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Abstract

Adult schistosomes live in the blood vessels and cannot easily be sampled from humans, so
archived miracidia larvae hatched from eggs expelled in feces or urine are commonly used
for population genetic studies. Large collections of archived miracidia on FTA cards are
now available through the Schistosomiasis Collection at the Natural History Museum
(SCAN). Here we describe protocols for whole genome amplification of Schistosoma mansoni
and Schistosome haematobium miracidia from these cards, as well as real time PCR quantifi-
cation of amplified schistosome DNA. We used microgram quantities of DNA obtained for
exome capture and sequencing of single miracidia, generating dense polymorphism data
across the exome. These methods will facilitate the transition from population genetics,
using limited numbers of markers to population genomics using genome-wide marker infor-
mation, maximising the value of collections such as SCAN.

Introduction

We currently lack tools for effective genome-wide characterization of schistosomes from
human populations for two main reasons. First, there is the practical problem of obtaining
suitable material for genomic analyses: schistosome adults live in the blood vessels and only
eggs expelled in feces (Schistosoma mansoni and japonicum) or urine (Schistosoma haemato-
bium) are available from patients. Microscopic miracidium larvae (70 x 140 um) hatched from
these eggs can be used to infect snails and the cercaria larvae produced can be used to infect
laboratory rodents to recover adult worms, but this approach is cumbersome, ethically ques-
tionable and imposes strong selection and potential bias (Gower et al., 2007). An alternative
approach is to hatch these larvae and preserve them individually on FTA cards for genetic ana-
lysis (Gower et al., 2007). This approach has been widely used and has greatly improved our
understanding of many aspects of schistosome population biology (Steinauer et al, 2010;
Webster et al., 2012; Gower et al., 2013, 2017). However, these studies can be severely con-
strained by the minute amount of DNA and therefore the relatively small number of genetic
markers that can be successfully multiplexed, PCR amplified and analysed from a single mira-
cidium. Typically these studies utilize just 8-20 microsatellite markers (Gower et al., 2011,
2013, 2017; Glenn et al, 2013; Steinauer et al, 2013; Aemero et al, 2015; Webster et al.,
2015) or 1-3 gene regions (Van den Broeck et al, 2015; Li et al, 2017). The use of FTA
cards has allowed the creation of large archived collections of FTA-preserved miracidia main-
tained at the Schistosomiasis Collection at the Natural History Museum (SCAN) (Emery et al.,
2012). SCAN currently houses around 300 000 miracidia collected from over 7000 people from
14 countries, sampled within the past decade, providing valuable geographical and temporal
populations of samples for molecular analysis.

The size and complex architecture of schistosome genomes provide an additional obstacle.
Whole genome sequences of the three principal schistosome species infecting humans
(S. mansoni, S. haematobium and S. japonicum) are now available, but these are large (363-
400 Mb), and riddled with transposable elements and repeats, which comprise 40-50% of
the genome and make alignment problematic (Berriman et al, 2009; Zhou et al., 2009;
Protasio et al., 2012; Young et al, 2012). The large genome size also makes whole genome
sequencing from populations prohibitively expensive, even with falling sequencing costs.
Furthermore, the coding regions of the genome (the exome) that are of primary interest for
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many analyses measure ~15 Mb and constitute just 4% of the
total genome (Young et al.,, 2012).

Exome capture methods utilize RNA baits that hybridize with
the targeted exome sequences, so they can be isolated from non-
coding DNA. This approach has been widely used to rapidly and
economically sequence thousands of human exomes and identify
coding variants associated with disease (Rabbani et al, 2014;
Pehlivan et al., 2014; Shaw et al., 2017). There are several attract-
ive features of exome sequencing for schistosome miracidia: (i)
this approach is scalable to working with hundreds of individual
miracidia, (ii) repetitive regions of the genome that are problem-
atic to align are removed, (iii) contaminating sequences amplified
from FTA cards (e.g. bacteria from fecal matter and water) are
eliminated, and (iv) reducing the genome size from 363 to
15 Mb allows sequencing to high read depth, providing robust
scoring of variable sites. We have previously described an
exome capture approach that we used for whole genome ampli-
fied DNA prepared from adult S. mansoni (Chevalier et al.,
2014). Here we adapt this approach for single miracidia. We
describe methods for (i) whole genome amplification (WGA) of
miracidia DNA directly from FTA cards, (ii) qQPCR methods for
quantifying of schistosome DNA amplified and (iii) exome cap-
ture, sample multiplexing and sequencing of amplified DNA.
We apply these methods to a subset of miracidia from SCAN to
demonstrate the utility of these methods. Furthermore, we
describe protocols for both S. mansoni and S. haematobium, the
two species responsible for more than 99% of human infections
(Hotez et al., 2006).

