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Abstract  

 

Animals, including humans, have been shown to maintain a gait during 

locomotion that minimizes the risk of injury and energetic cost. Despite the 

importance of understanding the mechanisms of gait regulation, ethical and 

experimental challenges have prevented full exploration of these. Here we 

present data on the gait response of mice to rapid, precisely timed, spatially 

confined mechanical perturbations. Our data elucidate that after the mechanical 

perturbation, the mouse gait response is anisotropic, preferring deviations away 

from the trot towards bounding, over those towards other gaits, such as walk or 

pace. We quantified this shift by projecting the observed gait onto the line 

between trot and bound, in the space of quadrupedal gaits. We call this 

projection  . For    , the gait is the ideal trot; for       it is the ideal bound. 

We found that the substrate perturbation caused a significant shift in   towards 

bound during the stride in which the perturbation occurred and the following 

stride (linear mixed effects model:              and             , 

respectively; random effect for animal, p<0.05 for both strides, n = 8 mice). We 

hypothesize that this is because the bounding gait is better suited to rapid 

acceleration or deceleration, and an exploratory analysis of jerk showed that it 

was significantly correlated with λ (p<0.05). Understanding how gait is controlled 

under perturbations can aid in diagnosing gait pathologies and in the design of 

more agile robots.  
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1. Introduction  
 

Locomotion is critical to survival and reproduction in most animals. A critical 

feature of successful locomotion is selection and maintenance of gait. While it 

has been shown that animals, including humans, choose gaits that appear to 

minimize energy consumption and injury risk (Hoyt et al., 1981; Farley et al., 

1991), a large amount of variability exists in gait selection across animals 

(Hildebrand, 1989), and across conditions, such as treadmill (Blaszczyk et al, 

1993) or rough terrain (Wilshin et al., 2017). Further, animals make fluid 

transitions between gaits; yet we have little understanding of how factors such as 

the mechanics of the different gaits influence these transitions (Ijspeert, 2007; 

Haynes, 2006). 

 

Individuals often encounter perturbations during normal locomotion, from which 

they have to recover. Perturbations can also be used as a tool by an 

experimenter to elucidate mechanisms that are not observable in steady state 

conditions, and to better refine mathematical models, especially in the field of gait 

rehabilitation and robotics (Komura, et al., 2005; Schmidt, et al., 2005). Despite 

the utility of perturbation experiments both as a naturalistic stimulus and as a 

probe of control structure, ethical and experimental challenges have prevented 

full exploration of these in legged systems.  

 

Biological studies utilizing perturbations of moving animals have lead to 

improvements in robots (Altendorfer et al., 2001; Haynes et al., 2009), given 
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insight into basic locomotor biomechanics (Jindrich and Full, 2002; Daley et al., 

2006), and improved understanding of disease and injury in humans 

(Lamontagne et al.,, 2007; Protas et al, 2005). For instance, Gritsenko et al.  

(2001) studied the role of muscle activity and latency response of cats to 

unexpected perturbation before and after unilateral denervation of synergists. De 

Leon et al. (2000) also studied the relationship between the force control in flexor 

motor pools and adaptation to spinal cord injury in rats using gait perturbations. 

Similar studies have been carried out to analyze trained compensatory postural 

responses in older human adults during perturbed treadmill locomotion (Shapiro 

& Melzer, 2010). However, we have not found prior work that examines in detail 

the changes in gait by rodents in response to an unexpected mechanical 

perturbation. Characterizing such responses in rodents is important as they are 

becoming increasingly popular model systems in locomotion studies (Talpalar & 

Kiehn, 2010; Bellardita & Kiehn, 2015; Harris-Warrick, 2011), they provide a wide 

array of disease models (Rosenthal, 2007), and offer a wide range of genetic 

tools to manipulate aspects of both the neuro- and more general physiology 

(Lathe, 1996). Thus, here we examine the gait response of intact, freely running 

mice to a mechanical substrate perturbation. 

