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Abstract 20 

The isolation of antimicrobial resistant bacteria (ARB) from wildlife living adjacent to humans has led 21 

to the suggestion that such antimicrobial resistance (AMR) is anthropogenically driven by exposure to 22 

antimicrobials and ARB. However, ARB have also been detected in wildlife living in areas without 23 

interaction with humans.  Here, we investigated patterns of resistance in Escherichia coli isolated from 24 

408 wild bird and mammal faecal samples. AMR and multi-drug resistance (MDR) prevalence in 25 

wildlife samples differed significantly between a Sewage Treatment Plant (STP; wastes of antibiotic-26 

treated humans) and a Farm site (antibiotic-treated livestock wastes) and Central site (no sources of 27 

wastes containing anthropogenic AMR or antimicrobials), but patterns of resistance also varied 28 

significantly over time and between mammals and birds. Over 30% of AMR isolates were resistant to 29 

colistin, a last-resort antibiotic, but resistance was not due to the mcr-1 gene. ESBL and AmpC activity 30 

were common in isolates from mammals. Wildlife were, therefore, harbouring resistance of clinical 31 

relevance.  AMR E. coli, including MDR, were found in diverse wildlife species, and the patterns and 32 

prevalence of resistance were not consistently associated with site and therefore different exposure 33 

risks. We conclude that AMR in commensal bacteria of wildlife is not driven simply by anthropogenic 34 

factors, and, in practical terms, this may limit the utility of wildlife as sentinels of spatial variation in 35 

the transmission of environmental AMR. 36 

 37 

Key words: E. coli, Antimicrobial resistance, wildlife, birds, multi-drug resistance, wastewater 38 

treatment 39 

Running head: Wildlife and AMR 40 
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1. Introduction 42 

Antimicrobial resistance (AMR) has existed for millions of years, and is an inevitable 43 

evolutionary consequence of microbial competition in the environment (D'Costa et al 2011, Davies 44 

and Davies 2010, Martinez 2009). While the increasing prevalence of AMR in clinically important and 45 

commensal bacteria in both humans and livestock can be attributed largely to selection through the 46 

use of antimicrobials (Ibrahim et al 2016, Karesh et al 2012), AMR has also been reported in the 47 

commensal bacteria of wildlife (Arnold et al 2016). Commensal bacteria have the potential to act as 48 

reservoirs of resistance genes, contributing to the development of AMR in pathogens by horizontal 49 

transmission (Arnold et al 2016, Taylor et al 2011, von Wintersdorff et al 2016).  AMR is a problem in 50 

human and veterinary medicine worldwide, inhibiting the treatment of bacterial infections and is 51 

estimated to be responsible for 25,000 preventable human deaths in Europe annually (Marston et al 52 

2016) and an estimated global economic cost of 100 trillion USD by 2050 if not addressed (O'Neill 53 

2016). Thus, there is increasing interest in the environment, including wildlife, as both a source of 54 

clinically relevant AMR and in order to better understand the effects of anthropogenically-derived 55 

antimicrobial pollution and resistance in ecosystems (Arnold et al 2016, Carroll et al 2015, Huijbers et 56 

al 2015). 57 

It is often assumed that antimicrobial-resistant bacteria (ARB) in wildlife result from contact 58 

with anthropogenic sources such as farms and human waste that pollute the environment with AMR 59 

bacteria and/or with antimicrobials (Allen et al 2010, Clarke and Smith 2011, Radhouani et al 2011).  60 

Farms on which manure and slurry can be contaminated with ARB, antibiotics (or their metabolites) 61 

and other selective drivers of AMR are important habitats for many small mammals and birds, as are  62 

sewage treatment plants (STPs) where some birds and mammals feed directly from the bioprocessers 63 

(reviewed in Arnold et al 2016). Run-off from farms, slurry tanks and manure-fertilised fields, along 64 

with sewage effluent, can result in antimicrobial drug and ARB contamination of local water courses 65 

and land (Fahrenfeld et al 2013). Consequently, it is unsurprising that ARB have been found in wild 66 
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animals in close contact with humans (Allen et al 2011, Bondo et al 2016, Furness et al 2017, Gilliver 67 

et al 1999). 68 

Assigning the source and directionality of AMR dissemination is challenging. Even within 69 

wildlife populations living in close contact with humans or livestock, or at least their wastes, there is 70 

little evidence directly linking an anthropogenic source of AMR with specific patterns of AMR and/or 71 

resistance genes. For example, few overlaps in resistance patterns and AMR genes were found 72 

between E. coli isolated from wildlife living on or near dairy farms and dairy cattle in England (Arnold 73 

et al 2016, Wu et al 2018). Whereas wild rodents nearer to a river receiving sewage effluent excreted 74 

more resistant E. coli than inland animals (Furness et al 2017), this was an association lacking evidence 75 

of a clear transmission pathway. Moreover, other highly mobile taxa such as birds also carry ARB that 76 

have not been attributed to any particular anthropogenic source (Guenther et al 2017, Schaufler et al 77 