Materials and methods
Ethics statement

EU-CONTRAST specimens were collected in line with project
ethical approval granted by ethical committees of the Ministry
of Health Dakar, Senegal, the Niger National Ethical Committee,
Comité National d’Ethique, Cameroon. For specimens from
the Schistosomiasis Consortium for Operational Research and
Evaluation (SCORE), ethical approvals were granted by Royal
Veterinary College 2015 1327; Imperial College Research Ethics
Committee and SCI Ethical approval (EC no: 03.36. R&D no:
03/SB/033E); the National Institute for Medical Research
(NIMR, reference no. NIMR/HQ/R.8a/Vol. 1X/1022); Zanzibar
Medical Research Ethics Committee in Stonetown, Zanzibar
(ZAMREC, reference no. ZAMREC 0003/Sept/011); University
of Georgia Institutional Review Boards, Athens, GA (2011-
10353-1); Niger Republic National Consulate (reference no. 012/
2010/CCNE).

All local requirements were met, including obtaining written
informed consent from adults (including parents/legal guardians
of children included in the studies) and followed by obtaining
the assent from children included. Following sampling, a prazi-
quantel treatment (40 mgkg™") was offered to infected participants.

Field collection sites

Schistosoma mansoni miracidia were collected as part of
EU-CONTRAST activities from individual patients in three dif-
ferent West African countries in 2007: 27 patients from two loca-
tions in Senegal, 17 patients from two locations in Niger and six
patients from one location in Cameroon (Supplementary File 1)
(Gower et al., 2011; Webster et al., 2013). Additionally, S. mansoni
miracidia were collected as part of the SCORE programme from
64 children in seven villages on the shores of Lake Victoria in
Tanzania (East Africa) in January 2012 (Ezeamama et al., 2016)
(Supplementary File 1).

Winka Le Clec’h et al.

Schistosoma haematobium miracidia were collected through
the SCORE Zanzibar Elimination of Schistosomiasis Transmission
(ZEST) activities in 2011 from 80 children in 26 locations of the
Zanzibar archipelago (East Africa) and in 2013 from 57 patients
in 10 locations of Niger (West Africa) (Supplementary File 1).

All samples were transferred to SCAN for checking, curation
and storage either immediately (SCORE), or at the close of the
project (EU-CONTRAST).

Collection of miracidia

Our methods for recovery of S. mansoni eggs followed Visser and
Pitchford (1972) and Gower et al. (2013) with some minor differ-
ences. In brief, (i) each S. mansoni infected stool sample (approxi-
mately 2 g) was homogenized with a plastic spatula through a
212 um wire mesh sieve (Endecotts Ltd, London, UK) and washed
through with approximately 1 L of locally available bottled water,
(ii) the tray contents were transferred to the inner nylon mesh
(200 pum pore size) of a Pitchford funnel assembly (Visser and
Pitchford, 1972), washed with additional water (up to an add-
itional 1L), and the inner mesh removed from the assembly,
(iii) the washed, filtered homogenate was drained into a 100 x
15 mm Petri dish (BD Biosciences, Erembodegem, Belgium) by
opening the tap at the base of the Pitchford funnel. The Petri
dish containing the homogenate was then left in bright ambient
light (not direct sunlight) to allow hatching of miracidia.

Schistosoma haematobium eggs were concentrated from each
infected urine by sedimentation, then rinsed in bottled mineral
water before transfer into a clean Petri dish containing mineral
water and exposed to light to facilitate hatching (Webster et al.,
2012).

Both miracidia from S. mansoni and S. haematobium were
captured individually, under a binocular microscope, in 3 yL of
water and spotted onto an indicating Whatman FTA Classic
Indicating card (GE Healthcare Life Sciences, Amersham, UK)
using a 20 yL micropipette. Spotted samples (up to approximately
80 per card) can be easily located on the cards because the pink
dye turns white after water contact. The cards were then allowed
to dry for 1 h at room temperature before being stored in a sealed
plastic bag and then shipped to UK, ultimately to be stored in the
SCAN repository.