 

Based on recent results in dogs walking on rough terrain (Wilshin, 2017), where 

perturbed gait at walking speeds was found to be restricted along the walk-trot 

line, it could be hypothesized that a similar anisotropy would exist at trot: e.g., 

that mice will exhibit perturbed gait around trot on the line between trot and walk. 
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However, the consideration for quasi-static stability that predicted the result in 

walking dogs is less likely to apply at the trotting speeds commonly used by 

rodents. Therefore it is unclear how to make a similar a priori prediction for the 

structure around trot without a model of dynamic stability that can be 

incorporated into our gait analysis framework. We therefore carried out the 

following exploratory study of mouse gait control about the trot. 

  

2. Materials and Methods 

 

A computer vision controlled treadmill system capable of applying rapid, precisely 

timed, and spatially confined mechanical perturbations to freely running mice was 

the central piece of apparatus (Fig. 1). 

 

2.1. Materials 

 

2.1.1. Animals 

 

Eight adult female C57BL/6J mice were used in this study 

(http://jaxmice.jax.org/strain/013636.html). Animals were housed under a 12∶12 

h light-dark cycle in a temperature-controlled environment with food and water 

available ad libitum. Animal procedures were approved by the Temple University 

Institutional Animal Care and Use Committee ACUP #4675.  

 

http://jaxmice.jax.org/strain/013636.html
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2.1.2. Treadmill-Camera System 

 

We used a video-tracking, closed-loop treadmill system to control perturbation 

application and improve yield. The system uses employs a real-time feed of the 

position and speed of the mouse to adjust the belt speed (Spence et al., 2013). 

The system is built upon a Panlab Model Number LE8700 treadmill. Two cams, 

in the shape of ½ of a disk, were machined and mounted on a shaft, running 

beneath the treadmill surface, under the belt. Slots cut in the belt support surface 

allowed these cams to push upward and deflect the surface. These cams 

produced small “earthquakes” (Fig. 1). To achieve fast motor response times, the 

motors and control system for the substrate deflection and the treadmill belt were 

essentially a two-legged version of the X-RHex robot (Haynes et al., 2012), 

where treadmill functionality replaced legged robot code. 

 

The real-time feed was further used to trigger the mechanical perturbations, 

randomized between the left and right sides of the belt.  We randomized the side 

of perturbation because in preliminary experiments we found that mice quickly 

learned which side of the treadmill contained the perturbation and would avoid it. 

This “behavioral triggering” based on the feed of animal position and speed can 

minimize the confounding effects due to variation in quantities such as speed, 

acceleration, and/or position relative to the earthquake. The perturbation was 

automatically triggered if the mice were running continuously for at least 0.75 

sec, with a speed between 0.2 - 0.5 m/s (Video S1). An average-weight mouse of 
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30 g has a preferred speed of 0.46 m/s and trots in the range of 0.19–0.67 m/s 

(Spence et al., 2013; Herbin et al., 2004). A custom five camera high-speed 

video system was used to gather the kinematic data. For three of the mice an 

earlier version of the system consisting of two mirrors and two cameras, one for 

the real-time feed and the other for recording high-speed videos, was used, as 

described in Spence et al., 2013.  

 

2.2 Experimental Design  

 

2.2.1 Animal Training 

 

All mice were trained daily (M-Th) for 2 weeks to run on the treadmill prior to 

collecting data. The first week of training session consisted of 10 minutes 

treadmill acclimation, with access to food rewards, before and after activating the 

treadmill, followed by 15 minutes of running on the treadmill. On the second 

week of trainings the automated perturbation was activated during their running 

trials.  

 

2.2.2 Selection Criteria 

 

We were interested in the trials that the animal was able to recover from the 

perturbation, and continue running. Therefore, we selected trials that the average 

speed for mice after the perturbation was at least 54% of the average speed 
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before. We analyzed a total of 42 trials, from 8 animals, ranging from 3 to 14 

perturbation responses per animal. An example of an individual accepted trial is 

given in Fig. 2.  

