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Abstract

Active control of the growth of broiler chickens and pigs has potential ben-
efits for farmers in terms of improved production efficiency, as well as for
animal welfare in terms of improved leg health in broiler chickens. In this
work, a differential recurrent neural network (DRNN) was identified from
experimental data to represent animal growth using a nonlinear system iden-
tification algorithm. The DRNN model was then used as the internal model
for nonlinear model predicative control (NMPC) to achieve a group of de-
sired growth curves. The experimental results demonstrated that the DRNN
model captured the underlying dynamics of the broiler and pig growth pro-
cess reasonably well. The DRNN based NMPC was able to specify feed
intakes in real time so that the broiler and pig weights accurately followed
the desired growth curves ranging from −12% to +12% and −20% to +20%
of the standard curve for broiler chickens and pigs, respectively. The overall
mean relative error between the desired and achieved broiler or pig weight
was 1.8% for the period from day 12 to day 51 and 10.5% for the period from
week 5 to week 21, respectively.

Keywords: Predictive Control, Broiler, Pig, Growth, Optimal Control,
System Identification, Neural Network Models

Preprint submitted to Biosystems Engineering June 25, 2018



1. Introduction1

This work forms part of a programme to determine, model and control2

the biological and physical responses and interactions of poultry and pigs to3

dynamic changes in their physical environment. In particular, it studies the4

growth and behaviour of broiler chickens and pigs reared for meat production5

and their ammonia emissions in response to dynamic changes in feed quantity,6

light intensity, temperature and relative humidity. This paper builds on early7

data for broilers growth published by Demmers et al. (2010) and focusses8

primarily on the growth of both broilers and pigs.9

Growth of an animal integrates various physiological and environmental10

processes, so weight gain is not only a valuable measure of economic perfor-11

mance, but also a convenient measure of environmental response. Maximal12

growth rate as a function of feed intake is the most important parameter13

from the perspective of growers, because feed is the biggest cost in the pro-14

duction of housed livestock. Recently other physiological processes such as15

skeletal development of and activity of broiler chickens have also been con-16

sidered. Slower growth in the early stages of broiler development reduces17

the incidence of lameness, the most important animal welfare issue in broiler18

production (Butterworth & Arnould, 2009), whilst liquid phase-feeding has19

the potential to improve pig health and growth (Scott et al., 2007).20

Frost et al. (1997) argued that livestock production systems contain mul-21

tiple interconnected processes that need to be managed to meet several per-22

formance criteria, including economic, animal welfare and environmental23

targets. Traditional management was, and still is, largely based on expe-24

rience and is not good at integrating processes and performance criteria.25

An example is the use of climate (temperature) controllers. Development26

of the climate controller was through observing animal performance and be-27

haviour (Charles & Walker, 2002). However, control was through tempera-28

ture measurement alone, discarding any information from the animal. The29

stockman still had to intervene if the response of the animals indicated that30

the temperature control was imperfect. The proposed solution was to move31

towards integrated closed-loop, model-based control systems, by first devel-32

oping controllers for the key processes, using sensor technology capable of33

measuring animal responses, that was becoming available.34

The nutritional and environmental requirements of broilers and pigs are35
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well understood (Gous et al., 1999; Kyriazakis & Whittemore, 2006), which36

has enabled the development of mechanistic models to predict broiler and pig37

growth from feed inputs (Emmans, 1995; Black, 2014). These models and38

the science underlying them have been used to create plans for nutrition and39

weight gain (Aviagen, 2002; PIC, 2005). However, the dynamic responses40

of animals to (sudden) changes in the environment are less well understood41

and fewer models exist. Furthermore, Wathes et al. (2008) states that in42

general mechanistic models are not suitable for control purposes, because43

they are often overly complex, with too many parameters, although these44

have biological meanings, and inaccurate, since parameter values may change45

over time and space.46

Recently, data-based models describing the response of the growing broiler47

to changes in feed quantity have been explored as an alternative to mechanis-48

tic models. Data-based modelling techniques estimate the unknown model49

parameters of any abstract mathematical model structure from measure-50

ments of process inputs and outputs. In principle, the parameters can be51

estimated on-line resulting in an adaptive model that can cope with the char-52

acteristics of most biological processes, i.e. complex, individual, time variant53

