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Abstract 1 

The annual outbreaks of cutaneous and renal glomerular vasculopathy (CRGV) reported in UK dogs 2 

displays a distinct seasonal pattern (November-May) suggesting possible climatic drivers of the 3 

disease. Objectives of this study were to explore disease clustering and identify associations between 4 

agro-ecological factors and CRGV occurrence. Kernel-smoothed maps were generated to show the 5 

annual reporting distribution of CRGV, Kuldorff’s space-time permutation statistic used to identify 6 

significant spatio-temporal case clusters and a boosted regression tree model developed to quantify 7 

associations between CRGV case locations and a range of agro-ecological factors. The majority of 8 

diagnoses (92 %) were reported between November and May while the number of regions reporting 9 

the disease increased between 2012 and 2017. Two significant spatio-temporal clusters were 10 

identified - one in the New Forest during February and March 2013, and one adjacent to it (April 11 

2015-May 2017) - showing significantly higher and lower proportions of cases than the rest of the 12 

UK, respectively for the indicated time-periods. A moderately significant high-risk cluster (p = 0.087) 13 

was also identified in the Manchester area of northern England between February and April 2014. 14 

Habitat was the predictor with the highest relative contribution to CRGV distribution (20.3 %). Cases 15 

were generally associated with woodlands, increasing mean maximum temperatures in winter, spring 16 

and autumn, increasing mean rainfall in winter and spring, and decreasing cattle and sheep density. 17 

Understanding of such factors may help develop causal models for CRGV occurrence. 18 

 19 

 20 

 21 

 22 

Keywords: Alabama Rot; boosted regression trees; CRGV; epidemiology; risk factors; space-23 

time permutation statistic 24 

 25 
__________________________________________________________________________________  26 



3 
 

Introduction 1 

Cutaneous and renal glomerular vasculopathy (CRGV) – also known as ‘Alabama Rot’ - is a disease 2 

of unknown aetiology variably associated with clinically relevant acute kidney injury (AKI). CRGV 3 

cases present with ulcerated skin lesions, most often affecting the distal limbs, progressing within 1-4 

10 days to the development of AKI in some, but not all cases. Skin lesions have also been found to 5 

affect the face, nasal planum, oral cavity, tongue, ventrum and flanks. Additional biochemical and 6 

haematological findings commonly reported include mild to moderate hyperbilirubinaemia, anaemia 7 

and moderate to severe thrombocytopenia (Holm and others 2015). 8 

A study by Holm et al which reported on the renal histopathology of CRGV cases confirmed the 9 

lesions to be compatible with a thrombotic microangiopathy (TMA) (Holm and others 2015). In 10 

human medicine, TMAs are considered a complex group of diseases which can involve both 11 

hereditary and acquired contributing factors to the development of clinical disease (George and Nester 12 

2014). Hereditary factors that have been identified include mutations in ADAMTS13 which result in 13 

the condition known as thrombotic thrombocytopenic purpura (TTP), complement factors, metabolic 14 

factors (MMACHC; methyl-malonic aciduria and homocystinuria type C protein) and diacylglycerol 15 

kinase-ε (DKGE) - an abnormality of which results in a prothrombotic state. Autoantibody inhibition 16 

of ADAMTS13, shiga-toxin exposure (shiga toxin-haemolytic uraemic syndrome), drug, toxin or 17 

complement immune mediated acquired forms of TMA also occur (George and Nester 2014). 18 

Preliminary investigations evaluating the existence of underlying infectious or toxic exposure (e.g. 19 

shiga-toxin), have so far been unsuccessful (Holm and others 2015). 20 

There has been much speculation in the general and non-peer reviewed veterinary press on the 21 

possible existence of an association between CRGV occurrence and either specific habitats or weather 22 

conditions since the majority of early cases occurred in the New Forest in southeastern England. 23 

However, it is unclear whether this apparent connection is simply the result of the coincident locale of 24 

the referral veterinary center (LH&DW) that initially raised awareness of CRGV as a disease entity, 25 

or a true association. In addition, the UK outbreaks have so far displayed a distinct seasonal pattern 26 

with cases generally reported between November and May. Such cyclical occurrence of a disease 27 

often signifies the involvement of climatic factors, and the objectives of this study were to therefore 28 

explore associations between a range of agro-ecological factors and CRGV locations, as well as map 29 

and explore the distribution of cases between 2012 and 2017. The results of this study may help 30 

develop causal models for CRGV, assist with validation of current and future proposed pathogenic 31 

mechanisms and play a role in identifying the aetiology of the disease. 32 
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Materials and methods 1 

All CRGV cases diagnosed between November 2012 and May 2017 were included in the analysis. 2 

Although one case was reported from Northern Ireland within this time period, it did not have 3 

locational data and was therefore excluded from the spatial, but retained for the temporal analysis. 4 