Preparation of FTA samples for WGA

For each sample prepared, a 2 mm diameter disc was removed
from the centre of the dye-cleared area using a 2 mm Harris
Micro-punch (GE Healthcare Life Sciences, Amersham, UK).
This 2 mm disc corresponds to the entire spot containing the
whole miracidium. Each punch was placed individually in
500 uL Matrix screw cap two-dimensional barcode storage
tubes (Thermo Fisher Scientific, Hemel Hempstead, UK) and
shipped to Texas Biomedical Research Institute for further
preparation.

The punches were individually transferred into 1.5 mL sterile
microtubes using sterile tips. Punches were washed three times
with FTA Purification Reagent (GE Healthcare Life Sciences,
Logan, Utah, USA) then rinsed two times with TE™' buffer
(10 mm Tris, 0.1 mm EDTA, pH 8). Washing and rinsing steps
were performed by adding 200 yL of solution in each tube fol-
lowed by 5 min of incubation on a nutating mixer (24 RPM) at
room temperature and then discarding the solution while minim-
izing contact between the pipette tip and the punch. Punches were
finally dried in tubes during 10 min at 56 °C in a dry bath incu-
bator (Chevalier et al., 2016).
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Whole genome amplification

We conducted WGA on 1-4 miracidia from each patient from all
the sites sampled until a positive WGA was obtained. We per-
formed WGA on each punch using the Illustra GenomiPhi V2
DNA Amplification kit (GE Healthcare Life Sciences, Logan,
Utah, USA). Punches were transferred into 0.2 mL sterile tubes
using a sterile tip. Reactions were performed following the man-
ufacturer’s instructions, immersing each punch in 9 yL of sample
buffer and keeping tubes on ice after the denaturation step (3 min
at 95 °C) while adding a mix of 9 L of reaction buffer and 1 uL of
Phi29 polymerase. After the amplification step (2 h 30 min at 30 °
C and 10 min at 65 °C), we added 130 yL of sterile water into the
reaction tube and purified the 150 yL of amplified genome with
the SigmaSpin™ Sequencing reaction Clean-up (Sigma-Aldrich,
Laramie, Wyoming, USA), following the manufacturer protocol.
We quantified purified samples using the Qubit dsDNA BR
assay (Invitrogen, Grand Island, New York, USA).

Real-time quantitative PCR on schistosome WGA samples

We performed real-time quantitative PCR (qPCR) reactions to esti-
mate the proportion of schistosome genome in each WGA sample.
This was done because FTA samples can contain contaminant
DNA, such as human or bacterial DNA, which is co-amplified
with schistosome DNA during the WGA step. In this assay, we
amplified the S. mansoni o-tubulin 1 (sat-1) gene, which is present
in low copy (gene number: Smp_090120; accession number:
M80214) (Webster et al, 1992) or the putative S. haematobium
a-tubulin 2. The latter was identified by performing a blastn
(v2.2.29) using the S. mansoni a-tubulin (Duvaux-Miret et al.,
1991; accession number: S79195) against the S. haematobium refer-
ence genome (SchHae_1.0; assembly accession number:
GCA_000699445.1). Reactions were performed in duplicate using
the ABI prism 7900HT Sequence Detection system (Applied
Biosystems, Carlsbad, California, USA) as follows: 95°C for
10 min, then 40 cycles of 95°C for 15s and 60 °C for 1 min.
Duplicate reactions showing a difference in Cr greater than one
were rerun. We examined the melting curve (60-95°C) at the
end of each assay to verify the uniqueness of the PCR products gen-
erated. The reaction mixture consisted of 5uL of SYBR Green
MasterMix (Applied Biosystems, Carlsbad, California, USA),
0.3 uL of 10 uM forward primer (S. mansoni: CGAAATTGGAG
TTTGCTGTGT; S. haematobium: GGTGGTACTGGTTCTGG
TTT) and 10 uM reverse primer (S. mansoni: TGTAGGTTGGAC
GCTCTATATC; S. haematobium: AAAGCACAATCCGAATG
TTCTAA) amplifying 229 bp of the sat-1 gene for S. mansoni
and 178 bp of the a-tubulin 2 for S. haematobium, 3.4 uL of ster-
ile water and 1uL of total DNA template (normalized at
20 ng.uL™"). We plotted standard curves using seven dilutions
of a purified sat-1 PCR product for S. mansoni (sat-1
copiesuL™": 2.19 x 107, 2.19 x 107 2.19 x 10%, 2.19 x 10%, 2.19 x 10°,
2.19 x 10°, 2.19 x 10”) or seven dilutions of a purified a-tubulin
2 PCR product for S. haematobium (a-tubulin 2 copies.ul™":
129 x 10", 1.29x10%, 1.29x10°, 1.29x 10%, 1.29x10%, 1.29x
10%, 1.29 x 107). The number of sat-1 or a-tubulin 2 copies in
each sample was estimated according to the standard curve.