and dynamic (Aerts et al., 2003b). This type of model has the advantage54

that no a priori knowledge of the process is required, although the latter is55

beneficial whilst developing the model. However, in contrast to mechanistic56

models, the parameters have no biological meaning. The resulting model57

will in general be more compact and therefore suitable for control purposes.58

As a result data-based models are widely used for process control in other59

industries. Various approaches to modelling broiler growth have been used,60

including hyperbolastic models (Ahmadi & Mottaghitalab, 2007), artificial61

neural networks (Ahmadi & Mottaghitalab, 2008) and recursive linear mod-62

els (Aerts et al., 2003b).63

Frost et al. (2003) and Stacey et al. (2004) described the development of a64

system based on a mechanistic model to control the feeding of broiler chickens65

to achieve a given time-weight performance. The system was developed on66

farm scale (over 30,000 birds/house) using a feeding system where the diet67

composition was controlled by blending two different feeds and growth was68

monitored by perch weighers. It aimed to optimise the feed blend to minimise69

the errors from a planned growth curve from the current day to slaughter,70

and was able to deliver birds of the correct weight, except when growth71

was inhibited by disease. A pig growth monitoring system based on image72

analysis (Doeschl-Wilson et al., 2004; Schofield et al., 1999), supported the73
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development of a mechnistic model and a real time controller for pig growth74

(Parsons et al., 2007). The model was able to control mean pig weight in75

trials to within 2 kg of the target weight, by varying crude protein content76

of the diet. The use of a mechanistic simulation models for broilers and77

pigs based on the nutritional and envronmental requirements, required the78

specification of several genotype-dependent parameters and feed analysis in79

terms of several nutrients, rendering them less suitable for control purposes.80

For the reasons discussed above, a data-based approach was followed on81

laboratory scale by Aerts et al. (2003a) and at a larger scale by Cangar82

et al. (2008), in which the quantity of feed presented was controlled using83

model predictive control. They used a recursive linear models with time84

varying parameters to predict weight 3–7 days ahead (Aerts et al., 2003b;85

Cangar et al., 2008). Using online prediction of the feed quantity, control86

of broiler growth along a target trajectory proved possible within certain87

boundary conditions. Most notably, the period during which growth could88

be restricted without affecting the ability of the broiler to reach the target89

weight was limited to the early stages of growth (age 7–30 days). Growing90

broilers to the required target weight using online control resulted in a mean91

relative error of 6–10% in live weight.92

The method described here shares some of the characteristics of the above93

approaches and aims to overcome some of their limitations. The model is94

empirical, so does not require genetic parameters or detailed feed analyses,95

but simulates growth from hatching to slaughter. Based on this model, the96

controller is designed to optimise feeding over the complete period of growth97

instead of a fixed horizon. The control strategy aims to optimise the system98

by reducing the feed intake to save cost, minimising the deviation of bird99

weight from a predefined grow curve to ensure the final target is smoothly100

achieved and at the same time restricting the daily change in the intake to101

avoid potential stress on the birds. These objectives are combined into a102

single cost function as a weighted sum of these criteria.103

This paper is organised as follows. In section 2, after a brief description104

of broiler and pig growth and the experimental data, the DRNN model is105

introduced and developed to represent the growth dynamics. The growth106

control problem is then defined in section 3 and solved using the DRNN107

model and the NMPC framework. The performance of the DRNN model108

and the NMPC algorithm are demonstrated through experiments in section109

4. A discussion of the results and the conclusions are given in section 5.110
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2. Weight-Feed Model Identification111

Growth of any organism is a complicated nonlinear dynamic process,112

which is difficult to model from first principles. Most conventional system113

identification approaches use linear model structures, such as the autoregres-114

sive moving average with exogenous input model (ARMAX). The latter can115

be adapted to account for variabiltiy in time and therefor non-lineair systems116