Identification of cases 5 

Cases were compiled by two investigators (DW & LH) and comprised 70 (68 %) from first-opinion 6 

practice and 33 (32 %) from referral centres. A diagnosis of CRGV was based on the presence of 7 

compatible clinical signs (including skin lesions), laboratory diagnostics (including AKI +/- oligo-8 

anuria, progression to azotaemia, hyperbilirubinaemia, anaemia and thrombocytopenia) and renal 9 

histopathology findings compatible with thrombotic microangiopathy. Renal histopathology was 10 

available either in isolation or as part of a full post-mortem examination in all cases, and in most cases 11 

dermal pathology was also available.  12 

The residential postcode of all CRGV cases was available together with the postcode of where the dog 13 

had been recently walked, if markedly different from the residential postcode (e.g. owners had been 14 

on holiday in the New Forest area yet normally resided in a different part of the country). Where the 15 

residential and walked postcodes differed (n = 5), both postcodes were included in the dataset creating 16 

a dataset of 107 postcodes for inclusion in the spatial analysis. Postcodes were converted to Easting 17 

and Northing Cartesian coordinates and the British National Grid projection used for all spatial 18 

analyses.  19 

Agro-ecological data 20 

As nothing is known about the environmental epidemiology of CRGV a broad general selection of 21 

agro-ecological predictors was identified for initial inclusion in the model and the necessary digital 22 

spatial data layers sourced as detailed in Table 1. Soil drainage, fertility, habitat and landcover were 23 

extracted from the 1:250 000 NATMAP SoilScapes map for England and Wales. There is no such 24 

map available for Scotland and therefore the spatial modelling was confined to England and Wales, 25 

and all other predictor data were clipped to this extent. Cattle, sheep and pig densities were extracted 26 

from Gridded Livestock of the World (http://www.fao.org/ag/againfo/resources/en/glw/home.html), 27 

and climate data extracted from the United Kingdom’s Met Office gridded land surface climate 28 

observations (monthly climate variables at 5km resolution) held by the Centre for Environmental Data 29 

Analysis (http://catalogue.ceda.ac.uk/uuid/87f43af9d02e42f483351d79b3d6162a).  30 

For the purpose of analysis, the six soil drainage and 14 habitat categories were retained, but the 12 31 

original soil fertility categories were collapsed into six categories as follows: high; moderate-to-high; 32 

moderate; low (low + very low); lime-rich (lime rich + lime rich to moderate + lime rich to very low + 33 

http://www.fao.org/ag/againfo/resources/en/glw/home.html
http://catalogue.ceda.ac.uk/uuid/87f43af9d02e42f483351d79b3d6162a
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low to lime rich) and mixed (low to high + low to moderate). The original landcover categories were 1 

retained. 2 

Climatic variables downloaded included monthly data for mean temperature, maximum temperature, 3 

minimum temperature, rainfall, rain-days-1mm, rain-days-10mm, air frost and ground frost. These 4 

data were downloaded for the period September 2011 to December 2016 (2017 data was unavailable). 5 

Although the first cases were recorded in November 2011, climate data for the preceding two months 6 

were included to allow for the creation of the Autumn 2011 variables (September-November), 7 

resulting in six years of Autumn data but only five years of data for the remaining seasons. The 8 

variables snow-falling and snow-lying would have been included in the analysis but the data were not 9 

available post 2011. As reporting of CRGV cases has displayed a strong seasonal pattern with cases 10 

occurring primarily in winter and spring, rather than use monthly or annual data, monthly climatic 11 

variables were aggregated to create seasonal versions of each variable on the following basis: Spring 12 

(March- May), Summer (June-August), Autumn (September-November) and Winter (December-13 

February). For each of the three months comprising a season, the relevant monthly raster maps were 14 

summed and divided by 18 (Autumn) or 15 (Spring, Summer, Winter) to create a mean seasonal 15 

version of each climatic variable. The final climatic variables included in the model for each season 16 

were: mean temperature, mean maximum temperature, mean minimum temperature, mean rainfall, 17 

mean number of days with rainfall > 1mm, mean number of days with rainfall > 10mm, mean number 18 

of days experiencing ground frost and mean number of days experiencing air frost (Table 1). 19 

All layers were resampled to a resolution of 1 km2 and clipped to the England-Wales extent. ArcGIS 20 

software 10.5.1 was used to extract values of each predictor variable to the case and background data 21 

points to create the complete dataset, which was then randomly divided into training, validation and  22 

test sub-datasets comprising 60, 20 and 20 % of the data points respectively. 23 

Mapping the spatio-temporal distribution of cases 24 

A heatmap was created using the R tidyverse package (R Development Core Team 2011; Wickham 25 

2016) to illustrate the temporal reporting pattern of CRGV cases between 2012 and 2017 by both 26 

month and year. Kernel-smoothed maps were generated for individual years and for the study period 27 

as a whole to show the spatial distribution of cases. Optimum bandwidth was estimated using the 28 

quartic approximation of a true Gaussian kernel function. A bandwidth of 20 km was used for all 29 

maps with an output cell size of 1 km2. All maps were produced using ArcGIS 10.5.1. 30 