 

2.2.3 Kinematics 

 

When a perturbation was triggered by the video tracking feed, high-speed videos 

of were dumped from a ring-buffer in memory to disk, extending from 2 seconds 

before the perturbation to 2 seconds after. The paws were then tracked to 

produce their 2D locations. This was done either manually, using a custom 

MATLAB GUI, or with an automated rodent paw tracker (Haji Maghsoudi et al., 

2016) that finds the centroid of the mouse body, and uses the body location in 

combination with color and temporal information across frames to determine the 

front and hind paw locations (Fig. 2A and 2B). The body centroid location was 

then subtracted from the paw position to produce paw positions relative to the 

body, and this time series was z-scored (which is the standard deviations from 

the mean) before being utilized to compute instantaneous phase. The z-scored, 

body coordinate system fore-aft paw positions of 3 mice for two strides before, 

during, and two strides after the perturbation are plotted in Fig. 2C. Black 

horizontal bars indicate the duration of the perturbation, which is approximately 

200 milliseconds (ms).  

 

2.2.4. Phaser 



  

 
 

9 

 

The 2D kinematic data obtained from tracking the paws were analyzed using a 

phase-based approach, as described in Spence et al. (2013) and Wilshin et al. 

(2017). This analysis assigns a three-dimensional value that defines paw relative 

phase characteristics and identifies where the gait lies with respect to “ideal” 

quadrupedal gaits.  

 

With this approach each limb is considered as an oscillator and the limb phases 

are estimated for each time point. The limb phases, denoted                 are 

first estimated for each leg (Fig. 3A). This limb phase is an instantaneous 

estimate of where in a cycle the limb is, with 0 being the start of a cycle and    

the end (Fig. 3B). The estimate of phase was made using the Phaser algorithm 

(Revzen 2008), which in turn relies on a Hilbert transformation and a Fourier 

series correction for systematics. 

 

Gait is then characterized via phase differences between the continuous 

estimates of each limb’s phase. We denote individual leg phases as   , and leg 

phase differences as   . These three phase differences were calculated using 

Eq. (1) and estimate how far ahead or behind in a cycle one limb is relative to 

another: 

            

                                                                                                                  (1) 

          . 
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To clarify how these phase differences represent gait, and how the ideal gaits are 

defined with this approach, we now compute them for trot and bound. Referring 

to the leg convention in Figure 3, we first choose a reference leg at phase 0: hind 

left. At trot, the fore-left limb is in phase with the hind-right, so            

 , and the fore-right is in phase with hind-left,             . Finally, hind-

left and hind-right are out of phase by 180 degrees, so             . Thus, 

the coordinates of trot with this convention are                     Bound is 

computed similarly, with                               such that            

       . Fig. 4 illustrates this. 

 

3. Results 

 

The individual leg phases computed for one of the analyzed trials and 

corresponding three phase differences are shown in Fig. 5. The grey area 

indicates the perturbation. Transitory changes in phase advance can be seen in 

the individual limb phases in Fig. 5A. During the perturbation period specified in 

the gray box in Fig. 5B, the phase difference between FL-HR and HL–FR are 

shifting from 0 towards   and the phase difference between HR-HL is shifting 

from   towards 0. We note that this direction is towards bound, when starting at 

trot (trot is at         and bound is at        ; thus the direction from trot to 

bound is (+1, -1, +1)). Linear fits to the data in scatter plots of pairwise 

combinations of the leg phase differences (Figure 6) yield estimates for the slope 
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of the stride during the perturbation consistent with this direction (   vs   : -0.63 

(-0.91 -0.36);    vs   : 0.32 (0.04 0.60257);    vs   : -0.70 (-0.86 -0.53); mean 

and confidence interval bounds; linear regression, n=42 strides from 8 mice).  