(RARMAX), but the time-varying nature is dependent on the actual state117

trajectory, which the linearisation takes as a reference trajectory. This po-118

tentially limits their use to specific applications where the trajectory of the119

model developed is similar to that of future applicaitons. Due to their abil-120

ity to approximate any nonlinear function, recurrent neural networks (RNN)121

are widely used for nonlinear system identification. However, most available122

RNN models are in discrete time, which can only work for the specific sam-123

pling rate with which the model is trained. In order to develop a dynamic124

model to control the entire growth process with potentially variable sampling125

rate, the differential RNN (DRNN) and the associated automatic differenti-126

ation based training algorithm developed by Al-Seyab & Cao (2008b,a) were127

adopted for this work. DRNN models are black box models and the internal128

parameters are not transparent, unlike the external input and output vari-129

ables, in this case feed intake and liveweight under various conditions, which130

can be interpreted from a biological point of view.131

A first order DRNN model with two hidden nodes represented as follows,132

adopted to represent the broiler growth process.133

ẋ = w5σ(w1x+ w3u) + w6σ(w2x+ w4u) (1)

where x and u are the weight and feed intake, respectively, for a single134

bird, σ(x) = ex−e−1

ex+e−1 and w1, . . . , w6 are model parameters to be determined.135

The model structure is determined based on the intuitive assumption that136

from any initial weight, x0, if the feed intake is zero, then the animal’s weight137

will gradually decay to a constant.138

To represent the pig growth equally a first order model with one state139

and 2 hidden nodes was adopted:140

ẋ = W2σ(Wxx+Wuu+ b1) (2)

where x and u are the weight of a pig and the feed intake, respectively,141

W2, Wx, Wv and b1 are model parameters to be determined and the current142
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temperature is a disturbance in the growth models as this is gradually re-143

duced over the experimental period for broilers and an experimental factor144

in the pig trials.145

To generate data for training and validating the broiler models, broilers146

were grown from 1 day old to 51 days. The broilers were exposed to dynamic147

(sudden) changes in the inputs, feed amount, light intensity and relative148

humidity (RH) from day 12 onwards. To ensure a measurable response in149

output, the change in the input was set unrealistically large compared to nor-150

mal broiler production practise. Feed amount was set at either 90% or 110%151

of recommended feed requirements for broilers (Aviagen, 2002). Light inten-152

sity was set at either 10 or 100 lux and RH at 56% or 70%. The frequency153

of change was set according to the time required to reach a new steady state154

in the output, i.e. hours for the light intensity and 3–7 days for feed amount155

and RH. A two-level (change or no change) of three-factor (feed amount,156

light intensity and RH) factorial design requiring 23 = 8 identical rooms157

was used and repeated in three trials. Each possible combination of inputs158

was randomly allocated to a room in each of the three trials. This experi-159

mental design potentially allowed identification of interactions between the160

processes: growth, activity and ammonia emission, affected by feed amount,161

light intensity and RH, respectively.162

Each room housed 262 broilers (Ross 308) on a bed of woodshavings up163

to a maximum stocking density of 33 kg m−2 at 50 days. The average bird164

weight was estimated continuously using a weighing platform suspended from165

a load cell (Fancom 747 series bird weight platform and computer). Specially166

produced animal feeds were weighed and dosed automatically to each room167

(Fancom 771 feed computer) four times a day. Feed quantity dosed and168

broiler weight in each room were recorded automatically four times per day169

from day 3-51. Other environmental variables, such as temperature, RH and170

light intensity, were monitored and recorded at 1 minute intervals.171

To generate data for training and validating the pig models, pigs (Large172

white, Landrace and Pietran cross) were housed from 5 weeks of age to 22173

weeks. Pigs were exposed to dynamic changes in feed amount and temper-174

ature from week 6 onwards. The change in feed amount was set at either175

80% or 120% of recommended feed requirements for pigs and to +7 C above176

the recommended room temperature at 3 week intervals. A two-level of two-177

factor (feed amount and temperature) factorial design with four identical178

pens in two rooms was used and repeated in two trials, which potentially179

allowed identification of interactions between the processes growth and am-180
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monia emission, affected by feed amount and temperature, respectively.181