Exome library preparation and sequencing

We captured schistosome (S. mansoni or S. haematobium)
exomes using the SureSelect™™ Target Enrichment System
(Agilent) according to the manufacturer’s protocol. For each
library (i.e. each sample), we sheared 1 ug of WGA DNA by adap-
tive focused acoustics (Duty factor: 10%; Peak Incident Power:
175; Cycles per Burst: 200; Duration: 180 s) in AFA tubes, using
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a Covaris S220 instrument with SonoLab software version 7
(Covaris, Inc., Woburn, Massachussetts, USA), to recover frag-
mented DNA between 150 and 200 bp. We used five PCR cycles
for the pre-capture and eight PCR cycles for post-capture ampli-
fications. In order to make the capture step cost-efficient, we
added unique indices to each library prior to exome capture (pre-
capture indexing method), pooled equal amounts of DNA from
16 libraries and then performed the capture. A capture requiring
a total of 750 ng indexed DNA, we pooled 46.875 ng of each of
the 16 libraries. To minimize uneven capture of each samples,
we pooled libraries from samples showing similar quantities of
schistosome genomes previously estimated by qPCR. The capture
was performed using sets of baits from the SureSelect™” Target
Enrichment System (Agilent, Lexington, Massachussetts, USA)
(120 bp RNA molecules) specific to each species.

The design of the baits used to capture the S. mansoni exome
(SureSelect design ID: S0398493) has already been described in
Chevalier et al. (2014). We use our experience with the S. mansoni
bait design to improve our design strategy for S. haematobium.
Unlike the S. mansoni design, (i) we included all exons that passed
the low complexity threshold (rather than only the exons to which
sequences can be unambiguously aligned); (ii) we included exons
from vaccine candidates (Supplementary File 2); and (iii) we
designed baits to ensure effective capture of ShSULT-OR gene
(Sha_104171), a drug target of particular interest (Taylor et al.,
2017). The design (SureSelect design ID: S0742423) was made
using the latest S. haematobium genome version (SchHae_1.0;
assembly accession number: GCA_000699445.1) and its corre-
sponding annotation. The final set of S. haematobium baits
included 156 004 from the nuclear genome and 67 from the mito-
chondrial genome. These cover 96% (62 106/64 642) of the exons
and account for 94% of the exome length (15002 706 bp/15 895
612 bp). The sequences covered by baits are referred to as the bait
regions. Each captured exon was covered by 2.59 baits on average.

We sequenced the pooled barcoded exome libraries using
100 bp pair-end reads (16 samples per lane of flowcell) on
HiSeq 2500 sequencer (Illumina). Raw sequence data have been
submitted to the NCBI Sequence Read Archive under accession
numbers SRP136210 and SRP136277.

Sequencing data analyses

We aligned the sequencing data against the S. mansoni reference
genome (v5; ftp:/ftp.sanger.ac.uk/pub/pathogens/Schistosoma/
mansoni/genome/Assembly-v5/ARCHIVE/sma_v5.0.chr.fa.gz)

or the S. haematobium reference genome (SchHae_1.0; assembly
accession number: GCA_000699445.1) using BWA (v0.7.12) (Li
and Durbin, 2009) and SAMtools (v1.2) (Li et al, 2009).
Realignment around indels was performed using GATK
(v3.3-0-g37228af) (McKenna et al., 2010; DePristo et al., 2011).
PCR duplicates were marked using picard (v1.136). Q-score recali-
bration and variant (SNP/indel) calling by the UnifiedGenotyper
module were performed using GATK. Bait representation, capture
efficiency and read depth analyses were performed using BEDTools
(v2.21.0) (Quinlan and Hall, 2010). The variant calling set was fil-
tered using VCFtools (v0.1.14) (Danecek et al., 2011) to retain
only variants in the bait regions and with a minimum read depth
of 10 and a minimum genotype quality score of 80.