2016). Moreover, AMR has been detected in wildlife living in remote and isolated locations with no 78 

obvious contact with the wastes of antimicrobial-treated humans or livestock (Cristobal-Azkarate et 79 

al 2014). Thus, although transmission of AMR from humans or livestock to wildlife via direct contact 80 

with sewage, slurry or faeces, has been suggested, the empirical evidence is lacking or contradictory. 81 

Species or ecological guilds with different dispersal patterns, resource requirements and foraging 82 

behaviours are likely to have different roles in the evolution and dispersal of AMR (Arnold et al 2016). 83 

We argue that the efficacy of wildlife species as sentinels of environmental transmission of AMR will 84 

vary depending on the spatial and temporal scales of interest. 85 

In this study, three nearby communities of small wild rodents and birds were investigated for 86 

evidence of AMR in faeces. The antimicrobials used to screen for resistance were chosen as they 87 

represent a range of antibiotic classes of medical and veterinary interest. For example, cefpodoxime 88 

resistance is seen as an indicator of extended spectrum beta-lactamase (ESBL) or AmpC beta-89 

lactamase producing bacteria which cause significant problems in human medicine especially with 90 

urinary tract infections (Rawat and Nair 2010). Colistin resistance is also of relevance due to colistin 91 

being an antibiotic of last resort. The sites for sampling were chosen to represent different exposures 92 
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to wastes and thus potentially different selection pressures for AMR: a dairy farm with antimicrobial-93 

treated livestock, a STP containing waste from humans treated by antimicrobials and an area of 94 

parkland and neighbouring arable field edge with no obvious sources of waste containing 95 

antimicrobials or ARB. We sampled wildlife species typical for small woodlands, farmland and 96 

hedgerow habitats in the UK; small rodents including wood mice Apodemus sylvacticus, bank voles 97 

Myodes glareolus and a number of bird species.  98 

The overall aim of this study was to investigate the role of environmental contamination in 99 

the patterns of AMR found in wildlife.  We addressed whether the spatial location where wild birds 100 

and mammals were sampled, including proximity to human and livestock wastes, explained variation 101 

in: 1) prevalence and genomic diversity of AMR E. coli in birds and mammals; 2) patterns of AMR and 102 

MDR prevalence in E. coli isolates; and 3) prevalence of phenotypic resistance to medically important 103 

antimicrobials and the resistance genes responsible.  104 

 105 

2. Material and Methods 106 

2.1 Study sites 107 

Three nearby study sites in the East Midlands of England, on a 1200m transect, were selected 108 

(Figure S1), based on their differing potential exposure to human and livestock sources of AMR and 109 

antimicrobial drugs. The ‘Farm site’ was a small woodland and hedgerows immediately adjacent to a 110 

dairy farm that received run-off from farm buildings and livestock faeces potentially contaminated 111 

with AMR bacteria and antimicrobials. The ‘Central site’, around 600m from the Farm site, comprised 112 

an arboretum and neighbouring hedgerow edging an arable field.  It was not adjacent to known 113 

sources of human or livestock waste. The ‘STP site’ was a small sewage treatment plant around 450-114 

600m from the Central-site, comprising the land and hedgerows surrounding all the tanks and trickling 115 

filters making up the STP and hedgerows adjacent to the pipe where treated water outflowed into a 116 

local stream. All the sites were close enough to share common environmental traits and weather. 117 
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Conversely, the three sites were far enough apart, with physical barriers to dispersal (roads and a 118 

railway line), such that most of the species sampled would not regularly move between the sites. 119 

2.2 Sampling wildlife 120 

All sampling took place between July and August (‘Summer’), and October and November 121 

(‘Autumn’) 2016 and was subject to full ethical review (see Supplementary Material). Sampling 122 

occurred each week per month per site, but mammals and birds were not captured simultaneously to 123 

avoid excessive disturbance. Small mammals were trapped in Longworth or similar live, small mammal 124 

traps with shrew escape holes. The traps were sterilised between sites, filled with sterile hay as 125 

bedding and mixed grain and carrot or apple as food and water sources. Traps were placed at 5m 126 

intervals and checked daily. Faeces were collected with a sterile swab into a sterile sampling tube for 127 

transport to the laboratory. The species of each rodent caught, the date and trap location were 128 

recorded.   129 

Wild birds were caught in mist nets, under licence from the British Trust for Ornithology (BTO), 130 

located along and across hedgerows and patches of woodland within each study site. Each capture 131 

location was selected to overlap with trapping sites for small mammals (above) and was pre-baited 132 

for at least 3 days with bird feeders containing mixed seed.  After capture, each bird was placed on its 133 

own into a single use brown paper bag for up to 20 min in order to collect a faecal sample. The bird 134 

was then fitted with a BTO leg ring, before being released. Sterile swabs were used to remove faeces 135 

from the bags into sterile sampling tubes. If the same bird was caught more than once on the same 136 

day the faecal samples were pooled.  In addition, feral pigeons, which formed a large flock at the Farm-137 

site, were sampled for faeces post-mortem after shooting as part of pest control. Table S3 shows the 138 

range of species caught. The foraging ecology of the species did not explain any of the patterns of 139 