Each room was divided in 4 identical pens which housed 10 pigs on a182

part slatted floor with straw on the solid floor. The average pig weight183

was measured daily using the visual image analysis system (Osborn Ltd),184

validated by weighing the pigs every 14 days using a weighing crate. Specially185

produced animal feeds were weighed and dosed automatically to each pen186

twice daily. Feed quantity dosed was recorded automatically and animal187

weights averaged daily.188

To determine the model parameters, experimental data from the trials189

described above were used. Each batch contained the input and output data190

for one room or pen from one trial. The training data set consisted of six191

batches, two from each trial, and five batches, drawn from both trials, for192

broilers and pigs respectively. Another six and three batches, for broilers and193

pigs respectively, were selected for validation.194

The training process started from a set of randomly generated parameters.195

The growth of a batch was then calculated from the initial weight and the196

feed intakes recorded in the data by solving the model equation (1) using the197

automatic differentiation approach described by Cao (2005). Let the bird198

weight recorded in experiments and estimated from (1) at each sampling time199

be xk and x̂k, k = 1, . . . , N , respectively. Then the training process aimed200

to minimise the following cost function by adjusting the model parameters201

w1, . . . , w6202

min
w1,...,w6

N∑
k=1

(xk − x̂k)2 +
6∑
k

αw2
k (3)

where α is a weighting factor for the model parameters. The second term of203

the cost function is for rigid regulation, which improves the model generality.204

The optimization in (3) was converted into a standard nonlinear least
squares problem and solved using the Levenberg-Marquardt (LM) algorithm
(Marquardt, 1963), where the model parameters were iteratively updated
to reduce the cost function until the algorithm converged or the validation
cost started to increase. To avoid the training process being trapped in
a local minimum, the optimization procedure was repeated with different
sets of randomly generated initial parameters until a satisfactory model was
obtained. The final model parameters obtained for the broiler growth model
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were:

w1 = −2.8456 × 10−4 w2 = 1.0162 × 10−4

w3 = −2.5539 × 10−3 w4 = 4.2284 × 10−3

w5 = 756.5 w6 = 1488.5

and for the pig growth model:

Wx = [−0.3649 0.2254]T

Wu =

[
0.6443 −0.0912
0.3980 0.0621

]

b1 = [0.0903 −0.0347]T

W2 = [0.3870 0.5538]

The broiler growth system is stable at the equilibrium point x = 0 and205

u = 0. This can be verified by the pole of the system at this point, p =206

w1w5 + w2w6 = −0.064 < 0. Equally, the pig system is stable as x = 0 as207

W2Wx = −0.0164 < 0. Therefore, the model indicates that for zero intake,208

the weight of a bird or pig will in theory eventually decay to 0, but in practice209

will decay to a constant e.g. the carcass.210

The performance of the trained DRNN model is given in table Table ??211

Typical performance of the trained DRNN model is represented for one of the212

remaining 12 test batches in Figure 1, which shows that the trained DRNN213

was able to predict the bird weight satisfactorily even when the actual feed214

intake was modulated by regular step changes. As with the broiler growth215

model the pig growth DRNN model predicted the actual growth well, with an216

average validation index γ2 = 0.9889, with γ2 = 1−
∑

(x−xmodel)2/
∑
x−217

xmean)2.218

3. Livestock Growth Control219

In theory, using the identified DRNN model, many optimal control prob-220

lems can be investigated, such as minimum time control, where feed intakes221

are calculated such that animals can grow as fast as possible to reach the222
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Figure 1: DRNN model testing. Top: the actual (solid-line) and predicted (dashed-line)
broiler weight; Bottom: the actual feed dosed to the room holding 262 broilers (corrected
for mortality).
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Table 1: The performance of the Differential Recurrent Neural Network models for broiler
or pig growth for each of the data sets. Factors used are changes in feed, light, humidity
and temperature indicated by F,L, H or T for the active state and f, l, h and t for the
corresponding control or normal state.