Statistics and data representation

Statistics analyses, calculation of capture efficiency, calculation of
the read depth ratio of sex chromosome, analysis of read depth
surrounding bait regions and data visualizations were performed
using R (v3.3.1). Figure 1 summarizes our pipeline for generating
and analysing exome sequence from single miracidia.
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Work flow for schistosome exomes sequencing
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Fig. 1. Workflow summarizing the protocol used to generate and analyse genomic data starting with field collecting miracidium.

Results
WGA of single miracidia

We performed WGA on a total of 412 FTA-preserved samples.
These include 101 S. mansoni samples from East Africa
(Tanzania) and 90 S. mansoni samples from West Africa
(Senegal, Niger and Cameroon) (1-3 samples per patient) as
well as 138 S. haematobium samples from East Africa (Zanzibar
archipelago) and 83 FTA preserved S. haematobium samples
from West Africa (Niger) (1-4 samples per patient). This resulted
in an average of 3.8 +0.66 ug of DNA (mean *s.0.) from each
S. mansoni sample and an average of 2.8+0.48 ug of DNA
from each S. haematobium sample.

The amount of schistosome DNA per sample is critical for
downstream genomic assays: samples with no schistosome DNA
need to be removed, while samples with low levels (<100 copies)
of schistosome template DNA result in failed exome capture. To
estimate the quantity of schistosome DNA in each WGA, we
quantified a low copy gene (sat-1 for S. mansoni and a-tubulin

2 for S. haematobium) using qPCR. While DNA was successfully
amplified from almost 100% of the spots (Table 1), the gPCR
assay revealed that only 59.4 and 41.11% of the whole genome
amplified samples were positive for S. mansoni from the East
and West African samples, respectively. For the S. haematobium
samples, 47.10% of schistosome-positive WGA samples were
from the East and 66.26% from the West African samples. We
found no S. mansoni-positive samples among 14 FTA punches
examined from Cameroon (Table 1).

The quantity of S. mansoni DNA obtained from single mira-
cidia after WGA varied over five orders of magnitude (Fig. 2)
among the 97 S. mansoni-positive samples from East (n=60)
and West Africa (n=37). Two samples from each region (3% of
East African and 5% West African samples) contained <100 cop-
ies. WGA material from East African samples showed higher
quantities of S. mansoni DNA than WGA material from West
African samples (Fig. 2; Wilcoxon test; P=1.463 x 10~°).

We observed similar heterogeneity in schistosome DNA quan-
tity for WGA from the 65 S. haematobium-positive samples from
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East Africa, while the quantity of DNA from 55 West African
S. haematobium WGAs varied by only three orders of magnitude,
with no outliers. Only 11% (7/65) of S. haematobium-positive
samples, all from East Africa, showed <100 copies. We found a
marginally higher quantity of S. haematobium DNA in West
compared with East African samples (Fig. 2; Wilcoxon test; P =
0.017).

WGA from S. haematobium samples contained more schisto-
some DNA than from S. mansoni samples in both East (Fig. 2;
Wilcoxon test; P=1.980x10"7) and West African samples
(Fig. 2; Wilcoxon test; P=2.472 x 107").

Exome sequencing of single miracidia

We show exome sequencing data from 8 S. mansoni miracidia
from a single Tanzanian village (Kigongo, Supplementary File 1)
and from eight S. haematobium miracidia from three villages on
Pemba island (Zanzibar archipelago: Chambani, Ngwachani and
Chanjamjamiri; Supplementary File 1). We observed efficient
exome capture and sequencing for both species (Table 2).
Sequencing of the exome capture libraries generated from six to
26 million reads for S. mansoni and from five to 18 million
reads for S. haematobium (Table 2). A very high proportion of
these reads were mapped to their respective genomes (95.5 and
95% on average, respectively) with only one sample from each
species showing <90% of mapped reads (84 and 89%, respect-
ively). The remaining DNA sequences, which were not mappable,
could either be highly divergent schistosome sequences or more
likely human or microbial contaminants present in the WGA
sample and captured with the schistosome DNA.