Cluster detection 31 

Kuldorff’s space-time permutation statistic (implemented in SaTScan v9.5) was used to identify 32 

spatio-temporal clusters as this statistic requires only case data (spatial location and time for each 33 

case), with no information needed about controls or the population at risk. The number of observed 34 
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cases in a cluster is compared to what would have been expected if the spatial and temporal locations 1 

of all cases were independent of each other so that there is no space-time interaction. That is, there is a 2 

cluster in a geographical area if, during a specific time period that area has a higher proportion of its 3 

cases in that time period compared to the remaining geographical areas. Cartesian coordinates of all 4 

cases were used as the spatial inputs and month of reporting was used to indicate the timing of each 5 

case. The data were analysed for the study period as a whole. Clustering and cluster detection tests are 6 

viewed as complimentary as they test different hypotheses, and a simulation study by Waller et al. 7 

(2006) indicated that it is possible to have a significant cluster, but no overall significant clustering. 8 

For this reason, tests for clustering were not run prior to implementing the space-time permutation 9 

statistic.  10 

CRGV suitability modelling 11 

The suitability models were generated using boosted regression trees (BRTs), a robust machine 12 

learning method with the ability to account for non-linearity and complex relationships between the 13 

dependent and predictor variables (Elith and others 2008b). BRTs differ from the traditional regression 14 

methods commonly used in epidemiological studies in that rather than producing a single ‘best’ model, 15 

they optimize predictive performance by using the technique of boosting to adaptively combine large 16 

numbers of relatively simple tree models (Elith and others 2008b). As well as being more easily 17 

interpreted than other machine learning methods such as support vector machines or random forest 18 

models, BRTs have been shown to generally out-perform more conventional approaches, such as 19 

logistic regression, in general species distribution modelling studies (Elith and others 2006). 20 

Background data points 21 

As calibration of the boosted regression tree (BRT) model used to identify associations between agro-22 

ecological risk factors and CRGV distribution required both presence and absence records, 2000 23 

background points were randomly generated within the confines of the England/Wales boundary in 24 

order to characterize the agro-ecological conditions existing within. The number of background points 25 

was a trade-off between adequately characterizing the variability in the environment while 26 

maintaining a sufficiently high prevalence so as to not suffer from possible bias linked to artificially-27 

induced prevalence (Barbet-Massin and others 2012). 28 

Calibration and evaluation of the boosted regression tree model 29 

The BRT algorithm was implemented using the gbm package (version 1.6-3) in R 3.3.1 (R 30 

Development Core Team 2011) together with the k-fold cross-validation stage-wise function available 31 

from (Elith and others 2008b). Pairwise combinations of a range of potential lr and tc were trialled to 32 

determine the best combination for identifying the optimal number of trees (a tree complexity of 4 and 33 

learning rate of 0.005). This optimum combination should result in more than 1000 trees (Elith and 34 
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others 2008b) while allowing the model to converge. A bernoulli error structure was specified and 1 

stochasticity was maintained through a bag-fraction of 50 %. As there was considerable collinearity 2 

between the two variables habitat and landcover (habitat nested within landcover), models were run 3 

with either habitat or landcover (keeping all other predictor variables constant) to determine which of 4 

the two predictors had the higher relative contribution to CRGV distribution and this variable was 5 

retained in the model while the other was dropped. In order to determine whether any variables were 6 

best omitted from the model, variables were removed in turn, starting with those having the smallest 7 

relative influence, and average change in predictive deviance calculated. Variables for which this 8 

value exceeded the model’s original estimated standard error were excluded from the model. 9 

Relative influence or contribution of the predictor variables to the response was calculated using 10 

formulae developed by (Friedman 2001) and implemented in the gbm package. These measures are 11 

based on the number of times a variable is selected for splitting, weighted by the squared 12 

improvement to the model as a result of each split, and averaged over all trees. The relative 13 

contribution of each variable was scaled so that together they summed to 100 with higher numbers 14 

indicating a stronger contribution to the response. Partial dependence plots describing relative 15 

probability of CRGV presence in relation to the range of values of each predictor variable were 16 

generated after accounting for the average effects of all other variables in the model. The predictive 17 

power of the model was evaluated using the test dataset and area under the ROC curve (AUC) 18 

computed for the binary classifier. 19 

Results 20 

Temporal pattern of CRGV case reporting 21 

The first known cases of CRGV were reported in 2012 (November/December: 4 %; n = 4) with a 22 

slight increase the following year (7 %; n = 7). Number of reported cases peaked in 2014 with a third 23 

of all cases reported in this year (33 %; n = 35) and decreased gradually thereafter (2017 January-24 

May: 17 %; n = 18) (Figure 1). Seasonally, CRGV cases were reported largely between December 25 

and May (Winter/Spring) with a third of all cases diagnosed in the first three months of the year 26 