species factor used batch 1 batch 2 batch 3

broiler f l h 0.9985 0.9976 0.9984
broiler f L h 0.9989 0.9968 0.9943
broiler f l H 0.9637 0.9976 0.9983
broiler f L H 0.9862 0.9970 0.9965
broiler F l h 0.9993 0.9981 0.9989
broiler F L h 0.9886 0.9957 0.9965
broiler F l H 0.9898 0.9984 0.9982
broiler F L H 0.9954 0.9970 0.99887

species factor used batch 1 batch 1a batch 2 batch 2a
pig f t 0.9901 0.9882 0.9901 0.9910
pig f T 0.9947 0.9889 0.9952 0.9924
pig F t 0.9560 0.9856 0.9884 0.9904
pig F T 0.9931 0.9944 0.9933 0.9920

target weight, and the minimum food problem, where optimal feed intake is223

designed such that the total food consumption is minimized to achieve the224

same target weight on the target day. However, due to the limited experi-225

mental data, upon which the model was based, it would not be applicable to226

some extreme situations, such as very low and high feed intakes. To ensure227

the model was working within a reliable range that would not compromise228

animal welfare, a regulation control problem was constructed to design op-229

timal feed intake such that the actual animal growth followed a predesigned230

curve smoothly with the minimum feed intake.231

The above regulation problem was solved through a nonlinear model pre-232

dictive control (NMPC) scheme. In the NMPC, at each sampling point, t0,233

the average weight of an animal predicted by the model, x0 is compared with234

the measured weight, xm. The difference, n = xm − x0 is treated as the dis-235

turbance. This disturbance is assumed to be constant within the prediction236

horizon, t0 ≤ t ≤ tf . Therefore, to correct the error caused by this distur-237

bance, the actual set-point at a time point, t, within the prediction horizon238

is biased as x̂(t) = xr(t) + n, where xr(t) is the target weight. Then, the239

optimal control problem to be solved at each sampling point, t0 is stated as240
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follows.241

min
u

tf∑
t=t0

[
α2
1(x(t) − x̂(t))2 + α2

2v
2(t) + α2

3(∆v(t))2
]

(4)

s.t. ẋ = w5σ(w1x+ w3u) + w6σ(w2x+ w4u) (5)

x(t0) = x0 (6)

x(tf ) = xf (7)

where, v2(t) = u(t) is the feed intake at day t, ∆v(t) = v(t)−v(t−1), t0 and242

tf are current and final days, respectively, x0 and xf are current and final243

weights, respectively, α1, α2 and α3 are weights of the optimization problem244

for weight accuracy, food consumption and smoothness respectively. Note245

that although the optimal control problem in (4) is open loop, the correction246

of modelling error, x̂(t) = xr(t) + xm(t0)− x0 uses the real measured weight,247

xm(t0), hence the actual control is feedback control.248

The problem can be cast as a standard nonlinear least square problem,249

minu eTe, with residuals, e defined as follows.250

e =



α1(x(t0 + 1) − x̂(t0 + 1))
...

α1(x(tf ) − x̂(tf ))
α2v(t0)

...
α2v(tf − 1)
α3∆v(t0)

...
α3∆v(tf − 1)


(8)

The corresponding Jacobian, J = ∂e/∂u can be derived through automatic251

differentiation as explained by Al-Seyab & Cao (2008b). The optimal values252

of v =
[
v(t0), · · · , v(tf − 1)

]T
are then obtained iteratively using the LM253

algorithm (Marquardt, 1963):254

vk+1 =
(
JT
k Jk + µI

)−1
JT
k ek (9)

where ek and Jk are the residuals and the Jacobian corresponding to vk, µ255

is a parameter adjusted by the algorithm to maintain a fast convergence.256
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Once the iteration had converged, the first instance of the obtained opti-257

mal solution, v was converted into the feed intake, u(t0) = v2(t0) and applied258

to the real system. The whole procedure will be repeated at next sampling259

time when a new measured average animal weight, xm is available.260

4. Validation of the Growth Control Algorithm261

To validate the control algorithm developed in the previous section, fresh262

experiments were designed and carried out. In these experiments, new growth263

curves were devised for the controller to attempt to follow as closely as pos-264