We captured more than 99% of the bait regions and this was
consistent across all eight libraries of each species (Table 2). We
obtained an average of 51.74 mean (30.62 median) read depth
in the bait regions for the S. mansoni libraries and an average
of 38.07 mean (30.62 median) read depth for the S. haematobium
libraries (Table 2). Read depth was even across the exome (Fig. 3),
except in parts of the Z chromosome in S. mansoni females where
read depth is halved (females are ZW). These genome regions
(position 3.5-19.5 and 23.5-31 Mb for S. mansoni (Lepesant
et al., 2012)) correspond to the non-recombining heterochroma-
tin domain of the W chromosome. The read depth in the Z-linked
region allows us to determine the parasite sex in silico using a read
depth ratio between the Z-linked region and the rest of the
chromosome. Among the samples present in Table 2, we obtained
an equal sex ratio. The S. haematobium genome assembly is
poorly resolved and the Z-linked region still remains undefined
(Table 2, Fig. 3).

We also captured genome regions outside the bait regions, as
shown previously (Chevalier et al., 2014). The read depth declines
with distance from the bait regions as expected (Table 2). When
we included data up to 250 bp around the bait regions, the mean
and the median read depth reached ~72 and ~37% of the initial
bait regions, respectively. These observations were similar for both
S. mansoni and S. haematobium. Therefore, our exome capture
provides adequate sequence read depths for at least 250 bp sur-
rounding bait regions allowing us to obtain information regarding
adjacent genome regions containing promoters, transcription
binding sites and other features of interest.

We were able to robustly identify variable sites in the exome
capture libraries from each species (Table 3). The raw variant calling
revealed more variable sites in S. mansoni than in S. haematobium.
The raw data were further filtered using very stringent parameters
(minimum read depth of 10 and genotype quality of 80). After fil-
tering, we retained informative sites accounting for around 74% of
the initial sites identified. Among them, the vast majority (96%)
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Fig. 2. Distribution of the number of a-tubulin copy among all the WGA schistosome
samples tested. Log,, distribution of the number of a-tubulin copy in 20 ng of total
DNA, among the 60 East African (Tanzania) and the 37 West African (Senegal and
Niger) Schistosoma mansoni samples, and the 65 East African (Zanzibar) and 55
West African (Niger) Schistosoma haematobium samples from FTA-preserved samples.
Schistosome mansoni and S. haematobium DNA varies in concentration by three to
five orders of magnitude within WGA products. The 11 outliers, below the dotted
line threshold, exhibited a very low number of a-tubulin copies (<100 copies in
20 ng of total DNA) and were removed from the next generation sequencing sample
set.

were biallelic sites, <1% was multiallelic sites and between 3 and 4%
were identified as indel sites.

Discussion

Utility of WGA and qPCR quality check for FTA-preserved
miracidia

WGA provides a very effective approach to generating large
amounts of DNA from single miracidia for genome wide analyses
(Valentim et al., 2009; Shortt et al., 2017). This approach has pre-
viously been used to generate micrograms of DNA from a S. man-
soni laboratory genetic cross with a minimal error rate (0.45%)
induced by the WGA step (Valentim et al, 2009). The current
study extends this approach to WGA of archived miracidia col-
lected in the field. Such material is more challenging compared
with laboratory prepared miracidia because the miracidia on
FTA cards may contain extensive environmental contamination,
such as fecal bacteria or human DNA. Two features of the
approach used are worth emphasising. First, the WGA method
uses 2 mm FTA punches directly immersed in the WGA reaction,
eliminating the need for initial DNA preparation. This produced
around 3 ug of material that is sufficient for next generation
sequencing applications that require at least 500 ng to 1 ug of
DNA. Second, we developed a simple qPCR assay for quantifying
amounts of S. mansoni and S. haematobium DNA present in the
WGA material. This allows identification of schistosome-positive
samples and quantification of schistosome DNA, which is a crit-
ical step for the identification of WGA samples suitable for library
preparation and for grouping samples in pools with similar
amounts of schistosome DNA to minimize variation in read
depth.