(January-March). Only 7 % of cases (n = 7) were reported in the summer months (June-August) with 27 

no cases reported in October (Figure 1). 28 

Spatial distribution of CRGV cases 29 

The kernel density maps in Figure 2 show the density of CRGV cases (cases/km2) with darker brown 30 

areas exhibiting a higher reporting density of cases and lighter brown areas a lower (or no) reporting 31 

density of cases. Although the four initial cases of CRGV in 2012 were distributed randomly 32 

throughout England, in subsequent years reporting of the disease showed a tendency to cluster in 33 

certain areas (Figure 2). In 2013, cases were located around the New Forest on the southern coast of 34 
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England and 2014 saw the expansion of this CRGV hotspot of reporting together with the 1 

development of a second area of high reporting density in the Manchester region of northern England. 2 

These two main high-density reporting areas (New Forest and Manchester) persisted through to 2017 3 

although the New Forest hotspot was not apparent in 2016, replaced instead by an area of high 4 

reporting density around Greater London and a smaller area of activity on the south coast of Wales. In 5 

2017, distribution of cases was the most diffuse of all five years. In all years, the areas with a high 6 

reporting density of cases were generally accompanied by a few localised cases of CRGV scattered 7 

throughout England (Figure 2). 8 

A map of the reporting density (cases/km2) of all cases aggregated over the five-year period shows 9 

the north-east of England and the New Forest region of south England to have the highest five-year 10 

density of CRGV cases (Figure 3). A diffuse triangular area covering a large part of south-central 11 

England showed a medium-high reporting density of cases.  12 

Kuldorff’s spatio-temporal permutation statistic identified three spatio-temporal clusters. The cluster 13 

locations are shown in Figure 3 and details of each is provided in (Table 2).The most likely cluster 14 

occurred between April 2015 and May 2017 and included the area immediately to the right of the 15 

New Forest. This region reported a significantly (p = 0.002) lower proportion of CRGV cases than the 16 

rest of the UK (Figure 3). Between February and March 2013, the New Forest region on the south 17 

coast of England exhibited a significantly (p = 0.004) higher proportion of cases than the rest of the 18 

UK while between January and April 2014 the area around Manchester reported a moderately 19 

significantly (p = 0.087) higher proportion of cases than the rest of the UK (Figure 3).  20 

Agro-ecological factors associated with CRGV distribution 21 

As habitat explained a greater proportion of the variability in CRGV distribution than landcover (20.3 22 

vs 16 %), it was retained in the final model. The final predictive model contrasting CRGV case 23 

locations with background points had a good accuracy, with an area under curve (AUC) of 0.903 24 

when evaluated against the model calibration data set and an AUC of 0.884 ± 0.022 when evaluated 25 

with cross-validation as implemented by (Elith and others 2008). The suitability map (Figure 4) 26 

highlights areas of predicted high suitability for CRGV case occurrence and resembles the aggregated 27 

kernel-density map of CRGV case distribution for 2012-2017 (Figure 3). Areas with the highest 28 

predicted suitability for CRGV occurrence include West Sussex, southern Dorset and southern 29 

Hampshire in the south of England, and central greater Manchester in the north of England, together 30 

with the eastern regions of South Glamorgan and western Gwent in Wales. In addition, there are small 31 

localised areas of high suitability dotted throughout England, specifically in the counties of Somerset, 32 

West Midlands and Nottinghamshire. Most of southern England, apart from south-west England, is 33 

classified as moderately suitable. Broad regions of low suitability include North and Central Wales, 34 
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East Anglia, most of East Midlands, North Yorkshire, North East England, and the northern half of 1 

North West England (Figure 4). 2 

Four variables (AirFrostDays_Su, SoilDrain, RainDays10_Su and GrndFrostDays_Su) were removed 3 

from the model upon simplification leaving 34 variables. The relative contribution of each of these 4 

predictor variables is presented in (Figure 5) and can be divided into roughly four groups based on 5 

their relative influence on CRGV distribution: important, moderate, low and negligible contributors. 6 

Habitat was the only important predictor in the model accounting for 20.3 % of the variation in 7 

CRGV distribution. AvMaxTemp_Wi (8.8 %), AvRain_Wi (6.4 %), SheepDens (6.3 %), CattleDens 8 

(6.1), AvTemp_Sp (5.5 %) were moderate contributors together accounting for an additional 33.1 % 9 

of the variation in disease distribution. These variables together with AvRain_Sp (4.9 %), 10 

AvMaxTemp_Sp (4.0 %), AvMaxTemp_Au (3.8 %) and PigDens (2.5 %) accounted for 68.4 % of the 11 

variation in CRGV distribution. Predictors with a negligible impact on CRGV distribution included 12 

soil fertility, number of days of ground (Au,Wi/Sp) or air frost (Wi/Sp) and number of days with >1 13 

(Wi/Sp) or >10mm of rain (Au/Wi/Sp) (Figure 5). 14 

Dependency profiles for the first ten predictors are shown in Figure 6. The dependency profile for the 15 

predictor of primary importance (Habitat) shows that four habitat types are specifically associated 16 

with CRGV distribution (in decreasing order of importance): ‘mostly lowland dry heath communities’, 17 

