 fold ± 0.15) (Fig 3A). Re-emergence of seedlings 
 

was not noticed  in the areas  from  where  the seedlings  for the mowing  experiment  were 
 

collected. 
 

Grass  cuttings,  sampled  in  the  vicinity  of  seedling  cuttings  were  found  to  be 
 

contaminated with HGA (from zero before intervention to 16.6 µ g/g; 2.5-19.9 [median and 
 

range]) (Fig 3B). Grass surrounding seedlings in the herbicide treatment areas did not contain 
 

HGA at any time point, either pre-intervention or one week later. 



 

Seeds and seedlings processed within bales of hay or in silage had detectable HGA. 

Duplicate samples of seedlings from the same source added to 2 separate hay bales had a 

HGA concentration of 271 ± 26.2 µg/g, while duplicate samples of seedlings added to silage 

had a concentration of 473.5 ± 50 µg/g. These values represented a reduction of 75.4% (hay) 

and 57.1% (silage) when compared with fresh pasture (time zero = 1103 µg/g). Seed samples 

that had been present in bales of hay for 8 months had appreciable amounts of HGA (105 

µ g/g and 256 µ g/g). 
 
 
 
 

Discussion 

 
Pasture management, and in particular removal of contaminating Sycamore seedlings, 

is considered a key strategy to reduce incidence of AM [7,11]. In the current study, we 

investigated the most common practices – mowing and herbicidal spraying. We found that 

neither method resulted in a significant reduction or removal of intoxication risk in the time 

frame studied; indeed, mowing resulted in a short-term elevation in HGA content in dying 

seedlings. We also found that seedlings and seeds that are stored in pasture hay or silage have 

appreciable HGA content. All of these findings likely have significant implications for horse 

owners, and private and commercial equine feed manufacturers. 

The choice of herbicides for this research was based on information from practices 

used by local farmers and owners of livery yards and online blogs.  Both herbicidal products 

selected  are auxin-mimetics  that are absorbed  primarily  by a plant’s foliage  and to some 

extent,   by  the  roots;   they  have   little  adverse   effect   on  grasses   when   administered 

appropriately [12]. Auxins are hormones that allow development and reshaping of growth, 

enabling plants to react to the changing environment [13]. They are particularly important in 

the germination and early establishment of seedlings where the active transport of these 

molecules between apical parts (where they are produced) to the roots, ensures coordinated 



 

development of the plant [14]. The application of auxin-mimetic herbicides triggers unsustainable   

growth   and   disturbs   metabolic   activity   [15,16]:   imbalance   with   auxin repressors leads 

finally to downregulation of cell division, plant death and decay. Stem curvature, tissue swellings 

and foliage senescence with chloroplast damage and destruction of membrane and vascular 

integrity of the plant are the most evident physiological effects of these herbicides [15]. Our 

results showed that spraying with these herbicides did not substantially  alter  seedling  HGA  

content.  Therefore,  use  of  pastures  for  grazing  after application  of  this  family  of  

herbicides  is  not  recommended,  at  least  within  the  2-week window studied here. Whether 

this measure might be suitable to control pastures or in areas dedicated   to  forage  production,   

provided   dead  seedlings   have  fully  degraded   before harvesting occurs remains unknown. 

Further, it is unclear whether other herbicides that have a different mechanism  of action might 

be more suitable for seedling control when use of pastures for grazing is required more 

quickly. Finally, the stable concentration of HGA in seedlings treated with auxin-mimetic  

herbicides revealed here, provides information  about the pathways involved in HGA 

production, although the latter requires further investigation. 