We observed variation in the numbers of positive schistosome
WGAS, ranging from 46.42 to 66.26% for S. mansoni or S. haema-
tobium populations, respectively. These results most likely reflect
variations in the miracidia collection protocol (variation in egg
washing, in spot sizes on FTA cards) and/or in the training of

Winka Le Clec’h et al.

people collecting miracidia. We observed higher and more uni-
form concentration of S. haematobium DNA in WGA material,
when compared with S. mansoni DNA (Fig. 2). The higher vari-
ation in S. mansoni DNA amount is consistent with fecal contam-
ination, as less contamination is expected in S. haematobium
isolated from urine. We recommend that future miracidia collec-
tions, specifically for genomic work, should wash S. mansoni
miracidia in clean water, prior to pipetting onto FTA cards, mini-
malizing contamination.

Among schistosome-positive samples, we removed those
showing low quantity of schistosome DNA (<100 copies of tubu-
lin gene after WGA) because only higher schistosome DNA quan-
tities gave good sequencing data.

Efficient exome capture from FTA preserved miracidia

Preparation of exome capture libraries using WGA material from
either S. mansoni or S. haematobium led to high read depth
exome sequencing data despite five orders of magnitude variation
in the quantity of schistosome DNA present in the WGAs. Using
very conservative calling parameters, we scored 85133 variable
sites in S. mansoni and 60193 in S. haematobium from just
eight individual miracidia of each species, which is equivalent
to one variant every 166 bp for S. mansoni and every 249 bp
for S. haematobium in the bait regions sequenced. This provides
a rich source of variation for population exomic analyses and will
be the focus of future studies with large numbers of samples.
Our exome capture method has several useful characteristics
for working with field-collected miracidia. Exome capture effect-
ively pulls out schistosome DNA (exons) from contaminating
human or bacterial DNA so we can minimize the amount of con-
taminant sequence generated. Capture is very efficient and con-
sistent (more than 99% of the expected region is captured for
each sample) so we can sequence to high read depth to generate
robust variant calls, or use read depth to estimate copy number.
Here, for example, we can use read depth information from the
S. mansoni Z-linked sex chromosomes for in silico sexing. The
main disadvantages of exome sequencing are some highly variable
genes may be poorly captured and many non-coding regions
important for gene regulation are not captured (Biesecker et al.,
2011), although we do effectively capture non-coding regions
adjacent to bait sequences. We note that whole genome sequen-
cing can also be done using WGA miracidia, if precautions are
made to minimize contaminations during collection of miracidia.

Costs of exome sequencing miracidia

Exome capture methods are more expensive than other reduced
representation library preparation approaches, such as RADseq
(Harvey et al., 2016). However, exome capture targets specific
genome regions of interest and in a consistent manner for each
sample, and shows lower levels of genotyping error and allelic
drop out (Attard et al., 2017) than RADseq and related methods,
so it has several advantages. The baits are by far the most expen-
sive part of this method (~US$900 for a given capture) but the
pre-capture indexing method allows pooling of up to 16 samples
prior the capture. This brings the capture cost down to $56.25 per
sample, while the other reagents required for library preparation
are $83.75 per sample. The overall cost per sample is therefore
approximately $140. The cost of a flow cell lane for a HiSeq
2500, sufficient to sequence 16 libraries, is currently around
$2000 in our facility, so the final cost is $265 per sample for an
average read depth of 50. To achieve the same read depth when
sequencing the entire schistosome genome requires two samples
per lane, costing around $1000 per sample (library preparation
cost is, in this case, negligible). Capturing and sequencing exomes
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Table 2. Exome capture library statistics