AMR or MDR observed (see Supplementary Material). 140 

 141 
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2.3 Isolation and AMR characterisation of presumptive E. coli isolates 142 

Phenotypic resistance to eight antibiotics was determined first by plating on antibiotic-143 

supplemented media or by disk diffusion. Faecal samples (0.5 g) were incubated in buffered peptone 144 

water (BPW) at 37 °C for 18 h and 100 µl was spread onto Tryptone Bile X-Glucuronide Medium (TBX; 145 

Oxoid, UK) agar supplemented with; ampicillin (10 μg/ml), apramycin (30 μg/ml), colistin (4 μg/ml) or 146 

ciprofloxacin (1 μg/ml) or without antibiotics and incubated at 37°C for 18h.  Presumptive E. coli 147 

(blue/green) colonies were taken forward for further characterisation.   148 

One presumptive antibiotic resistant E. coli colony per plate obtained from the initial 149 

screening was then tested for resistance to other antibiotics using disc diffusion assays. Briefly, isolates 150 

were cultured in BPW at 37 oC for 18 h. Samples (100 µl) were spread plated onto Muller-Hinton agar 151 

(MH; Oxoid, UK) and left to dry. Six antibiotic discs impregnated with ampicillin (10 μg/ml), tetracycline 152 

(3 μg/ml), apramycin (15 μg/ml), trimethoprim (2.5 μg/ml), imipenem (10 μg/ml) and cefpodoxime 153 

(10 μg/ml), were placed on the agar and the plates were incubated for 18 h at 37 oC.  After incubation 154 

the diameter of the zone of clearance around each disc was measured and isolates were classified as 155 

resistant if the zone was less than or equal to published breakpoints (EUCAST 2016). 156 

 157 

2.4 Characterisation and ERIC-PCR genotyping of E. coli isolates  158 

A representative subsample of presumptive E. coli isolated from mammals from each site and 159 

every presumptive E. coli isolated from birds were subject to rRNA PCR and sequencing (Srinivasan et 160 

al 2015). BLAST searches confirmed all were Escherichia, and the vast majority clearly E. coli. In order 161 

to identify any patterns of genotypic similarity among E. coli by spatial location or host (mammal/bird), 162 

we used ERIC-PCR. Twenty-four resistant E. coli isolates from mammals at each sample site and all the 163 

resistant E. coli isolates from birds (total 91 samples) were subjected to ERIC-PCR (Ibrahim et al 2016, 164 

Versalovic et al 1991). DNA (diluted 1:100) extracted from the E. coli isolates, 12.5 µl of PCR Master 165 
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Mix Plus (Qiagen, UK), 5 µM of the each ERIC primer (Table S1), 2 µl of Coral Load Dye (Qiagen, UK) 166 

and sterile molecular grade water to 25 µl. The PCR parameters for the ERIC-PCR are found in Table 167 

S1. 168 

 169 

2.5 Analysis of ESBL and AmpC resistance in cefpodoxime-resistant E. coli 170 

 Cefpodoxime resistant isolates were tested for ESBL or AmpC activity using the AmpC & ESBL 171 

Detection Set (Mast Group, UK). Briefly, overnight liquid cultures of cefpodoxime resistant isolates 172 

were spread plated onto MH agar and left to dry before discs containing cefpodoxime 10 µg (A), 173 

cefpodoxime 10 µg + ESBL inhibitor (B), cefpodoxime 10 µg + AmpC inhibitor (C) ad cefpodoxime 10 174 

µg + ESBL and AmpC inhibitor (D) were added. Comparison of the zones of clearance enabled ESBL 175 

and/or AmpC resistant bacteria to be identified using the manufacturer’s calculator (Mast Group, 176 

UK). 177 

 178 

2.6 DNA extraction and PCR parameters 179 

DNA was extracted from E. coli by heat-lysis. One colony was placed in 10 μl of sterile 180 

molecular grade water and heated at 95° for 10 min. Samples were centrifuged (13000 x g; 3 min) and 181 

the supernatant removed. The supernatant was stored at -20 oC until used as template DNA for 182 

subsequent PCR reactions. PCR amplifications (apart from ERIC-PCR) were carried out in 20 µl reaction 183 

mixtures comprising of 10 µl of PCR Master Mix Plus (Qiagen, UK): 0.5 µM of each primer, 2 µl of Coral 184 

Loading Dye (Qiagen, UK) and molecular grade sterile water to 20 µl. See Table S1 for primers and PCR 185 

cycling parameters. 186 

 187 

2.7 Molecular characterisation of colistin and ciprofloxacin resistant E. coli  188 
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E. coli isolates with phenotypic colistin and ciprofloxacin resistance were further 189 

characterised. DNA from ciprofloxacin and colistin-resistant colonies was diluted 1:100 and used as 190 

template DNA for PCR to amplify the gyrA and if present the transposable mcr-1 gene (Liu et al 2016). 191 