sible by predicting the required feed intake. These new growth curves were265

derived from the recommended (standard) growth curve for broilers provided266

by Aviagen (2002), e.g. reaching a weight of 2.85 kg at 50 days of age and267

the recoommneded growth curve for pigs PIC (2005), e.g. reaching a weight268

of 92 kg at 21 weeks of age and were used for the development of the con-269

troller. The broilers were grown according to the standard curve up to day270

12 and from day 12 to 50 followed the new growth curves. The pigs were271

grown according to the standard curve till week 6 and then followed the new272

growth curves. The new growth curves for broilers were specified as,273

• standard curve274

• +12% of standard curve275

• −12% of standard curve276

• −12% to day 30 followed by +12% of standard curve (slow growth277

followed by recovery growth)278

and for pigs as279

• standard curve280

• alternating each 3 weeks between −20% and +20% of the standard281

curve282

The broiler growth controller was tested using four of the eight available283

rooms. Each growth curve was tested with one room. Each room was initially284

stocked with 265 day-old chicks (Ross 308). The pig growth controller was285

tested using 8 pens in two rooms with the growth curves tested in paired286
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pens, each holding 10 pigs. Environmental conditions were kept identical to287

the conditions used in the training and model validation trials, apart from the288

frequency of light intensity change and number of meals fed daily for broilers289

and room temperature for pigs. The total daily intake of each room or pen290

was set by the controller. The controller was used for on-line calculation291

of the feed intake, however with a 24-hour delay in implementation of the292

calculated feed intake through a manual adjustment of the feed dosed.293

The production results for broilers from the 4 batches and pigs from the294

2 batches are summarised in Table 2 and Table 3, where the four controlled295

(actual) weights at the end of the growth curve are compared with their296

corresponding target values taken from the prescribed growth curves. The297

predicted total feed intake was calculated from the sum of the controller–298

predicted feed dosage rate. The actual total feed intake was calculated from299

the sum of the feed dosed, corrected for the actual number of birds present.300

The mean relative error and maximum deviation of the actual weights from301

day 12–50 for broilers or week 6 to 21 for pigs were calculated as percentages,302

where the mean relative error, ε̄ and the maximum deviation, σmax are defined303

based on the actual weight, wact and the corresponding target weight, wth as304

follows.305

ε̄ = 1
39

∑50
d=12

∣∣∣wact(d)−wth(d)
wth(d)

∣∣∣ (10)

σmax = max12≤d≤50

∣∣∣wact(d)−wth(d)
wth(d)

∣∣∣ (11)

Daily comparisons of controlled against modelled and standard growth306

curves for broilers are shown in Figures 2 to 5 for the standard growth curve307

and +12%, −12% and −12% followed by +12% of standard growth curves,308

respectively.309

The results for broilers clearly indicate that the controller is capable of310

predicting the feed intake required to reach the end weight and follow the311

reference growth curves well with an mean relative error less than 2%, ex-312

cept for the −12% curve. The larger mean relative error in the −12% growth313

curve was caused by a malfunction in the feeding equipment from day 16–19314

(see Figure 6). Allthough the room recieved the correct feed amount for315

each feeding period, due to blockages the feed was delivered to the birds316

at very irregular intervals, potentially inhibiting growth (maximum devia-317

tion from curve was −16%). However, the controller was able to return the318
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Table 2: Target live weight and achieved live weight of the broilers at age 50 days and
goodness of fit of the achieved live weight compared to the set growth curve from day
12–50. Predicted and actual total feed intake per bird and feed conversion ratio (FCR) for
the period of day 12–49. The standard growth curve had been derived from the optimal
growth curve provided by Aviagen (2002).

Growth curve unit Standard +12% of −12% of −12% & +12%
standard standard of standard

Bird weight at 50 days
Target kg 2.85 3.20 2.51 2.85
Actual kg 2.73 3.10 2.44 2.72
Mean relative error % 1.8 1.8 2.8 1.6
Maximum deviation % 5.2 6.0 16.3 5.0

Total feed intake from day 12–49
Predicted kg.bird−1 4.66 4.99 4.30 4.62
Actual kg.bird−1 4.59 5.04 4.31 4.62
Feed conversion Ratio - 1.91 1.84 2.02 1.93

Table 3: Theoretical live weight and achieved live weight of the pigs at age 21 weeks and
goodness of fit of the achieved live weight compared to the set growth curve from age 6
to 21 weeks. Predicted and actual total feed intake per bird and feed conversion ratio
(FCR) for the period of week 6–21. The standard growth curve had been derived form
the optimal growth curve provided by PIC (2005).