% Bait Mean (median) read depth
Total Mapped % Mapped Paired regions Mean (median) read in bait regions + adjacent W
Library reads reads reads reads Singletons Duplicates captured depth in bait regions 250 bp ratio Sex
Sm.TZ_009.10.1 25798 662 25419 182 98 23 340 898 75658 778 686 99.7 111.6 (50) 29.46 (11) 1.09 M
Sm.TZ_009.1.1 10584471 8990428 84 8401922 30943 472 062 99.61 41.13 (30) 80.07 (17) 11 M
Sm.TZ_009.2.2 6322519 6285705 99 5908 458 18458 108 142 99.57 28.25 (22) 20.44 (9) 0.56 F
Sm.TZ_009.4.2 14 336 010 13867 259 96 12 681 806 44233 398 843 99.45 61.84 (29) 45.18 (11) 0.7 F
Sm.TZ_009.5.2 12072285 11756 999 97 10 697 666 34578 270333 99.02 52.42 (24) 38.6 (9) 0.62 F
Sm.TZ_009.6.1 6001101 5932580 98 5457 864 19 447 94 657 99.52 25.97 (20) 19.02 (8) 1.15 M
Sm.TZ_009.7.1 14 570 100 14433 095 99 13250586 41663 245158 99.73 59.91 (45) 43 (14) 0.61 F
Sm.TZ_009.8.2 7832169 7306 500 93 6 876 540 20661 137371 99.6 32.86 (25) 23.72 (10) 1.08 M
Sh.TZ_PEM0063.1 7029 068 6464 873 91 6 040 332 7279 179 216 99.73 28.72 (22) 20.55 (9) ND ND
Sh.TZ_PEM0076.1 11544736 11392803 98 9696 738 67 595 480 559 99.92 41.62 (35) 30.07 (12) ND ND
Sh.TZ_PEM0079.1 5557924 4998 091 89 4672272 6737 127514 98.7 22.69 (14) 16.72 (6) ND ND
Sh.TZ_PEM0089.2 18 364 494 17933751 97 16 683 002 20437 390 640 99.85 71.88 (57) 51.08 (17) ND ND
Sh.TZ_PEM0094.2 15443 954 15214835 98 14 091 206 19001 317997 99.85 61.23 (52) 44.06 (17) ND ND
Sh.TZ_PEM0099.2 7069 391 6672191 94 6292 150 7106 124974 99.78 28.88 (24) 20.64 (9) ND ND
Sh.TZ_PEM0103.1 7958910 7809 025 98 7293706 28039 487 198 99.8 31.72 (26) 22.86 (10) ND ND
Sh.TZ_PEM0104.1 5051982 4824 636 95 4079 848 40950 200 550 99.77 17.83 (15) 13.17 (6) ND ND

The ratio Z/W is the ratio of the read depth of the Z-linked regions (between 3.5-19.5 and 23.5-31 Mb) over the read depth of the rest of the Z chromosome. We considered a ratio between 0.5 and 0.75 corresponding to females, and a ratio over 0.75 to males. ND: not
determined because the Schistosoma haematobium sexual chromosome is not identified in the current assembly.
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Fig. 3. Read depth of the bait regions for Schistosoma mansoni and Schistosoma haematobium single miracidium libraries. Schistosoma mansoni (Sm) plots show
read depth of bait regions on the assembled chromosomes (grey), on unplaced scaffolds that have been assigned to chromosomes or unassigned scaffolds (black).
Schistosoma haematobium (Sh) plots show read depth of the concatenated bait regions (bp, base pair).

Table 3. Variant calling statistics

Number of sites in

Number of sites in Schistosoma

Type of site Schistosoma mansoni haematobium
Variable sites 117 007 80483
before filtering

Variable sites 85133 60 193
after filtering

Biallelic sites 81556 57897
Multiallelic sites 443 522
Sites with 1335 933
insertion

Sites with 2038 1072
deletion

Number of variable sites identified in the eight exome capture libraries of S. mansoni and
S. haematobium. We used conservative filtering parameters: minimum read depth of 10 and
a minimum genotype quality (GQ) of 80.

also reduces both the analysis time and the storage capacity
required for housing data because the exome represents just 4%
of the complete genome (15 vs 365 Mb genome). Exome capture
is currently about 4-fold less expensive than whole genome
sequencing at present, ignoring the additional costs for data stor-
age and analysis of whole genome data. The central advantage of
exome capture over both RADseq and whole genome sequencing
is that contaminating sequences can be effectively removed.

Our established workflow using the WGA method and gPCR
quality check (Fig. 1) will facilitate the transition from population
genetics using a handful of loci, to population genomics using
genome-wide information. Using these tools, we will be able to
fully exploit large collections of archived miracidia, such as
those available through SCAN. For example, analysis of archived
miracidia collected may be particularly useful for retrospective
analyses of loci underlying drug resistance (Chevalier et al.,
2016). This same approach can also be used for microscopic larval
stages of other parasite species.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182018000811
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