For ciprofloxacin resistant isolates DNA was purified from agarose gels using a Gel DNA Extraction Kit 192 

(ZymoResearch, UK) and sequenced. The sequences were aligned and compared against E. coli K12 193 

using CLC SequenceCe Viewer (Qiagen) to identify specific point mutations in gyrA associated with 194 

ciprofloxacin resistance. As a positive control for colistin resistance, DNA harbouring the mcr-1 gene 195 

was used. 196 

 197 

2.8 Statistical analyses 198 

Binomial logistic regression models were used to ascertain the effects of site (Farm, Central 199 

and STP), season (Summer = Jul/Aug, Autumn = Oct/Nov,) and taxa (bird or mammal) on the 200 

prevalence of E. coli in faecal samples and prevalence of resistance, i.e. if E.coli were resistant to one 201 

or more antibiotic (‘AMR ≥1 antibiotic’) or MDR (resistant to three or more antibiotics). All of these 202 

analyses were carried out using SPSS v.24. 203 

The ERIC-PCR gel image was analysed using a Gel-Doc XR system (Bio-Rad, UK)(Ibrahim et al 204 

2016). Using GelCompar II (Applied Maths) a dendrogram was generated from the comparison of ERIC-205 

PCR profiles, using the Dice coefficient, and clustered by the unweighted pair group method with 206 

arithmetic averages (UPGMA) with 1.5% of optimization and 1.5% of tolerance. Molecular variance 207 

framework analysis (AMOVA) (Excoffier et al 1992) was used to analyse the confidence of the selected 208 

similarity threshold and the significance of clusters. The AMOVA calculation was carried out using 209 

GenAlEx v 6.5b5 software (Peakall and Smouse 2006). The significance was examined with the 210 

calculation of ΦPT, a measure of population differentiation that suppresses intra-individual variation. 211 

In the case of AMOVA, the null hypothesis (H0; ΦPT = 0) meant that there was no genetic difference 212 
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among the populations and the alternative hypothesis (H1; ΦPT > 0) meant there were genetic 213 

differences amongst the populations. 214 

 215 

3. Results 216 

3.1 E. coli in rodent and avian samples 217 

In total, 125 faecal samples from bank voles, 15 from field voles and 89 from wood mice were 218 

collected. A further 96 faecal samples were collected from traps in which small rodents had escaped, 219 

and were recorded as ‘unknown’ (see Table S2). We collected 84 avian faecal samples from 18 220 

different species, but one sample did not yield an isolate. 221 

Overall E. coli were isolated from 66 % (269/408) of faecal samples (Figure 1).  The prevalence 222 

of E. coli was explained by site, season and taxa (Table 1a). Samples collected from the Central (63%; 223 

n= 145) and STP sites (64%; n= 125) did not differ significantly. Samples collected from the Farm Site 224 

(prevalence = 71 %; n = 138) were significantly more likely to contain E. coli than those from the Central 225 

Site (Table 1a; Figure 1). Mammalian samples were significantly more likely to contain E. coli 226 

(prevalence = 74%; n = 325) than avian samples (33%; n = 83)(Table 1a). Samples collected in Summer 227 

(prevalence = 73%; n = 227) were significantly more likely to contain E.coli than those collected in 228 

Autumn (57%; n = 181)(Table 1a).    229 

 230 

3.2 Genotyping of E. coli isolates by ERIC-PCR 231 

A selection of AMR E. coli representing different hosts and sites were compared by ERIC-PCR 232 

(Figure 2). Cluster analysis suggested five main groups of isolates at a 50 % similarity threshold 233 

(indicated as 1-V in Figure 2). Cluster significance analysis demonstrated these were non-overlapping 234 

and hence genomically independent groups (cluster significance ΦPT = 0.036; p < 0.001). Each larger 235 

cluster (II-V) contained E. coli from a range of hosts and sites with no obvious association between 236 
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their AMR pattern and which cluster the isolates resided in. However, there was a tendency towards 237 

certain clusters containing isolates from predominantly one site: cluster II with Farm Site, cluster III 238 

with Central Site and cluster V with STP Site. Given an expected probability of 0.33, binomial tests 239 

indicated that the proportion (0.69) of Farm Site samples in Cluster II was significantly higher than 240 

expected (p = 0.0002), as was the proportion  of Central Site samples (0.62) in Cluster III (p = 0.033) 241 

and the proportion of Farm Site samples (0.75) in Cluster V (p = 0.0006). 242 

 243 

3.3. Antimicrobial resistance 244 

 The prevalence of AMR was expressed as the percentage of samples from which E. coli was 245 

isolated (on the TBX plate without antibiotics) that also contained at least one isolate resistant to at 246 

least one of the antibiotics tested (AMR ≥ 1).  The overall prevalence of AMR E. coli was 54 % (n = 247 