Growth curve unit Standard −20%/+ 20%/− 20%
of standard

Pig weight at 21 weeks
Target kg 91.9 88.4
Actual kg 98.4 90.5
Mean relative error % 10.5 10.9
Maximum deviation % 34.1 35.3

Total feed intake from age 6 – 21
Predicted kg.pig−1 170.9 158.7
Actual kg.pig−1 187.9 179.0
Feed conversion Ratio 2.40 2.50
Feed conversion Ratio (to 35kg) 1.54 1.73
Feed conversion Ratio (35-100kg) 2.71 2.79
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Figure 2: The target standard (dashed line) and actual achieved (solid line) growth curves
of broilers and the deviation of the target curve (dotted line, secondary axis).
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Figure 3: The target +12% above standard (dashed line) and actual achieved (solid line)
growth curves of broilers and the deviation of the target curve (dotted line, secondary
axis). The standard growth curve (Aviagen) is plotted for comparison.
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Figure 4: The target −12% below standard (dasehed line) and actual achieved (solid line)
growth curves of broilers and the deviation of the target curve (dotted line, secondary
axis). The standard growth curve (Aviagen) is plotted for comparison.

-200

-150

-100

-50

0

50

100

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50

D
ev

ia
ti

o
n

 (
g)

Li
ve

 w
e

ig
h

t 
(g

)

Days

Figure 5: The target −12% followed by +12% of standard (dashed line) and actual achieved
(solid line) growth curves of broilers and the deviation of the target curve (dotted line,
secondary axis). The standard growth curve (Aviagen) is plotted for comparison.
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growth to the set curve within 4 days, by feeding more than originally an-319

ticipated. Excluding this period reduced the mean relative error to 1.9%.320

Overall the mean relative error in this work is much lower than the 7–9%321

reported by Cangar et al. (2008). The authors suggested that this high error322

might be largely due to different conditions and systems for the weighing323

and feed delivery used for generating data for creating and validating their324

model (small scale, ”ideal” conditions) and for the validation of the control325

algorithm (commercial conditions). In our work all steps were done on the326

same scale, same conditions and with the same equipment. further more the327

number of birds used in their trials was substantially higher, especially in the328

commercial validation trials.329
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Figure 6: The target −12% below standard (dashed line) and actual achieved (solid line)
growth curves of broilers and the deviation of the target curve (dotted line, secondary
axis) for the period the feed system malfunctioned.

For all four broiler growth curves, the projected end weight was met330

within small tolerances. From day 42 onwards the actual bird weight started331

to deviate from the theoretical bird weight (slower growth). This could be332

a undesirable feature of the DRNN model used. However, it also coincided333

with the introduction of the withdrawal grower diet which in theory differs334

in composition from the normal grower diet in the absence of coccidiostats335

only. The absence of the coccidiostats should not affect the growth or feed336

conversion, but it is not evident from the feed analysis if other minor changes337

were made to the feed composition between the two deliveries that could have338

affected the growth. In contrast to findings by Cangar et al. (2008) in these339
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trials the Ross 308 bird appeared to be capable of recovery growth (see Figure340