 

To quantify the change in gait on a continuum we computed the projection of the 

observed gait onto the line (or circle, due to the topology of the space) between 

trot and bound. We refer to the value of this projection as λ, and note it is 

analogous to the one computed in Wilshin et al. (2017) that projects onto a line 

between walk and trot. We wish for this λ to treat changes in gait caused by any 

one leg to be considered movements of equal distance in gait space, but our leg 

phase difference transformation, without correction, would distort this. Thus we 

add an additional equation to those in Eq. 1 that will impose treating all limbs as 

equivalent. We refer to this fourth coordinate as the global phase, which is the 

average of the four phases with equal weight. This choice of global phase will 

disregard the overall, “mutual” phase advance of the four limbs, leaving only 

information about the relative phase difference, and is defined as: 

  
 

 
   

             

   

                                                                   

We can now write a system of four equations that transform leg phases to leg 

phase differences in matrix form:  
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Inverting this equation gives the transformation from leg phase differences to 

individual leg phases:  

 

   
   
   
   

  
 

 
 

  
   

  
  

    
    

  
   

  

  
  
  
 

                                          

We refer to the matrix above that transforms from   to   as  . We then use this 

transformation to define a metric that allows for computation of distance between 

points expressed in leg phase difference coordinates, but that will preserve equal 

contributions to distance from each of the four individual leg phases. For 

analogous examples in coordinate changes, see, e.g., Arfken (2005). We let     

be this induced metric derived from  : 

     
   
   

   
   

     
 

 
  

  
  

  
  

  
  

  
   

 

 

                            

 

To project points in   space onto the line between trot and bound we calculate 

the distance between trot and desired point, using the metric to ensure the 

correct distance (starting in vector notation and then ending in matrix 

representation):  
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Where     is a unit vector that has the same direction as the line from trot to 

bound        in the   space and is calculated as follows: 

    
     

         
 

               

                   
                                     

 
        

                       
 

        

                     

 
        

                   
 
        

  
                                                          

     

 
  
 
 

                                                               

 

We note here that the leg phase differences formally have a fourth component, 

the global phase, as described above. We must compare all leg phase 

differences at the same global phase, but our choice of that global phase is 

arbitrary. As long as we compare leg phase differences at the same global 

phase, our comparisons are valid. By choosing it to be zero, the fourth 

component drops out of all calculations, and as such at times we simplify the 

notation by dropping the fourth component.  If          
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  thus indicates how far the gait is from the ideal trot or bound in each time point, 

noting that       when the gait is the ideal trot, and        for the ideal 

bound (Fig. 7). 

 

The average   over different trials across all mice is shown in Fig. 8A. There is a 

significant change in   in both positive and negative direction after the 

perturbation was applied. On average, mice showed an increase in  . The shift in 

  in either direction corresponds to a change in gait that moves partially to bound 

from trot. Fig. 8B indicates the shift in   towards bound before, during, and after 

the substrate perturbation. Using a mixed effects model, we assessed the 

relationship between � and stride number relative to perturbation. The model 

contained a fixed effect for stride relative to perturbation, a mixed effect for 

mouse (N=8 mice; N=215 strides, p0=0.0002 for the stride during the 

perturbation, p1= 0.0027 for the stride after the perturbation). The mixed effect 

model assumes that   is normally distributed, which was verified through a 

Shapiro-Wilk test (p=0.69, n=8 mice) and visually confirmed with a q-q plot. 

 

We analyzed the kinematic parameters speed, acceleration, and jerk (of the 

body) for the strides around the perturbation and explored whether they were 

correlated with changes in  . We carried out a total of 15 hypothesis tests, 

comprised of three dependent variables, speed, acceleration, and jerk, against 

the five strides around the perturbation. The Bonferroni corrected p-value is 

0.0033. Maximum absolute   was not significantly dependent on speed of the 
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animal (linear mixed model; slope of   against speed, with random effect for 

mouse; p = 0.33, n = 8 mice). However maximum positive jerk was correlated 

with maximum absolute   for the stride during the perturbation (linear regression; 

p = 0.00034; n=8 mice; R2=0.56; Fig. 9B). Other variables were statistically 

insignificant or had low R2 values. Absolute values for   were used because 

deviations away from zero in either direction correspond to changing gait toward 

bound, as described below. Fig. 9 shows jerk and   time series aggregated for all 

trials across all mice. Jerk is seen to follow � with a short delay (on the order of 

100 ms). It may be that these changes in � occur to bring the legs to a more 

effective phase relationship (e.g. closer to bound, hind legs and front legs in 

phase) for accelerative or decelerative behavior. 