262) and was significantly explained by a model that included season, taxa and site (Table 1b). AMR 248 

prevalence in samples from the STP was 61.3 % (n = 80) which was significantly higher than the 249 

prevalence of resistance in samples from the Central Site (50.0 %; n = 86) (Table 1b; Figure 3a). 250 

Prevalence in samples from the Farm site was 52.1 % (n = 96) and did not significantly differ from 251 

that in Central Site samples (Table 1b). 252 

E. coli from samples collected in Summer (prevalence = 65.4 %; n = 159) were significantly 253 

more likely to be resistant than those collected in Autumn (36.9 %; n = 103) Table 1b). There was a 254 

tendency (p = 0.056; Table 1b) for mammalian faecal samples to have a higher prevalence (55.7 %; n 255 

= 235) of resistant E. coli than avian samples (40.7 %; n = 27). 256 

 257 

3.4 Multi-drug resistance (MDR) 258 

For the purpose of this study MDR was defined as resistance to three or more of the eight classes of 259 

antibiotics tested.  Overall, 80.3 % (n = 142) of the AMR E. coli were MDR. A model including taxa 260 

and site significantly explained MDR prevalence (Table 1c). Prevalence in samples from the Farm site 261 
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(66.0 %; n = 50), was significantly lower than from the Central site (83.7 %; n = 43). Prevalence of 262 

MDR in samples from the Central and STP sites (91.8 %; n = 49) did not differ significantly (Fig. 3b; 263 

Table 1c). E. coli from samples collected from mammals (prevalence = 84.7 %; n = 131) were 264 

significantly more likely to be MDR than those collected from birds (27.3%; n = 11) (Table 1c).  265 

Season (MDR prevalence in Summer = 77.9 %; n = 104 and in Autumn = 86.8 %; n=38) was non-266 

significant so was excluded from the model.  267 

Individual E. coli isolates were resistant to up to seven different antibiotics (Figure 3c).There 268 

was no obvious difference in MDR profiles between the different sites tested (Table 2). 269 

3.5 Prevalence of ESBL or AmpC producing E. coli 270 

All isolates resistant to cefpodoxime were further investigated for ESBL or AmpC production. 271 

From the 53 cefpodoxime resistant E. coli, six were ESBL, 22 were AmpC and six were positive for both 272 

ESBL and AmpC production (Table 3). Across all samples, there was a significant difference between 273 

the sites in the number of isolates testing positive for AMPC and/or ESBL, with the highest number at 274 

the STP site (χ2 (2) = 6.59, p = 0.034; Table 3). 275 

 276 

3.6 Genotypic analysis of ciprofloxacin and colistin resistant isolates  277 

 Ciprofloxacin resistant E. coli were further characterised by sequence comparison with a 278 

known sensitive strain of E. coli (K-12) and four of amino acid changes were observed (Figure 4). All 279 

colistin resistant isolates were subjected to mcr-1 PCR and none were found to be positive for this 280 

gene, suggesting resistance is derived from other ARGs. 281 

 282 

  283 
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4. Discussion 284 

AMR, including MDR, was common among the commensal E. coli of the wildlife studied, but 285 

clear patterns in resistance were not seen in terms of spatial proximity to anthropogenic sources of 286 

waste containing antimicrobials and ARB. Previous studies have suggested that wildlife could be 287 

used as sentinels of environmental AMR (Furness et al 2017, Vittecoq et al 2016). Our study supports 288 

this to some extent, although as with previous work by ourselves and others (Arnold et al 2016, 289 

Bondo et al 2016, Gilliver et al 1999, Literak et al 2010, Williams et al 2011), factors other than 290 

geographic distance from the wastes of antibiotic treated animals or humans clearly influence AMR.  291 

This is also demonstrated by the wide variations in MDR profiles within and between sites suggesting 292 

other factors affecting AMR in these animals (Table 2). Host taxonomic differences, as well as spatial 293 

and temporal factors, seemed to influence AMR prevalence. Moreover, our models explained about 294 

20% of the variance in AMR and MDR, indicating that other, unmeasured factors, were also 295 

important in determining prevalence. Thus, there are significant caveats to using wildlife as sentinels 296 

of environmental transmission of AMR due to antimicrobials and ARB in anthropogenic wastes. 297 

 Some studies have reported relatively high AMR prevalence in wildlife collected near AMR 298 

sources such as water bodies receiving sewage effluent or agricultural wastes, compared with more 299 

pristine sites (Bonnedahl et al 2009, Furness et al 2017). In our study, a significantly higher 300 

prevalence of AMR was observed at the STP (61%) compared with the other two sites (<53%). That 301 

site and site-specific environments might be drivers of exposure is supported by the ERIC analysis 302 

that found that genotypes of E. coli showed spatial- rather than host-specific clustering (VanderWaal 303 

et al 2014).   Multidrug resistance prevalence showed somewhat different patterns with the STP 304 