‘wet acid meadows and woodland’, ‘wet flood meadows with wet carr woodlands in old river 18 

meanders’ and ‘acid dry pastures; acid deciduous and coniferous woodland; potential for lowland 19 

heath’. Woodland was a common descriptor in all but the most important habitat (‘mostly lowland dry 20 

heath communities’). Habitat types least likely to be associated with CRGV occurrence included 21 

‘base-rich pastures and classic chalky boulder clay ancient woodlands; some wetter areas and lime-22 

rich flush vegetation’, ‘base-rich pastures and deciduous woodlands’, ‘steep acid upland pastures dry 23 

heath and moor; bracken gorse and oak woodlands’ and ‘wet brackish coastal flood meadows’. 24 

Pasture was a common descriptor in all these apart from the ‘wet brackish coastal flood meadows’ 25 

habitat. Dependency profiles for the remaining nine predictors showed that, in addition to associations 26 

with specific habitat types, increasing relative probability of CRGV presence was associated with 27 

increasing mean maximum temperatures in winter, spring and autumn, increasing mean rainfall in 28 

winter and spring, increasing mean temperature in spring, decreasing cattle and sheep density, and 29 

variable pig density.  30 

There was a mild interaction (strength: 10) between the variables Habitat and AvMaxtemp_Wi with 31 

increased probability of CRGV occurrence in three Habitats – ‘mostly lowland dry heath 32 

communities’, ‘wet acid meadows and woodland’, and ‘wet flood meadows with wet carr woodlands 33 

in old river meanders’ – associated with increasing mean maximum winter temperatures (Figure 7). 34 

 35 
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Discussion 1 

The first known cases of CRGV in UK dogs were reported in 2012 and although initial numbers were 2 

very low (2012: n=3) annual frequency of reported cases showed a general increase, albeit exhibiting 3 

occasional year-on-year variation. Diseases that “have newly appeared in a population or have existed 4 

previously but are rapidly increasing in incidence or geographic range” are defined as ‘emerging’ 5 

(Morens and others 2004), and can be further divided into those that are ‘newly emerging’ (i.e. not 6 

previously recognized) or ‘re-emerging/resurging’ (i.e. diseases that were major a problem before 7 

declining dramatically, and then increasing again). The outbreak pattern of CRGV in the UK accords 8 

with the definition of a newly emerging disease as no cases were reported prior to 2012. However, 9 

that does not mean that the disease was completely unknown in the country as it may simply not have 10 

been recognized owing to a very low incidence in the population prior to 2012. A thorough search of 11 

practice records is needed to definitely rule out the absence of potential CRGV diagnoses in UK dogs 12 

pre-2012. 13 

Newly emerging infections are often the result of microbial, host and environmental factors 14 

interacting to create opportunities for infectious agents to evolve into new ecological niches. Factors 15 

that can contribute to this emergence/re-emergence include changing ecosystems, climate and 16 

weather, and microbial adaptation and change (Morens and others 2004). Our BRT model identified 17 

the highest relative probability of CRGV occurrence to be associated with a range of agro-ecological 18 

factors specifically, woodland and heath habitats, decreasing cattle and sheep densities, increasing 19 

maximum temperatures in winter and to a lesser extent spring and autumn, and higher mean rainfall in 20 

winter and spring.  21 

Habitat, in particular woodlands and lowland dry heath communities, was the variable identified by 22 

the BRT model to have the highest relative contribution to CRGV occurrence (20.3 %). However, UK 23 

woodlands are not a unified entity. Ranging from the ancient trees and woodland pasture of the New 24 

Forest’s old hunting grounds where CRGV clustered in 2013, to the ash woodland of the Derbyshire 25 

Dales and Peak District, the lime woods of the East Midlands and the beech woods in the Wye Valley, 26 

Cotswolds, and Chilterns, the woodlands of the UK are highly diverse, each characterised by different 27 

types of trees largely influenced by geology, soils, climate and history 28 

(https://www.woodlandtrust.org.uk/visiting-woods/trees-woods-and-wildlife/woodland-29 

habitats/exploring-woodland-habitats/; accessed 14/01/2017). They also provide a rich habitat for a 30 

wide range of wildlife, plants and fungi and this diversity makes it very difficult to isolate a single 31 

pathogen that might be the cause of CRGV. Lowland heath communities are also highly varied. 32 

Pastures were the habitat least associated with CRGV occurrence which, combined with the 33 

decreasing domestic livestock densities, suggests it is unlikely CRGV is the result of a livestock-34 

related pathogen to which dogs are exposed while walking across pastures, either from contact with 35 

https://www.woodlandtrust.org.uk/visiting-woods/trees-woods-and-wildlife/woodland-habitats/exploring-woodland-habitats/
https://www.woodlandtrust.org.uk/visiting-woods/trees-woods-and-wildlife/woodland-habitats/exploring-woodland-habitats/
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the livestock themselves or their excretions, or from the practice of applying slurry to pastures 1 