Mowing similarly did not reduce the concentration  of HGA in decaying seedlings 

over a 2-week time interval; instead it resulted in a temporary rise in HGA content.  The 

metabolic pathways that govern HGA production  function and dynamics in plants are not 

fully understood, but our results suggest that stress, here induced by cutting, might upregulate 

HGA production. Conceivably, this might reflect pathways that reflect defence mechanisms 

designed  to  avoid  grazing:  toxic  substances  produced  by  plants  are  usually  complex 

chemicals  that  have  a  deterrent  and/or  toxic  effect  [17,18].  Most  chemical  defences  are 

produced  by plants as secondary  metabolites,  often  used in tissues  that are vulnerable  to 

grazing over short time spans, for example young leaves or seeds. They tend to be recycled 

for nitrogen storage for plant growth as the risk of grazing declines [19]. Additionally, in the 



 

seedlings that were more mature, the elevation of HGA content after intervention was less marked 

than in the younger seedlings. Feasibly, this might reflect a plant strategy to regulate the 

production of HGA as the seedling ages to promote growth to a new tree. Seedlings might 

conceivably  be more  palatable  during the cotyledon  and/or  early leaf stages (tender,  soft 

sprouts) and perhaps more likely to be ingested inadvertently with surrounding grass; hence 

the possible requirement for higher HGA-associated defences at this young age. 

Grass  in  contact  with  cut  Sycamore  seedlings  became  contaminated  with  HGA, 

although the contamination was low when compared with the amount of HGA contained in 

Sycamore seedlings. Contamination most likely occurs through sap leakage subsequent to 

seedling   cutting.   Additional   research   is  required   to  establish   the  persistence   of  this 

contamination for extended periods or after hay or silage manufacture. However, our data 

supports  the need for collection  and disposal  of both seedlings  and grass,  when they are 

mowed together. 

Our findings challenge the clinical algorithm presented by Van Galen et al. [6], in 

which  horses  off  grass  were  considered  at  low  probability  of  being  affected  by  AM. 

Presumably  dependent  on  relative  degrees  of contamination,  AM  might  occur  in stabled 

horses  or  those  supplemented  with  feed  with  hay/haylage  or  silage  from  contaminated 

pastures. Feed producers manufacturing feeds that originated from pastures (such as forage 

cubes, silage and hay) should ensure that there is no contaminating Sycamore material during 

initial harvesting. 
 

In summary,  neither  mowing  nor  herbicidal  spraying  with  specific  auxin-mimetic 
 

herbicides   reduced   HGA  concentration   in  Sycamore   seedlings   up  to  2  weeks   after 
 

intervention.  Cross contamination  is possible between grass and Sycamore seedlings when 
 

mowed together. Our data suggests that currently, best practice is collection and disposal of 
 

both grass and seedling cuttings to minimise risk of intoxication. Pastures contaminated with 



 

Sycamore material should not be used to produce hay/haylage or silage as both seedlings and 
 

seeds processed within grass remain potentially toxic. 
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Figure legends 
 

Fig 1: Mowing experiment in a controlled setting. Notice the change in colour induced by the 

desiccation process in both seedlings and grass. 

 

 

 

Fig 2: Picolinic acid treatment area. Notice how the seedlings steadily decayed over the 

course of the experiment. 

 

 

  



 

Fig 3: Effect of mowing intervention in Sycamore seedlings and grass. Both graphs represent 

the results of individual HGA concentrations obtained at different time points in the seedlings 

and grass from 6 different locations (Loc.) A = seedlings and B = grass. Variation of HGA 

among the time points was assessed statistically by non-parametric methods, HGA variation 

between pre-intervention and 48 h was significant, p = 0.04. Grass data set (B) was analysed 

by Mann Whitney test, grass tested positive  for HGA after being 7 days in contact with 

seedling cuttings p = 0.002. Younger seedlings (circles) and older seedlings (triangles) are 

represented in the graph. Notice the different HGA response to intervention at 48 h between 

both groups. 

 

 

  



 

Fig 4: Effect of herbicide spraying. Two different herbicides were tested (dimethylamine n = 

 
2 locations; picolinic acid n = 1 location). Individual results are shown. HGA concentration 

pre-intervention was compared with the subsequent time points by Friedman test. There was 

no significant difference between pre-intervention HGA contents and subsequent time points 

in herbicide-treated seedlings; p = 0.4. 
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