(92%) again having a significantly higher MDR prevalence than the farm (66%), but a similar 305 

prevalence to the Central site (84%).  If the prevalence and patterns of resistance were driven by 306 

exposure to either anthropogenic antimicrobials or ARB from humans and/or livestock, a higher 307 

prevalence of resistance would have been expected at the Farm Site as well as the STP Site, and the 308 
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prevalence at the Central site might have been expected to be lower than both of the other two 309 

sites. However, this was not the case (see also (Carter et al 2018).  310 

 311 

4.1 Host taxa and temporal variation 312 

 Taxonomic differences in both the prevalence of samples containing E. coli and the 313 

prevalence of AMR and MDR were observed. Mammals (74%) were significantly more likely to be 314 

carrying E. coli than birds (33%), with a prevalence of 66% overall. Host taxonomic differences in E. 315 

coli may reflect the relatively small size of faecal samples from birds and their tendency to dry out, 316 

but might also simply reflect the relative contribution of E. coli to the normal gut biota of very 317 

different taxa.  The prevalence of phenotypic AMR (expressed as the percentage of samples that 318 

contained resistant E. coli) was 54% overall, with a marginally higher prevalence in mammalian 319 

(56%) than avian (41%) samples (p = 0.056). Our prevalence of ARB in mammals was similar to that 320 

previously reported in the UK (35% and 79% for inland and coastal populations respectively of small 321 

mammals (Furness et al 2017), but higher than that reported in similar species from mainland 322 

Europe (for example 5.5% AMR in E. coli from rural small mammals in Germany (Guenther et al 323 

2010) and 2 – 12% in a range of wild mammals the Czech Republic (Literak et al 2010). Reported 324 

AMR prevalence in wild birds is similarly diverse, varying both by species and geography (Carter et al 325 

2018).  For example,  a study of AMR in E.coli from gulls across Europe found a prevalence of 32% 326 

overall, but with considerable geographic variation, from 61% in Spain to 8% in Denmark (Stedt et al 327 

2014). Notably, a larger number of avian than mammal species were sampled, so differences in 328 

ecology and diet among species might obfuscate comparisons of the relative roles of mammals and 329 

birds in AMR dispersal. 330 

 Furthermore, in our study, as in others (Ahammad et al 2014, Bondo et al 2016, Sun et al 331 

2012, Williams et al 2011), E. coli,  AMR and MDR patterns and prevalence varied over time. 332 

Temporal variation in E. coli and resistance patterns might reflect changing environmental 333 

conditions (temperature and rainfall), selective drivers (e.g. patterns in antibiotic usage) and/or food 334 
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availability (and changing gut biota) for wildlife as well as differences between the species’ 335 

population dynamics (Waite and Taylor 2014, Williams et al 2011). Since sampling took place during 336 

only two seasons, temporal and seasonal patterns in AMR evolution and dispersal need further 337 

study. Despite some limitations, our study lays the foundations for future studies looking a larger 338 

numbers of animals at a wider variety of sites and, ideally, longitudinally, along with direct sampling 339 

of the environment for antibiotics and ARB. 340 

 341 

4.2 MDR prevalence and resistance profiles 342 

 As described in other studies (Arnold et al 2016, Williams et al 2011), many AMR isolates 343 

from mammalian wildlife were multidrug-resistant (MDR). This was likely an outcome of prevalent 344 

mobile genetic elements such as plasmids and transposons (Carroll et al 2015), but chromosomal 345 

mutations are also common. The prevalence of MDR (AMR ≥3), like overall AMR (AMR ≥1) was 346 

higher in mammal (85%) than in bird samples (27%). On the other hand, the large diversity of MDR 347 

profiles found (Table 2) suggests only limited MDR transmission between individuals. Some of these 348 

resistances (ciprofloxacin) were found to be derived from point mutations and therefore are not 349 

necessarily linked to the other resistances carried by the individual bacterium. Moreover, MDR 350 

prevalence was highest at the STP. It is tempting, therefore, to speculate that animals at the STP Site 351 

were exposed to a wider range of MDR bacteria, plasmids, or antimicrobials, than animals at other 352 

sites. This in turn would fit well with a hypothesis that these animals had exposure to sewage 353 

derived from many different people, with different histories of antimicrobial exposure, whereas 354 

wildlife at the Central and Farm Sites would have exposure to less varied sources and drivers. This 355 

would still, however, leave unanswered the questions of what might be the drivers that led to such 356 

high MDR prevalence overall, why different animals in the same population might have such 357 

different exposure histories and why the Farm Site and not the Central Site had the lowest MDR 358 

prevalence.  359 
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The most common MDR resistance profile encountered in this study was combined 360 

resistance to ampicillin, colistin and ciprofloxacin (Table 2). A high prevalence of resistance to 361 

ampicillin was expected as this beta-lactam antibiotic is frequently used in both human and 362 

veterinary medicine and resistance is common not only in clinical samples (Briñas et al 2002) but has 363 

also been described previously in wild rodents (Arnold et al 2016, Williams et al 2011). It is 364 

commonly plasmid-encoded and associated with MDR, as in this study where 83% of the ampicillin 365 

resistant isolates were resistant to three or more antibiotics and 23% to five or more antibiotics 366 