5), i.e. the broilers were capable of regaining weight in excess of equivalent341

growth by the standard growth curve beyond 31 days. One reason for this342

difference is the lower energy and protein content of the diets used in this343

work compared with current industry standards (approximately 15% lower).344

The standard growth curve used was also set below the maximum potential345

growth curve given by Aviagen (2002). Hence, the broilers were capable of346

utilising the additional protein and energy provided as the maximum growth347

potential had not yet been reached.348

The growth controller for pigs equally indicates that the controller is349

capable of predicting the feed intake to meet the desired growth curve and350

end weight (see Figure 7). However, the mean relative error was significantly351

higher at 10.5% and 10.9%, for the standard and recovery growth curves,352

respectively. The larger mean relative error is potentially due to the lower353

number of data sets available for determining the DRNN model parameters,354

compared to the broiler DRNN model, 5 v 6, respectively, and the lower355

number of changes in feed amount. Equally, the slower rate of growth meant356

the dynamic changes in weight due to the changed feed intake reqime were357

smaller compared to the broiler, potentially resulting in a less accurate model.358

Creating even larger changes in the feed intake regime were however deemed359

to be too detrimental for the pigs welfare. Another contributing factor is360

the variation in temperature in the experimental conditions (standard versus361

standard +7C). The effect of temperature on growth is well documented. Pigs362

decrease their voluntary feed intake with increasing temperatures and hence363

their average daily gain is lower (Hyun et al., 1998; Sutherland et al., 2006).364

However, the FCR for the two temperature regimes was not significantly365

different as was expected (Sutherland et al., 2006).366

The DRNN model used in the controller controlled not only the daily367

feed intake on line, but predicted accurately the required feed intake for the368

whole of the growing period. This novel addition will be very useful to farm-369

ers when deciding on a growth curve suitable for various scenarios. From the370

four broiler growth curves used in this trial the +12% of standard growth371

curve is better from an economic point of view, as it has by far the lowest feed372

conversion ratio (FCR). The authors suggest this is largely due to making373

better use of the genetic potential of the broilers. Using the slow growth with374

recovery growth option, has potential advantages for animal welfare in terms375

of leg health and proved to be no worse in achieving the final weight with376

a similar FCR and total feed intake requirement, compared to the standard377
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growth curve. The FCR’s achieved here are however significantly higher378

than those commonly achieved on commercial farms, where the best pro-379

ducers achieve 1.6 -1.7 FCR, approximately. The purposely lower protein380

content of the feed used in these trials, approximately 15% less, appears to381

be the root cause of the poorer FCR. The otherwise optimal environmen-382

tal conditions had no negative effect on the FCR. Using optimal diets for383

the genetic growth potential might reduce the effectiveness of the model to384

recover lost growth over a number of days as shown in this work, as the385

maximum daily weight gain had already been reached (Cangar et al., 2008).386

The feed conversion ratio for pigs in these trials and expecially the for the387

standard growth curve which had the best performance in economic terms,388

compares favourably to the industry average of 2.35 reported by BPEX389

(2011, 2015) for rearer/finisher pigs combined (8-100 kg), as well as the indi-390

vidual FCR’s for rearer and finisher at 1.71 and 2.67, respectively, despite the391

suboptimal lower protein content of the feed used in these trials. The optimal392

environmental conditions in the new animal welfare facility and therefor the393

significant reduction in disease burden on the pigs will have contributed to394

the good growth performance.395

5. Conclusions396

An accurate differential recurrent neural network model of broiler and pig397

growth has been identified, validated and tested successfully. The DRNN398

model accurately described the dynamic time variable growth of housed live-399

stock. Typically the mean square error and standard deviation between the400

broiler growth model and data were of the order of 0.02 and 0.03, respectively401

and the equivalent figures for the pig growth model were of the order of 0.02402

and 0.05, respectively.403

The nonlinear model predictive controller, incorporating the DRNN model,404

was constructed to predict the feed quantity required for the broilers to grow405

following predetermined growth curves. The NMPC accurately predicted the406

feed quantity to achieve a range of predetermined growth curves. The mean407

relative error for the period from day 12–50 was 1.8% for broilers and for pigs408

10.5% for the period from 6 to 21 weeks. The NMPC was capable of accu-409

rately predicting compensatory growth rates following two days of retarded410

growth rates due to feeding equipment failure. In addition, the controller was411

able to predict the total feed intake for the whole growth period accurately.412
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Figure 7: The target standard (top graph, dashed line) and variable (bottom graph, dashed
line) and actual achieved (solid) growth curves for pigs and the deviation of the target
curve (dotted line, secondary axis).
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