 

4. Discussion 

 

Analyses of quadrupedal gait in biomechanics and neuroscience have typically 

considered the asymptotic, or steady state, behavior of gait, though gait 

transitions are certainly recognized as interesting and important phenomena 

(Kelso & Jeka, 1992; Kuo et al., 2005). Here we extend this to look at how gait 

evolves over shorter time scales, and develop tools that allow it to be placed in a 

continuum, or “gait space,” that includes the ideal gaits as fixed points. This aids 

examination of how gait recovers after perturbation, makes gait analysis more 

quantitative, and places gaits in an insightful context for biomechanical 

interpretation. We believe the temporal dynamics of gait control reveals 
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additional information that can’t be seen without perturbation, and these 

mathematical tools capture that additional information parsimoniously. 

 

Our data show that after mechanical perturbation mouse gait varies away from 

the trot but preferentially towards bound, may serve as a transitory gait before full 

stabilization is achieved and the mouse returns to a robust trot. We hypothesized 

that the transitions in gait that we observed may be related to the animal 

preparing to accelerate or decelerate rapidly (Walter et al., 2009; Lee et al., 

1999). Quadrupeds accelerating from stand-still typically push simultaneously 

with their hind limbs for the first stride or two (Usherwood and Wilson, 2005), and 

thus having limbs in phase is likely to aid in acceleration, deceleration, or 

avoiding obstacles. Work in robotics has studied the stability of bounding 

quadrupeds (Iida and Pfeifer 2004; Poulakakis et al., 2006). Models of a robot 

were found to be relatively easily stabilized with a simple controller, or even 

without the need of any feedback control action. With certain bounding gaits, 

robots could rely on passive dynamic stability and/or operate, suggesting that 

bounding may be a relatively stable gait, especially when it comes to handling 

small perturbations (Iida et al., 2004; Poulakakis et al., 2006). To test this 

hypothesis in animals, future work could include electromyography during the 

perturbation (Akay et al., 2006) and look for anticipatory postural adjustments 

made by the animal in the face, to gain insight into whether these responses are 

feedforward versus feedback in nature. 
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Most animals exhibited positive   value in response to perturbation; however two 

animals show negative   on average (Fig. 8A). Here, we discuss in detail how the 

sign of   is related to the phase of individual limbs. As the leg phase difference 

space is a three-dimensional torus (Fig. 6), negative values also correspond as 

shifts towards bound. One possible direction from trot to bound is [+1, -1, +1] in 

the three-dimensional phase difference coordinate system, which leads to 

positive values for  . To transfer back to our   coordinates, we can use: 

 

 

   
   
   
   

  
 

 
 

  
   

  
  

    
    

  
   

  

  
  
  
 

  

 
 
 
This direction from trot to bound can be expressed as the vector: 

     

 
  
 
 

  

Thus the change in the individual leg phases,   , for the above direction is: 

 

 
 

  
   

  
  

    
    

  
   

  

 
  
 
 

   

   
    
   
    

                                    

 

This implies that for animals to move from trot to bound in the [+1, -1, +1,] 

direction in the phase difference coordinate system, they have to adjust their 

individual limbs in [+0.5, -0.5, +0.5, -0.5] direction.        and       phases should 

increase and        and        decrease. Thus the left limbs speed up and the 
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right limbs slow down for positive  , and an example of a trial with positive   is 

seen in Fig 10a. Another possible direction is [-1, +1, -1,]  (Figure 7). In that case:  

 

 

 
 

  
   

  
  

    
    

  
   

  

 
  
 
 

   

    
    
    
    

                                         

 
Which means that the right limbs speed up and the left limbs slow down, as is 

seen in Fig. 10B. 