(Table 2). A high prevalence of phenotypic resistance to colistin was neither expected nor has been 367 

described previously in wild rodents, although colistin-resistant E. coli strains have been isolated 368 

from waterbird faeces (Wu et al 2018). Colistin resistance genes have been demonstrated in waste-369 

impacted river water (Wu et al 2018), and especially at STPs (Hembach et al 2017). Although 370 

chromosomally-encoded colistin resistance has been described for many years, its prevalence was 371 

historically generally low. The recent discovery of the mcr-1 gene, that confers colistin resistance 372 

and is plasmid encoded, enabling rapid horizontal transmission of resistance, (Liu and Wong 2013) is 373 

of great clinical concern as colistin is now a ‘last line’ antibiotic used for treating MDR infections in 374 

humans (Velkov et al 2013). The high prevalence of colistin resistance found in our study (35-40%), 375 

along with most colistin resistant isolates being MDR (87% resistant to three or more antibiotics and 376 

26% to five or more antibiotics) is suggestive of horizontal transmission although screening for the 377 

mcr-1 gene by PCR was negative. However, other plasmid-encoded genes for colistin resistance  378 

have been subsequently described  (Xavier et al 2016), and further characterisation of the underlying 379 

mechanism of the colistin resistance found in in our study is underway. Seven out of the nine 380 

ciprofloxacin resistant isolates contained four nonsynonymous mutations in the gyrase A gene 381 

(Figure 4), which had been reported previously, and two had mutations that have not previously 382 

been reported in E. coli. Wildlife can. Therefore, harbour and disperse novel and/ or clinically 383 

important ARGs in the environment. 384 
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In terms of other clinical important resistances, cefpodoxime resistance is a common 385 

indicator of ESBL production (Oliver et al., 2002), also of major concern in human medicine. From 386 

the 53 cefpodoxime resistant E. coli isolated from wildlife, six were ESBL producers, 22 were AmpC 387 

and six were positive for both ESBL and AmpC production (Table 3). ESBLs have previously been 388 

detected in E. coli isolates from a range of wildlife taxa, for example,  32% of E. coli isolates obtained 389 

from  gulls’ faeces (Simões et al 2010), and such findings have been ascribed to contact with human 390 

waste. In our study, significantly more ESBL and/or AmpC – producing E. coli were found in wildlife 391 

samples collected from the STP Site, which suggests that human waste may be a factor driving 392 

ESBL/AmpC resistance in the environment.  393 

  394 

4.3. Conclusions 395 

Taken together, the results of this study support those of previous studies in that they 396 

confirm that wildlife commonly harbour ARB. Whether or not wildlife might be a source for onward 397 

transmission to domestic animals or to humans has not been directly examined. Our study was more 398 

concerned with beginning to investigate the drivers of AMR in wildlife, and in particular the role that 399 

anthropogenic waste, whether of directly human or domestic animal origin, might play in developing 400 

and maintaining that resistance.  Diverse patterns of resistance were found in E. coli from wildlife in 401 

this study, suggesting variation within and between host taxa, between individuals, and over time.  402 

Overall, study site was not associated clearly with AMR, MDR or resistance patterns. However, 403 

resistance to antibiotics used only in human medicine was more prevalent at the STP site than the 404 

Farm and Central sites. Thus, the drivers of AMR in wildlife appear to be more complex than simple 405 

anthropogenic causes. Consequently, care needs to be taken if wildlife are to be used as sentinels of 406 

environmental AMR or pollution.  407 

 408 

  409 
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Figure Legends 706 

Figure 1: Inter-site variation in the percentage prevalence of faecal samples testing positive (solid 707 

blue bars) or negative (orange hatched bars) for a) E. coli. Boxes on the bars show the number of 708 

samples in each category.  709 

 710 

Figure 2. ERIC profile of E. coli isolated from both small mammals and birds at Farm site (light green, 711 

mammals; dark green birds) Central site (red, mammals; dark red, birds) and STP site (light purple, 712 

mammals; dark purple, birds). Horizontal lines demonstrate significant clusters (I - V) based on 50 % 713 

cut-off (vertical line). Red cells demonstrate resistance to each antibiotic: Amp – ampicillin; Cef – 714 

cefpodoxime; Col – colistin; Apra – apramycin; Imi – imipenem; Trim – trimethoprim; Tet – 715 

tetracycline; Cip – ciprofloxacin 716 

 717 

Figure 3: Site-specific patterns of resistance in E. coli isolates: a) AMR: The percentage of faecal 718 

samples which contained E. coli susceptible to ≥1 antimicrobial (negative = orange hatched bars) or 719 

resistant to one or more antimicrobial drugs (positive = solid blue bars); b) MDR - The percentage of 720 

samples containing E. coli that were resistant to ≥3 antibiotics (positive = resistant = solid blue 721 

bars); c) Prevalence of resistance to 1 – 7 different antibiotics. The sites were Farm, Central and STP. 722 