(Rankin and Taylor 1969). The lack of an association with pasture habitats is supported by the 2 

decreasing relative probability of CRGV presence with increasing sheep and cattle densities. 3 

Although habitat was the main contributor to the BRT model, a range of climatic variables were 4 

identified to be of moderate importance in CRGV occurrence. CRGV cases were more likely to be 5 

diagnosed under milder (increasing AvMaxTemp_Wi/Sp/Au), wetter (increasing AvRain_Wi/Sp) 6 

conditions in the colder months as typified by the south and west of the country. However, the fact 7 

that Wales and most of south-west England (the most extreme of these) were two of the regions 8 

predicted to be the least suitable for CRGV occurrence as illustrated in the risk map (Figure 4) 9 

suggests that appropriate climatic conditions on their own are insufficient; the concomitant presence 10 

of suitable habitats appears to be essential for CRGV occurrence (Wales and most of south-west 11 

England are dominated by pastures). This hypothesis is supported by the interaction identified by the 12 

BRT model between habitat and AvMaxTemp_Wi. Similarly, those years in which the disease was 13 

not reported in the New Forest region may have lacked the necessary climatic conditions (e.g. colder 14 

winters) despite the habitat being suitable. By the same token, it is possible that the low-risk cluster 15 

adjacent to the New Forest area lacks either optimal climatic conditions or suitable habitat for disease 16 

occurrence. 17 

It is interesting to note that disease distribution was associated with maximum seasonal temperatures 18 

(Autumn, Winter and Spring) while the effect of minimum seasonal temperatures on CRGV 19 

distribution was negligible. A study of changing climate extremes associated with warming has shown 20 

that daily minimum and maximum temperatures have both been increasing globally, although the 21 

former more than the latter (Alexander and others 2006). Climate is mostly a factor in diseases caused 22 

by pathogens that spend part of their lifecycle outside the host, exposed to the environment (Baylis 23 

2017). Increasing maximum temperatures during the colder months in GB may have provided a 24 

favourable habitat for an evolving organism or a new ecological niche for a pathogen that had always 25 

been present in the environment but was previously unable to flourish in the comparatively cooler 26 

conditions of previous decades. Isolating those climatic factors that might have played a role in the 27 

emergence of the disease (pre-2012) may assist in the development of causal models for CRGV and 28 

help identify the aetiology of the disease. 29 

Limitations 30 

CRGV was initially reported largely in the New Forest area of England resulting in an increased 31 

interest and awareness of the disease in this region which may have biased the habitat results towards 32 

woodland. However, since its inception in 2012, CRGV has been reported in other parts of the UK. In 33 

addition, the disease has been widely publicised in national and local media so that increased 34 

awareness may no longer be confined to the New Forest area and therefore any potential habitat-35 
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related biases arising from the regional focus is likely to have been mitigated over time. Only five (5 1 

%) of the 103 cases provided a walking postcode that differed substantially from their residential 2 

postcode as a result of the affected dogs having accompanied their owners on holiday to, for example, 3 

the New Forest region. However, the walking postcodes of other animals may also differ from their 4 

residential postcode, especially in terms of habitat. However, this bias will have been mitigated to 5 

some extent as the resolution of all agro-ecological variables used in this study was 1 km2 and 6 

therefore, provided dogs were walked within 1 km of their residential postcode there would have been 7 

no difference between the values of their residential and walking postcodes. However, for dogs 8 

walked greater than 1 km2 from their residential postcode, there may have been a difference and 9 

therefore for future studies of ecological risk factors it is important to obtain both the walking and 10 

residential postcodes. 11 

Cluster detection tests typically require some estimate of the population at risk in order to allow for 12 

identification of areas with a higher risk of disease while simultaneously compensating for the uneven 13 

distribution of the population. As this study lacked control or population-at-risk data, Kuldorff’s 14 

space-time permutation statistic was implemented instead of the more commonly used space-time 15 

scan statistic. While the traditional scan statistic seeks to identify significant excess of cases within a 16 

specific space-time window and provides a measure of how unlikely it would be to encounter the 17 

observed excess of cases in a larger comparison region, the permutation statistic on the other hand, 18 

seeks to identify areas with a higher proportion of cases compared to the remaining geographical 19 

regions of the study area. However, an important limitation of the permutation statistic is that without 20 

population-at-risk-data it is not possible to determine whether identified clusters are due to an 21 

increased risk of disease, or to different geographical population distributions at different times (e.g. 22 

an influx of tourists and their pets to coastal resorts during the summer months), especially when the 23 

study covers more than a single year. However, CRGV cases have generally been reported during the 24 

colder months when tourism generally falls off, mitigating the effect of this limitation to some extent 25 

and making it more likely that the identified clusters are due to increased disease risk rather than 26 

different geographical population distributions.  27 

As the two clusters identified in southeastern England were reasonably close to the southern boundary 28 

of the study area as defined by the physical barrier of the sea, it is necessary to acknowledge the 29 

possible existence of edge-effects. Although edge effects may be negligible when dealing with large-30 

scale effects, they can be considerable when estimating small-scale effects close to the boundary. 31 