 

It has been shown that there is a bistable region for trot and bound as a function 

of frequency (Danner et al., 2016; Fig 3a; Danner et al. 2017; Fig 5a). This could 

suggest that the structure of gait regulation around trot has a bias towards 

bound. Future work could use mathematical analyses or simulated perturbations 

at trot within the model that these authors have developed to see whether it 

shows a relaxed recovery from perturbations toward bound. 

 

Bellardita & Kiehn (2015) reported that bounding results when certain spinal 

interneurons (the V0s) are genetically ablated. An interesting future direction 

would be to study the perturbation recovery of these mice to determine whether 

their gait regulation still lies on the trot to bound axis/circle. 

 

Overall, our findings may aid in the neuromechanical study of animals by 

showing how subtle shifts in gait emerge at multiple levels of analysis. They may 

reflect the structure of neural circuits, be responses to a number of environmental 

cues, or be behavioral preparations for certain tasks or contexts. It may also 
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suggest directions for robotics applications, where a partial gait adaptation 

response to environmental uncertainty could better prepare robots to react to 

unexpected disturbances.  
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Fig. 1. (A) Intact, running mice before, and (B) after applying perturbation. (C) 
Rendering of the treadmill, including the two perturbation disks. 
Fig. 2. Mouse paw kinematic data for input to the phase estimator. (A, B) Still 
frames from automatically recorded, 2048 × 700 pixel, 250 Hz video of a running 
mouse captured in two cameras. (C) Example filtered fore/aft paw positions for 
two strides before, during, and two strides after the perturbation, for three mice. 
Line color denotes paw. Positions are the horizontal pixel coordinate of the paw 
relative to the body centroid, and normalized by z-scoring. Black horizontal bars 
and red vertical lines indicate the perturbation duration and peak. Red arrows 
indicate the change in gait in all three mice after the perturbation was applied.  
 
 
Fig. 3. (A) Limbs represented as oscillators, having instantaneous phase θi. The 
numbering convention of the limbs is shown. (B) A single limb phase estimated 
from the processed limb kinematics using the Phaser algorithm (Revzen, 2008). 
The blue line denotes the instantaneous phase of the leg estimated from the red 
line, which is the oscillatory kinematic input signal (the filtered fore-aft position of 
the paw). The maximum and minimum values of the red kinematic signal 
correspond to the extreme anterior and posterior extreme positions of the paw 
relative to the body. The phase signal wraps from 2π to 0 at a fixed phase of the 
cycle (close to where the paw position crosses zero going positive), which we 
use to define stride cycles, and corresponds to mid-swing. 
 
Fig. 4. Footfall ordering and the corresponding leg phase difference coordinates 
for when the animal is (A) trotting, and (B) bounding. 
 
Fig. 5. (A) Paw phases, (B) paw phase differences, and (C) Overlay of λ for one 
of the trials. The grey area indicates the perturbation duration. The phase 
differences in (B) are computed from individual phases in (A) using Eq. (1). As 
phase difference is a circular variable, it could be plotted modulo 2π centered at 
y=0, where it would overlap the blue   . Trot is recognized as         
or         , as plotted. As bound is        , transitory movement of the phase 

difference triple towards this point is seen during the perturbation (grey). The 
mean value of each time series was computed within each pair of vertical blue 
lines denoting stride boundaries, and that these averages were used in the mixed 
effects models and box plots in subsequent analyses. 
 