 723 

Figure 4. Mutations of ciprofloxin-resistant E. coli isolated from small mammals (blue boxes). 724 

Translated sequences of gyraseA gene from ciprofloxacin resistant E. coli isolates compared to the 725 

known sensitive reference strain K-12. 726 

  727 



26 
 

Table 1: Final binomial logistic regression model outputs explaining prevalence of a) E. coli; b) 728 

AMR ≥1 antibiotic; c) MDR (AMR ≥3 antibiotics). The coefficients for the Site variable are compared to 729 

the Central Site, for the Taxa variable was compared to birds and for the Season variable was 730 

compared to Autumn. 731 

 Nagelkerke 

R2  

χ2 (df) Wald (df) p-value Odds ratio 95% C.I. 

a) E. coli  21% 67.50 (4)  < 0.0001   

Site:  

Farm 

STP 

  16.21 (2) 

15.07 (1) 

0.23 (1) 

< 0.0001 

< 0.0001 

0.63 

 

3.51 

1.14 

 

1.86 – 6.60 

0.67 – 1.93 

Taxa   45.75 (1) < 0.0001 9.26 4.86 - 17.66 

Season   3.89 (1) 0.048 1.57  1.00 - 2.46 

b) AMR  14.4% 29.97 (4)  < 0.0001   

Site: 

Farm 

STP 

  4.75 (2) 

1.17 (1) 

4.742 (1) 

0.093 

0.28 

0.029 

 

1.44 

2.11 

 

0.74 - 2.79 

1.08 - 4.73 

Taxa   3.64 (1) 0.056 2.48 0.98 - 6.32 

Season   23.93 (1) < 0.0001 3.96 2.28 - 6.89 

c) MDR 25.9% 40.91 (4)  < 0.0001   

Site: 

Farm 

STP 

  8.02 (2) 

0.05 (1) 

7.07 (1) 

0.018 

0.82 

0.008 

 

1.09 

3.37 

 

0.51 - 2.34 

1.38 - 8.26 

Taxa   14.30 (1) < 0.0001 12.53 3.38 – 46.43 

Season   0.57 (1) 0.45 1.34 0.63 - 2.84 

 732 
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Table 2: Frequencies of MDR profiles for combinations of antibiotics to which E. coli isolates were 733 

resistant for faecal samples collected from birds and mammals captured at the STP, Central and Farm 734 

sites. Only profiles that were found at two or more individuals are presented. Amp – ampicillin; Cef – 735 

cefpodoxime; Col – colistin; Apra – apramycin; Imi – imipenem; Trim – trimethoprim; Tet – 736 

tetracycline; Cip – ciprofloxacin 737 

 738 

 Antibiotics  Farm Central STP Totals 

Amp  Tet  Col 7 8 8 23 

Apra  Col  Tet 2 3 2 7 

Amp Cip Tet 5 0 0 5 

Amp  Tet  Cef 0 1 3 4 

Amp  Tet  Trim 0 2 2 4 

Amp  Apra  Tet 1 2 1 4 

Col  Cef Tet 0 1 2 3 

Apra  Trim  Col 0 0 2 2 

Amp Apra Cef 1 1 0 2 

Amp  Apra  Col  Tet 2 5 2 9 

Amp Tet Trim Col 2 1 3 6 

Col  Trim Cef  Tet 0 1 2 3 

Amp Tet  Cef Col 0 0 3 3 

Amp  Cef  Trim  Col 1 0 2 3 

Apra  Tetra  Cef Col 1 1 0 2 

Amp  Apra  Trim  Col 0 2 0 2 

Amp  Apra  Cef  Trim  Col 3 2 3 8 

Amp  Col  Trim  Cef  Tet 1 2 4 7 

Amp  Apra  Tet  Trim  Col 2 0 0 2 

Amp  Apra  Tet  Cef  Trim  Col 1 2 1 4 

 739 
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Table 3: Number of AmpC and ESBL producing E. coli isolates for bird and mammal samples collected 741 

at the Farm (livestock waste dominated), Central (no waste source) and STP (human waste dominated) 742 

sites. The percentages in brackets were calculated across all 53 cefpodoxime resistant isolates that 743 

were tested for AmpC and ESBL activity. 744 

 745 

Site Mammal Bird 

 AmpC ESBL AmpC & 

ESBL 

Negative AmpC ESBL AmpC & 

ESBL 

Negative 

Farm  4 (8%) 0 2 (4%) 5 (9%) 0 0 0 2 (4%) 

Central 6 (11%) 2 (4%) 1 (2%) 4 (8%) 1 (2%) 0 0 0 

STP 7 (13%) 4 (8%) 3 (6%)   7 (13%) 4 (8%) 0 0 1 (2%) 

Total 17 (32%) 6 (12%) 6 (12%) 16 (30%) 5 (9%) 0 0 3 (6%) 

 746 

 747 