Edge effects are usually dealt with either by using a weighting system that gives less weight to those 32 

observations near the boundary, or through the use of guard areas (Pfeiffer et al. 2008). Unfortunately, 33 

Kuldorff’s space-time permutation statistic (as implemented in SaTScan v9.5) does not allow for the 34 

use of a weighting system. However, as none of the identified clusters intersects with a coastal 35 
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boundary, and are in fact some distance inland, it is unlikely that edge-effects will have substantially 1 

distorted the estimates of the space-time permutation technique in this instance. 2 

Similarly, calibration of the BRT model also requires both disease presence and absence data. 3 

However, when lacking absence data for species distribution modelling alternatives exist in the form 4 

of pseudoabsence or background data. Background data are sampled from the whole study area in 5 

order to characterize the environmental conditions existing within it (Peterson and others 2011). It can 6 

be argued that the use of background data has advantages over that of disease absence data as the 7 

latter can be problematic making it difficult to distinguish between absence of disease and lack of 8 

observation or reporting of disease events in an area. Alternatively, the disease species may be absent, 9 

even though the habitat is suitable for its occurrence, due to a geographical or man-made barrier 10 

preventing its spread into the area (Hirzel and others 2002). These situations can be considered ‘false 11 

absences’, biasing study results. Lobo and others (2010) identified three types of absence data 12 

typically occurring in primary datasets – environmental, contingent and methodological – and insisted 13 

that to optimize prediction from species distribution models all absences should ideally be 14 

environmental ones; contingent and methodological absences being deemed ‘noise’. The use of 15 

background data to characterise the environment of the study area therefore largely removes the 16 

biases associated with false absences and mimics the environmental absences required to optimize 17 

prediction from species distribution models.  18 

In this study, we used fixed seasons although it could be argued that such an approach is not 19 

appropriate if, as reported, spring and autumn are becoming shorter in duration (Jones and others 20 

2013). However, the data in this study covers a five year period making it difficult to account for the 21 

official start of each season each year. Furthermore, the start of each season will occur over a period 22 

of weeks across the country and therefore a fixed approach in defining the seasons gives a benchmark 23 

for a unified analysis of data from different regions and different years. 24 

Conclusion 25 

The results of this study provide owners with broad overview of when and where their dogs are likely 26 

to be most at risk of developing CRGV in the UK. Outbreaks displayed a distinct seasonal pattern 27 

with > 90 % of cases reported between November and May while the area from which cases have 28 

been reported has expanded since 2012 to encompass most of the western and southern regions of 29 

England. The eastern parts of the country – East Anglia in particular – appear to have a decreased risk 30 

of disease. These factors, together with the association identified between disease occurrence and 31 

specific habitats (CRGV occurrence was most frequently associated with woodlands and lowland dry 32 

heath and least associated with pastures) provide dog owners with an indication of when to be most 33 

vigilant for symptoms of the disease, as early identification and treatment is critical. Further research 34 

into factors differentiating high and low risk regions – especially the adjacent high and low risk 35 
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clusters identified in southeastern England – has the potential to provide further information central to 1 

the epidemiology of this disease. 2 
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Table 1: Descriptors of the spatial agro-ecological predictor variables selected to model the distribution of cases of 1 
cutaneous and renal glomerular vasculopathy in dogs in the United Kingdom  2 

Predictor name Descriptor Data source 

CattleDens Density of cattle (heads/km2) Gridded Livestock of the World 

(http://www.fao.org/ag/againfo
/resources/en/glw/home.html) 

SheepDens Density of sheep (heads/km2) 

PigDens Density of pigs (heads/km2) 

Habitat  NATMAP SoilScapes map for 
England and Wales (1:250 000). 
(http://www.landis.org.uk/data/
nmsoilscapes.cfm) 

 

Landcover  

SoilDrain Soil drainage characteristics 

SoilFert Soil fertility characteristics 

AvTemp Mean temperature of the Spring (Sp), Summer (Su), Autumn 
(Au) and Winter (Wi) months (oC). 

United Kingdom Met Office 5 km 
× 5 km gridded data sets 

(https://www.metoffice.gov.uk/r
esearch/climate/climate-
monitoring/ukcp09/register) 

 

AvMaxTemp Mean maximum temperature of the Spring (Sp), Summer (Su), 
Autumn (Au) and Winter (Wi) months (oC). 

AvMinTemp Mean minimum temperature of the Spring (Sp), Summer (Su), 
Autumn (Au) and Winter (Wi) months (oC). 

AvRain Mean rainfall of the Spring (Sp), Summer (Su), Autumn (Au) and 
Winter (Wi) months (mm). 

AvRainDays1 Mean number of days with a rainfall of >1 mm in the Spring (Sp), 
Summer (Su), Autumn (Au) and Winter (Wi) months (days) 

AvRainDays10 Mean number of days with a rainfall of >10 mm in the Spring 
(Sp), Summer (Su), Autumn (Au) and Winter (Wi) months (days). 