Fig. 6. Two-dimensional scatter plots of the animals’ gait characterized by the 

three leg phase differences: (A)    vs   , (B)    vs               vs   . Each 
point represents the average over a complete stride, and points for all eight mice 
are overlaid. The data presents the strides two before, one before, containing, 
one after, and two strides after the mechanical perturbation. The gait is closer to 
the ideal trot gait for strides two and one before the perturbation (indicated as 
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strides -2 and -1) showing the preferred gait of these animals. In the stride in 
which the substrate perturbation occurs (stride 0), and the stride following the 
perturbation (stride 1), the gait moves away from trot, preferentially along the line 
towards bound. The gait for two strides after the perturbation (stride 2) has 
returned to being centered about trot; suggesting that after two strides, on 
average, the animal has recovered from the perturbation and is trotting normally 
again. The black line in each figure indicates the fitted line for the data points of 
only the strides 0. The slopes for figures A, B, C are measured as -0.63, 0.32, -
0.70 with p-values of 1.5761e-22, 0.00080475, 3.4578e-16 respectively. See also 
supplemental videos S2-S6 for the three-dimensional presentation of the data 
points. 
 
 

 
 
Fig. 7. Illustration of the projection onto the line between trot and bound. In order 
to quantify continuous shifts in gait between trot and bound, we compute the 
projection of the observed gait in the three-dimensional leg phase difference 

space ( ) onto a line between trot and bound (red line), as described in Eq. (9). 

We refer to this quantity as  , which is normalized such that  =0 at trot, and  =  
at bound. We note that each leg phase difference variable is circular; and thus 
this space is a 3 dimensional torus. Thus, each face of the plot wraps at 0 and 
2 . Thus, negative values of   also correspond to movement toward bound, after 
wrapping around the torus. The difference between moving from trot to bound in 
positive versus negative directions corresponds to how the individual legs 

change their phase relationships: positive   corresponds to speeding up the 
phase advance of the left side legs and slowing the advance of the right; 
negative lambda the opposite (see Discussion for further details) (See also 
supplemental video S7). 
 
Fig. 8. (A) Average   as a function of time for each animal. The perturbation 

occurs at 200 ms. (B) Boxplot of   over the stride where the perturbation 

occurred and two strides before and after.   was significantly different in strides 0 
and 1 (during the perturbation and one stride after the perturbation; linear mixed 
effects model; fixed effect for stride, random effect for mouse; p0=0.0002, p1= 
0.0027, n=8 mice). We note that (B) is not baselined to each individuals’ first 

stride, in order to better illustrate the individual variation in  , but that this choice 
masks the effect of the perturbation that the mixed effects model captures using 
a random effect for individual. 
 

Fig. 9. (A) Aggregated, normalized time series for   and body jerk.   and jerk 
were aggregated first by averaging all trials within each mouse, and 
subsequently by averaging these averages across mice. The final time series 
were normalized to their maximum values. (B) A linear mixed effects model 

exhibited a statistically significant relationship between maximum   and 
maximum jerk (p = 0.00034; R2 = 0.56; n=8 mice). The dashed lines indicate the 
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90% predicted boundary. This correlation may indicate changes in gait that bring 
the front and hind legs in phase in preparation for acceleration or deceleration. 
Interestingly, these changes lie on a continuum, and can be transitory, which 
may have implications for the organization of neural or mechanical systems 
underlying gait. 
 
 
 
 
 
 
 
Fig. 10. Examples of individual perturbation trials illustrating transitory gait 
changes from trot towards bound in the positive (left column) and negative (right 

column) directions as defined by our parameter   that captures the gait change 
along a line between trot and bound. Gait changes in the positive lambda 
direction correspond to an increase in the rate of phase advance of the left limbs 
and a concomitant slowing of phase advance of the right limbs. Negative 
changes in lambda correspond to the opposite changes. Rows depict lambda as 
(A, B) a function of time, (C, D) the leg phase differences, (E, F) individual leg 
phases detrended by the global phase, (G, H) the raw individual leg phases, and 
(I, J), a zoomed in time plot of the individual leg phases. A trial with a positive 
lambda excursion during the perturbation is shown in the left column (A, C, E, F, 
I), and negative lambda at right (B, D, F, H, J). Transitory changes in rate of 
phase advance of the left or right side pairs of legs can be seen in the raw leg 
phases (I, J). Whether animals’ make their transitory gait changes with left or 
right side legs advancing in phase may depend on a “handedness” of mice, or 
potentially on small differences in their location relative to the perturbation. 
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