GrndFrostDays Mean number of days with ground frost in the spring (Sp), 
Summer (Su), Autumn (Au) and Winter (Wi) months (days). 

AirFrostDays Mean number of days with air frost in the Spring (Sp), Summer 
(Su), Autumn (Au) and Winter (Wi) months (days). 

 3 

 4 

 5 

 6 

Table 2: Characteristics of the high and low risk clusters of cases of cutaneous and renal glomerular vasculopathy (CRGV) 7 
in dogs in the United Kingdom (January 2012 – May 2017) as identified by Kuldorff’s space-time permutation statistic. 8 

Cluster ID Risk level Date Expected cases Observed cases P-value 

1 Low 1/4/2015 – 31/5/2017 10 0 0.002 

2 High 1/2/2013 – 31/3/2013 0 4 0.004 

3 High 31/1/2014 – 30/4/2014 1 5 0.087 

 9 

http://www.fao.org/ag/againfo/resources/en/glw/home.html
http://www.fao.org/ag/againfo/resources/en/glw/home.html
http://www.landis.org.uk/data/nmsoilscapes.cfm
http://www.landis.org.uk/data/nmsoilscapes.cfm
https://www.metoffice.gov.uk/research/climate/climate-monitoring/ukcp09/register
https://www.metoffice.gov.uk/research/climate/climate-monitoring/ukcp09/register
https://www.metoffice.gov.uk/research/climate/climate-monitoring/ukcp09/register
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 1 

Figure 1: Heat map illustrating the temporal distribution of 107 cases of cutaneous and renal glomerular vasculopathy 2 
(CRGV) in dogs in the United Kingdom, divided by month and year (November 2012 – May 2017, inclusive). Months are 3 
shown on the x-axis and years on the y-axis. The shading of the blue blocks represents the frequency of CRGV cases 4 
reported that month (lighter shading = higher frequency). The grey background is visible when no cases were reported in a 5 
month. 6 

  7 
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 1 

Figure 2: Maps showing annual location and kernel-smoothed density of cases of cutaneous and renal glomerular 2 
vasculopathy (CRGV) in dogs in the United Kingdom between January 2012 and May 2017 (inclusive). 3 
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Figure 3: Map showing location and kernel-smoothed density of cases of cutaneous and renal glomerular vasculopathy 1 
(CRGV) in dogs in the United Kingdom (January 2012 – May 2017) together with the location of two spatio-temporal 2 
clusters exhibiting a significantly higher proportion cases (o), and one spatio-temporal cluster exhibiting a significantly 3 
lower proportion of cases (o), than the remainder of the UK. Clusters were identified using Kuldorff’s space-time 4 
permutation statistic. 5 
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 1 

Figure 4: Map showing predicted suitability of England and Wales for the occurrence of cases of cutaneous and renal 2 
glomerular vasculopathy (CRGV) in dogs. Yellow dots represent the location of reported CRGV cases (n = 107). 3 
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Figure 5: Relative contribution of the 34 predictor variables modelling the spatial distribution of cutaneous and renal 1 
glomerular vasculopathy (CRGV) in dogs in the UK (2012-2017). Relative influence (or contribution) of each variable is 2 
scaled so that the sum adds to 100, with higher numbers indicating stronger influence on the model outcome. Colours 3 
refer to category of predictor variable. 4 
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 1 

Figure 6: Partial dependence plots or boosted regression tree (BRT) profiles for the ten top predictor variables modelling 2 
the spatial distribution of cutaneous and renal glomerular vasculopathy (CRGV) in dogs in the UK (2012-2017). Partial 3 
dependence plots show the predicted dependence between the dependant variable of the BRT model on the y-axis 4 
(probability of CRGV presence) versus each predictor variable on the x-axis. The top 10 predictor variables were included in 5 
this figure: Habitat, AvMaxtemp_Wi (oC), CattleDens (heads/km2), SheepDens (heads/km2), AvRain_Wi (mm), AvTemp_Sp 6 
(oC), AvRain_Sp (mm), AvMaxTemp_Sp (oC), AvMaxTemp_Au (oC) and PigDens (heads/km2). Relative contribution of each 7 
predictor variable is given in brackets and a key provided for habitat types. Habitat types in bold (1, 7 12, 14) are those 8 
associated with CRGV presence. 9 
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 1 

Figure 7: Interaction between the variables Habitat and AvMaxTemp_Wi in the boosted regression tree (BRT) model for 2 
the spatial distribution of cutaneous and renal glomerular vasculopathy (CRGV) in dogs in the UK (2012-2017). 3 
Interaction plots show the predicted dependence between the dependant variable of the BRT model on the y-axis 4 
(probability of CRGV presence) versus the combined effect of each the two interaction predictor variables on the x- and y-5 
axes. The two predictor variables included in the interaction shown in the plot are Habitat and AvMaxtemp_Wi (oC). 6 


